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Abstract—Conversational speech recognition has served as
a flagship speech recognition task since the release of the
Switchboard corpus in the 1990s. In this paper, we measure a
human error rate on the widely used NIST 2000 test set for
commercial bulk transcription. The error rate of professional
transcribers is 5.9% for the Switchboard portion of the data, in
which newly acquainted pairs of people discuss an assigned topic,
and 11.3% for the CallHome portion where friends and family
members have open-ended conversations. In both cases, our
automated system edges past the human benchmark, achieving
error rates of 5.8% and 11.0%, respectively. The key to our
system’s performance is the use of various convolutional and long
short-term memory acoustic model architectures, combined with
a novel spatial smoothing method and lattice-free discriminative
acoustic training, multiple recurrent neural network language
modeling approaches, and a systematic use of system combi-
nation. Comparing frequent errors in our human and machine
transcripts, we find them to be remarkably similar, and highly
correlated as a function of the speaker. Human subjects find it
very difficult to tell which errorful transcriptions come from
humans. Overall, this suggests that, given sufficient matched
training data, conversational speech transcription engines are
approximating human parity in both quantitative and qualitative
terms.

Index Terms—Conversational speech recognition, convolu-
tional neural networks, recurrent neural networks, VGG, ResNet,
LACE, BLSTM, spatial smoothing.

I. INTRODUCTION

Recent years have seen human performance levels reached
or surpassed in tasks ranging from the games of chess and Go
[1], [2] to simple speech recognition tasks like carefully read
newspaper speech [3] and rigidly constrained small-vocabulary
tasks in noise [4], [5]. In the area of speech recognition, much
of the pioneering early work was driven by a series of carefully
designed tasks with DARPA-funded data sets publicly released
by the Linguistic Data Consortium (LDC) and the National
Institute of Standards and Technology (NIST) [6]. At first, the
recognition tasks were simple ones like Resource Management
[7] with a small vocabulary and carefully controlled grammar;
then read speech recognition in the Wall Street Journal task
[8]; then Broadcast News [9]; each progressively more difficult
for automatic systems. One of the last big initiatives in this
area was in conversational telephone speech (CTS), which
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is especially difficult due to the spontaneous (neither read
nor planned) nature of the speech, its informality, and the
self-corrections, hesitations and other disfluencies that are
pervasive. The Switchboard [10] and later Fisher [11] data
collections of the 1990s and early 2000s provide what is to
date the largest and best studied of the conversational corpora.
The history of work in this area includes key contributions by
institutions such as IBM [12], BBN [13], SRI [14], AT&T
[15], LIMSI [16], Cambridge University [17], Microsoft [18]
and numerous others.

In the past, human performance on this task has been widely
cited as being 4% [19]. However, the error rate estimate in [19]
is attributed to a “personal communication,” and the actual
source of this number is ephemeral. To better understand
human performance, we have used professional transcribers
to transcribe the actual test sets that we are working with,
specifically the CallHome and Switchboard portions of the
NIST eval 2000 test set. We find that the human error rates
on these two parts are different almost by a factor of two,
so a single number is inappropriate to cite. The error rate
on Switchboard is about 5.9%, and for CallHome 11.3%.
We improve on our recently reported conversational speech
recognition system [20] by about 0.4%, and now exceed
human performance by a small margin.

Our progress is a result of the careful engineering and
optimization of convolutional and recurrent neural networks.
While the basic structures have been well known for a long
period [21], [22], [23], [24], [25], [26], [27], they have only
recently started to dominate the field as the best models for
speech recognition. This is the case for both acoustic modeling
[28], [29], [30], [31], [32], [33] and language modeling
[34], [35], [36], [37]. In comparison to the standard feed-
forward multi-layer perceptrons (MLPs) or deep neural nets
(DNNs) that first demonstrated breakthrough performance on
conversational speech recognition [18], these acoustic models
have the ability to model a large amount of acoustic context in
the time dimension, and in the case of convolutional models,
along the frequency dimension as well. In language modeling,
recurrent models appear to improve over classical N-gram
models through the use of an unbounded word history, as well
as the generalization ability of continuous word representa-
tions [38], [39]. While ensemble classifier methods have long
been popular in speech recognition systems [40], [41], [42]
ensemble learning has now also become a feature in neural
models [43], [44], [35], to improve robustness by reducing
bias and variance.
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This paper is an expanded version of [20], with the follow-
ing additional material:

1) A comprehensive discussion of human performance as-
sessment for conversational speech transcription

2) The description of a novel spatial regularization method
which significantly boosts our bidirectional long short-
term memory (BLSTM) acoustic model performance

3) The use of long short-term memory (LSTM) rather than
recurrent neural nets (RNNs) as language models, and
the use of a letter-trigram input representation

4) A two-level system combination, based on a subsystem
of BLSTM-system variants that, by itself, surpasses the
best previously reported results

5) Expanded coverage of the Microsoft Cognitive Toolkit
(CNTK) and hyperparameters used to build our models

6) An analysis of human versus machine error patterns and
distribution (an expanded form of which appears in [45])

We note that this paper describes a snapshot of a system under
development; an improved version is reported in [46].

The remainder of this paper describes our system in detail.
Section II details our measurement of human performance and
discusses related efforts. Section III describes the convolu-
tional neural net (CNN) and long-short-term memory (LSTM)
models. Section IV presents our lattice-free MMI training
process. Language model rescoring is a significant part of our
system, and described in Section V. We describe the CNTK
toolkit that forms the basis of our neural network models,
along with hyperparameters used, in Section VI. Experimental
results are presented in Section VII, followed by an error
analysis in Section VIII. We finish with a review of relevant
prior and ongoing work in Section IX, followed by concluding
remarks.

II. HUMAN PERFORMANCE

To measure human performance, we leveraged an existing
pipeline in which Microsoft data is transcribed on a weekly
basis. This pipeline uses a large commercial vendor to perform
two-pass transcription. In the first pass, a transcriber works
from scratch to transcribe the data. In the second pass, a second
listener monitors the data to do error correction. Dozens of
hours of test data are processed in each batch.

One week, we added the NIST 2000 CTS evaluation data
to the work-list, without further comment. The intention was
to measure the error rate of professional transcribers going
about their normal everyday business. Aside from the standard
two-pass checking in place, we did not do a complex multi-
party transcription and adjudication process. The transcribers
were given the same audio segments as were provided to the
speech recognition system, which results in short sentences
or sentence fragments from a single channel. This makes the
task easier since the speakers are more clearly separated, and
more difficult since the two sides of the conversation are not
interleaved. Thus, it is the same condition as reported for our
automated systems. The resulting numbers are 5.9% for the
Switchboard portion, and 11.3% for the CallHome portion
of the NIST 2000 test set, using the NIST scoring protocol.
These numbers should be taken as an indication of the “error

rate” of a trained professional working in industry-standard
speech transcript production. (We have submitted the human
transcripts thus produced to the Linguistic Data Consortium
for publication, so as to facilitate research by other groups.)

Note that a human transcriber error rate thus measured is
really the “inter-annotator disagreement” between two human
transcriptions, except that we identify one transcription as the
“gold standard”, due the historical priority and greater level
of effort involved in creating the NIST references. The dis-
agreement between transcribers has been studied previously;
researchers at the LDC [47] have assessed inter-transcriber
error rates for data taken from the 2003 Rich Transcription
evaluation set (which contains Switchboard and Fisher, but no
CallHome data). Error rates of 4.1 to 4.5% are reported for
extremely careful multiple transcriptions, and 9.6% for “quick
transcriptions.” While this is a different test set, the numbers
are in line with our findings.1

Perhaps the most important point is the extreme variability
between the two test subsets. The more informal CallHome
data has almost double the human error rate of the Switchboard
data. Interestingly, the same informality, multiple speakers per
channel, and recording conditions that make CallHome hard
for computers make it difficult for people as well. Notably,
the performance of our artificial system aligns almost exactly
with the performance of people on both sets.

We want to stress that the human results found by us are
but one point on a continuum of possible levels of effort
for human transcription, conveniently chosen to be indicative
of an existing practice in the industry. Investing additional
transcribers, effort, training, and possibly reconciliation be-
tween transcribers would all the expected to improve the
final accuracy. The NIST study cites earlier represents a more
careful transcription effort, albeit one that would probably be
cost-prohibitive on a larger scale.

Another point of comparison is a recent human transcription
experiment on the same data set that used a more involved
transcription methodology [48]. In that work, the transcription
vendor was cognizant of the experiment and explicitly famil-
iarized with properties of the data and reference transcription
conventions. Other important differences were that multiple
independent first-pass transcribers were used, each of whom
was making multiple listening passes over the data, and the
overall best transcriber was chosen. Adding to that a quality
assurance pass by a separate transcriber, between 12 and 18
listening passes were carried out. A final, and possibly crucial
difference was that the transcribers in [48] could listen to the
entire conversation side and thereby learn the characteristics
of the speakers, their vocabulary, and conversation topic. This
was not allowed in our pipeline since the vendor was set
up to transcribe utterances independently. The human result
in [48] were error rates of 5.1% and 6.8%, respectively, on
Switchboard and CallHome. The improved result for Call-
Home transcription in particular could be due to the added
context available to the transcribers.

1We note that the bulk of the Fisher training data, and the bulk of the
data overall, was transcribed with the “quick transcription” guidelines. Thus,
the current state of the art is actually exceeding the human error level in the
training data for the underlying models.
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Fig. 1. LACE network architecture

III. CONVOLUTIONAL AND LSTM NEURAL NETWORKS

A. CNNs

We use three CNN variants. The first is the VGG archi-
tecture of [49]. Compared to the networks used previously
in image recognition, this network uses small (3x3) filters,
is deeper, and applies up to five convolutional layers before
pooling.

The second network is modeled on the ResNet architecture
[50], which adds highway connections [51], i.e. a linear
transform of each layer’s input to the layer’s output [51], [52].
The only difference is that we apply batch normalization [53]
before computing rectified linear unit (ReLU) activations.

The last CNN variant is the LACE (layer-wise context
expansion with attention) model [54], depicted in Figure 1.
LACE is a variant of time-delay neural network (TDNN) [23]
in which each higher layer is a weighted sum of nonlinear
transformations of a window of lower layer frames. In other
words, each higher layer exploits broader context than the
lower layers. Lower layers focus on extracting simple local
patterns while higher layers extract complex patterns that cover
broader contexts. Since not all frames in a window carry the
same importance, a learned attention mask is applied, shown
as the “element-wise matrix product” in Figure 1. The LACE
model thus differs from the earlier TDNN models [23], [55] in
this attention masking, as well as the ResNet-like linear pass-
through. As shown in the diagram, the model is composed of
four blocks, each with the same architecture. Each block starts
with a convolution layer with stride two, which sub-samples
the input and increases the number of channels. This layer
is followed by four ReLU convolution layers with jump-links
similar to those used in ResNet.

Table I compares the layer structure and parameters of the
three CNN architectures. All three architectures employ batch

TABLE I
COMPARISON OF CNN ARCHITECTURES

VGG Net Residual-Net LACE
Parameters 85M 38M 65M
Layers 14 49 22
Inputs 40x41 40x41 40x61

Convolution 1 [conv 3x3, 96] x3
maxpool (2x2)

[conv 1x1, 64
conv 3x3, 64
conv 1x1, 256] x3

jump block
[conv 3x3, 128] x5

Convolution 2 [conv 3x3, 192] x4
maxpool (2x2)

[conv 1x1, 128
conv 3x3, 128
conv 1x1, 512] x4

jump block
[conv 3x3, 256] x5

Convolution 3 [conv 3x3, 384] x4
maxpool (2x2)

[conv 1x1, 256
conv 3x3, 256
conv 1x1, 1024] x6

jump block
[conv 3x3, 512] x5

Convolution 4
[conv 1x1, 512
conv 3x3, 512
conv 1x1, 2048] x3

jump block
[conv 3x3, 1024] x5

Outputs [FC 4096] x2
Softmax (9000)

average pool
Softmax (9000)

[conv 3x4, 1] x1
Softmax (9000)

normalization [53] between layers.
We also trained a fused model by combining a ResNet

model and a VGG model at the senone posterior level. (A
senone represents a tied context-dependent HMM state.) Both
base models are independently trained, and then the score
fusion weight is optimized on development data. The fused
system is our best single system.

B. LSTMs

While our best performing models are convolutional, the
use of long short-term memory networks (LSTMs) is a close
second. We use a bidirectional architecture [56] without frame-
skipping [29]. The core model structure is the LSTM defined
in [28]. We found that using networks with more than six
layers did not improve the word error rate on the development
set, and chose 512 hidden units, per direction, per layer, as that
provided a reasonable trade-off between training time and final
model accuracy.

C. Spatial Smoothing

Inspired by the human auditory cortex [57], where neigh-
boring neurons tend to simultaneously activate, we employ
a spatial smoothing technique to improve the accuracy of
our LSTM models. We make no claim about the neural
plausibility of the resulting model, and view the imposition of
a topological smoothing constraint simply as a device for reg-
ularizing network parameter estimation. Stimulated networks
[58] employ a similar approach.

The smoothing is implemented as a regularization term
on the activations between layers of the acoustic model.
First, each vector of activations is re-interpreted as a 2-
dimensional image. For example, if there are 512 neurons,
they are interpreted as the pixels of a 16 by 32 image. Second,
this image is high-pass filtered. The filter is implemented
as a circular convolution with a 3 by 3 kernel. The center
tap of the kernel has a value of 1, and the remaining eight
having a value of −1/8. Third, the energy (L2 norm) of
this high-pass filtered image is computed and added to the
training objective function. We have found empirically that a
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TABLE II
ACCURACY IMPROVEMENTS FROM SPATIAL SMOOTHING ON THE NIST

2000 CTS TEST SET. THE MODEL IS A SIX LAYER BLSTM, USING
I-VECTORS AND 40 DIMENSIONAL FILTERBANK FEATURES, AND A

DIMENSION OF 512 IN EACH DIRECTION OF EACH LAYER. SENONES
REFERS TO THE NUMBER OF TIED CONTEXT-DEPENDENT HMM STATES.

Model
WER (%)

9000 senones 27000 senones
CH SWB CH SWB

Baseline 21.4 9.9 20.5 10.6
Spatial smoothing 19.2 9.3 19.5 9.2

suitable scale for this energy is 0.1 with respect to the existing
cross entropy objective function. We experimented with 3-
dimensional smoothing topologies as well, but found them to
give worse results than the 2-dimensional arrangement.

The overall effect of this process is to make the training
algorithm prefer models that have correlated neurons, and to
improve the word error rate of the acoustic model. Table II
shows the benefit in error rate for some of our early systems.
We observed error reductions of between 5 and 10% relative
from spatial smoothing. Note that without spatial smoothing,
increasing the number of senones has a detrimental effect
on SWB accuracy. However, spatial smoothing remedies this
anomaly, suggesting it was due to overfitting, or insufficient
regularization.

D. Speaker Adaptive Modeling

Speaker adaptive modeling in our system is based on
conditioning the network on an i-vector [59] characterization
of each speaker [60], [61]. A 100-dimensional i-vector is
generated for each conversation side (channel A or B of the
audio file, i.e., all the speech coming from the same speaker).
For the LSTM system, the conversation-side i-vector vs is
appended to each frame of input. For convolutional networks,
this approach is inappropriate because we do not expect to
see spatially contiguous patterns in the input. Instead, for
the CNNs, we add a learnable weight matrix W l to each
layer, and add W lvs to the activation of the layer before the
nonlinearity. Thus, in the CNN, the i-vector essentially serves
as an speaker-dependent bias to each layer. Note that the i-
vectors are estimated using MFCC features; by using them
subsequently in systems based on log-filterbank features, we
may benefit from a form of feature combination.

Performance improvements from i-vectors are shown in
Table III. The full experimental setup is described in Section
VII. We note that the BLSTM model on CH data (but not
the other models or for SWB data) shows a slight degradation
under i-vector adaptation. We conjecture that is due to the
fact that some CH conversations have multiple speakers on
one conversation side (see Section VIII). Since the BLSTM
uses information over longer time spans this could create a
mismatch around speaker change points.

IV. LATTICE-FREE SEQUENCE TRAINING

After standard cross-entropy training, we optimize the
model parameters using the maximum mutual information

(MMI) objective function. Denoting a word sequence by w
and its corresponding acoustic realization by a, the training
criterion is ∑

w,a∈data

log
P (w)P (a|w)∑′
w P (w

′)P (a|w′)
.

As noted in [62], [63], the necessary gradient for use in
backpropagation is a simple function of the posterior prob-
ability of a particular acoustic model state at a given time, as
computed by summing over all possible word sequences in an
unconstrained manner. As first done in [12], and more recently
in [64], this can be accomplished with a straightforward alpha-
beta computation over the finite state acceptor representing
the decoding search space. In [12], the search space is taken
to be an acceptor representing the composition HCLG for
a unigram language model L on words. In [64], a language
model on phonemes is used instead.

In our implementation, we use a mixed-history acoustic unit
language model. In this model, the probability of transition-
ing into a new context-dependent phonetic state (senone) is
conditioned on both the senone and phone history. We found
this model to perform better than either purely word-based or
phone-based models. Based on a set of initial experiments, we
developed the following procedure:

1) Perform a forced alignment of the training data to select
lexical variants and determine frame-aligned senone
sequences.

2) Compress consecutive framewise occurrences of a single
senone into a single occurrence.

3) Estimate an unsmoothed, variable-length N-gram lan-
guage model from this data, where the history state
consists of the previous phone and previous senones
within the current phone.

To illustrate this, consider the sample senone sequence
{s s2.1288, s s3.1061, s s4.1096}, {eh s2.527, eh s3.128,
eh s4.66}, {t s2.729, t s3.572, t s4.748}. When predict-
ing the state following eh s4.66 the history consists of (s,
eh s2.527, eh s3.128, eh s4.66), and following t s2.729, the
history is (eh, t s2.729).

We construct the denominator graph from this language
model, and HMM transition probabilities as determined by
transition-counting in the senone sequences found in the train-
ing data. Our approach not only largely reduces the complexity
of building up the language model but also provides very
reliable training performance.

We have found it convenient to do the full computation,
without pruning, in a series of matrix-vector operations on the
GPU. The underlying acceptor is represented with a sparse
matrix, and we maintain a dense likelihood vector for each
time frame. The alpha and beta recursions are implemented
with CUSPARSE level-2 routines: sparse-matrix, dense vector
multiplies. Run time is about 100 times faster than real time.
As in [64], we use cross-entropy regularization. In all the
lattice-free MMI (LFMMI) experiments mentioned below we
use a trigram language model over senone and phone labels,
as explained earlier. Most of the gain is usually obtained after
processing 24 to 48 hours of data.
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TABLE III
PERFORMANCE IMPROVEMENTS FROM I-VECTOR AND LFMMI TRAINING ON THE NIST 2000 CTS TEST SET

Configuration
WER (%)

ReLU-DNN ResNet-CNN BLSTM LACE
CH SWB CH SWB CH SWB CH SWB

Baseline 21.9 13.4 17.5 11.1 17.3 10.3 16.9 10.4
i-vector 20.1 11.5 16.6 10.0 17.6 9.9 16.4 9.3
i-vector+LFMMI 17.9 10.2 15.2 8.6 16.3 8.9 15.2 8.5

V. LM RESCORING AND SYSTEM COMBINATION

An initial decoding is done with a WFST decoder, using the
architecture described in [65]. We use an N-gram language
model trained and pruned with the SRILM toolkit [66].
The first-pass LM has approximately 15.9 million bigrams,
trigrams, and 4grams, and a vocabulary of 30,500 words.
It gives a perplexity of 69 on the 1997 CTS evaluation
transcripts. The initial decoding produces a lattice with the
pronunciation variants marked, from which 500-best lists are
generated for rescoring purposes. Subsequent N-best rescoring
uses an unpruned LM comprising 145 million N-grams. All
N-gram LMs were estimated by a maximum entropy criterion
as described in [67].

The N-best hypotheses are then rescored using a combina-
tion of the large N-gram LM and several neural net LMs. We
have experimented with both RNN LMs and LSTM LMs, and
describe the details in the following two sections. Note we
delay application of recurrent neural net LMs, which use an
unlimited history, to the N-best rescoring phase as a matter of
convenience, since complete sentence hypotheses are available
at that point.

We assessed the lower bound of performance for our
lattice/N-best rescoring paradigm. The 500-best lists from the
lattices generated with the ResNet CNN system had an oracle
(lowest achievable) WER of 2.7% on the Switchboard portion
of the NIST 2000 evaluation set, and an oracle WER of 4.9%
on the CallHome portion. The oracle error of the combined
system is even lower (though harder to quantify) since (1) N-
best output from all systems are combined and (2) confusion
network construction generates new possible hypotheses not
contained in the original N-best lists. With oracle error rates
less than half the currently achieved actual error rates (as
reported below), we conclude that search errors are not a major
limiting factor in the rescoring framework.

A. RNN-LM setup

Our RNN-LMs are trained and evaluated using the CUED-
RNNLM toolkit [68]. Our RNN-LM configuration has several
distinctive features, as described below.

1) We trained both standard, forward-predicting RNN-LMs
and backward RNN-LMs that predict words in reverse
temporal order. The log probabilities from both models
are added.

2) As is customary, the RNN-LM probability estimates are
interpolated at the word-level with corresponding N-
gram LM probabilities (separately for the forward and
backward models). In addition, we trained a second

RNN-LM for each direction, obtained by starting with
different random initial weights. The two RNN-LMs and
the N-gram LM for each direction are interpolated with
weights of (0.375, 0.375, 0.25).

3) In order to make use of LM training data that is not fully
matched to the target conversational speech domain, we
start RNN-LM training with the union of in-domain
(here, CTS) and out-of-domain (e.g., Web) data. Upon
convergence, the network undergoes a second training
phase using the in-domain data only. Both training
phases use in-domain validation data to regulate the
learning rate schedule and termination. Because the size
of the out-of-domain data is a multiple of the in-domain
data, a standard training on a simple union of the data
would not yield a well-matched model, and have poor
perplexity in the target domain.

4) We found best results with an RNN-LM configuration
that had a second, non-recurrent hidden layer. This
produced lower perplexity and word error than the stan-
dard, single-hidden-layer RNN-LM architecture [34].2

The overall network architecture thus had two hidden
layers with 1000 units each, using ReLU nonlinearities.
Training used noise-contrastive estimation (NCE) [69].

5) The RNN-LM output vocabulary consists of all words
occurring more than once in the in-domain training set.
While the RNN-LM estimates a probability for unknown
words, we take a different approach in rescoring: The
number of out-of-set words is recorded for each hypoth-
esis and a penalty is estimated for them when optimizing
the relative weights for all model scores (acoustic, LM,
pronunciation), using the SRILM nbest-optimize tool.

B. LSTM-LM setup

After obtaining good results with RNN-LMs we also ex-
plored the LSTM recurrent network architecture for language
modeling, inspired by recent work showing gains over RNN-
LMs for conversational speech recognition [37]. In addition to
applying the lessons learned from our RNN-LM experiments,
we explored additional alternatives, as described below.

1) The LSTM LMs take one two types of input vectors:
word based one-hot vector input and letter trigram
vector [70] input. Including both forward and backward
models, we trained four different LSTM LMs in total.

2) For the word based input, we adopted the approach from
[71] to tie the input embedding and output embedding
together.

2However, adding more hidden layers produced no further gains.
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TABLE IV
LSTM PERPLEXITIES (PPL) AS A FUNCTION OF HIDDEN LAYERS,

TRAINED ON IN-DOMAIN DATA ONLY, COMPUTED ON 1997 CTS EVAL
TRANSCRIPTS.

Language model PPL
letter trigram input with one layer (baseline) 63.2

+ two hidden layers 61.8
+ three hidden layers 59.1
+ four hidden layers 59.6
+ five hidden layers 60.2
+ six hidden layers 63.7

TABLE V
PERPLEXITIES (PPL) OF THE FOUR LSTM LMS USED IN THE FINAL

COMBINATION. PPL IS COMPUTED ON 1997 CTS EVAL TRANSCRIPTS.
ALL THE LSTM LMS ARE WITH THREE HIDDEN LAYERS.

Language model PPL
RNN: 2 layers + word input (baseline) 59.8
LSTM: word input in forward direction 54.4
LSTM: word input in backward direction 53.4
LSTM: letter trigram input in forward direction 52.1
LSTM: letter trigram input in backward direction 52.0

3) Here we also used a two-phase training schedule to
train the LSTM LMs. First we train the model on the
combination of in-domain and out-domain data for four
data passes without any learning rate adjustment. We
then start from the resulting model and train on in-
domain data until convergence.

4) Overall the letter-trigram-based models perform a little
better than the word-based language model. The letter
trigram representation had dimension 7190 (the num-
ber of distinct trigrams in the vocabulary), compared
to a learned embedding of size 1000 for the word-
based model. (Note that no extra embedding layer was
included for letter trigram inputs.)

5) Convergence was improved through a variation of self-
stabilization [72], in which each output vector x of non-
linearities are scaled by 1

4 ln(1 + e4β), where a β is a
scalar that is learned for each output. This has a similar
effect as the scale of the well-known batch normalization
technique [53], but can be used in recurrent loops.

6) Table IV shows the impact of number of layers on the
final perplexities. Based on this, we proceeded with three
hidden layers, with 1000 hidden units each. The perplex-
ities of each LSTM-LM we used in the final combination
(before interpolating with the N-gram model) can be
found in Table V.

For the final system, we interpolated two LSTM-LMs with
an N-gram LM for the forward-direction LM, and similarly
for the backward-direction LM. All LSTMs use three hidden
layers and are trained on in-domain and web data. Unlike
for the RNN-LMs, the two models being interpolated differ
not just in their random initialization, but also in the input
encoding (one uses a triletter encoding, the other a one-
hot word encoding). The forward and backward LM log
probability scores are combined additively.

TABLE VI
PERFORMANCE OF VARIOUS VERSIONS OF NEURAL-NET-BASED LM

RESCORING. PERPLEXITIES (PPL) ARE COMPUTED ON 1997 CTS EVAL
TRANSCRIPTS; WORD ERROR RATES (WER) ON THE NIST 2000

SWITCHBOARD TEST SET.

Language model PPL WER
4-gram LM (baseline) 69.4 8.6
+ RNNLM, CTS data only 62.6 7.6

+ Web data training 60.9 7.4
+ 2nd hidden layer 59.0 7.4

+ 2-RNNLM interpolation 57.2 7.3
+ backward RNNLMs - 6.9

+ LSTM-LM, CTS + Web data 51.4 6.9
+ 2-LSTM-LM interpolation 50.5 6.8

+ backward LSTM-LM - 6.6

C. Training data

The 4-gram language model for decoding was trained on the
available CTS transcripts from the DARPA EARS program:
Switchboard (3M words), BBN Switchboard-2 transcripts
(850k), Fisher (21M), English CallHome (200k), and the
University of Washington conversational Web corpus (191M).
A separate N-gram model was trained from each source and
interpolated with weights optimized on RT-03 transcripts. For
the unpruned large rescoring 4-gram, an additional LM com-
ponent was added, trained on 133M word of LDC Broadcast
News texts. The N-gram LM configuration is modeled after
that described in [61], except that maxent smoothing was used.

The RNN and LSTM LMs were trained on Switchboard and
Fisher transcripts as in-domain data (20M words for gradient
computation, 3M for validation). To this we added 62M words
of UW Web data as out-of-domain data, for use in the two-
phase training procedure described above.

D. RNN-LM and LSTM-LM performance

Table VI gives perplexity and word error performance for
various recurrent neural net LM setups, from simple to more
complex. The acoustic model used was the ResNet CNN. Note
that, unlike the results in Tables IV and V, the neural net LMs
in Table VI are interpolated with the N-gram LM. As found
by others [73], LSTMs outperform corresponding RNN-LMs.

As can be seen, each of the measures described earlier adds
incremental gains, which, however, add up to a substantial
improvement overall. The total gain relative to a purely N-
gram based system is a 20% relative error reduction with
RNN-LMs, and 23% with LSTM-LMs. As shown later (see
Table VIII) the gains with different acoustic models are
similar.

E. System Combination

The LM rescoring is carried out separately for each acoustic
model. The rescored N-best lists from each subsystem are then
aligned into a single confusion network [42] using the SRILM
nbest-rover tool. This method is a form of confusion network-
based system combination that does not require building
separate confusion networks for the individual subsystems.
However, the number of potential candidate systems is too
large to allow an all-out combination, both for practical



2329-9290 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2017.2756440, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

7

reasons and due to overfitting issues. Instead, we perform
a greedy search, starting with the single best system, and
successively adding additional systems, to find a small set
of systems that are maximally complementary. The RT-02
Switchboard set was used for this search procedure.

We experimented with two search algorithms to find good
subsets of systems. We always start with the system giving
the best individual accuracy on the development set. In one
approach, a greedy forward search then adds systems incre-
mentally to the combination, giving each equal weight. If no
improvement is found with any of the unused systems, we try
adding each with successively lower relative weights of 0.5,
0.2, and 0.1, and stop if none of these give an improvement.

A second variant of the search procedure that can give lower
error (as measured on the devset) estimates the best system
weights for each incremental combination candidate. The
weight estimation is done using an expectation-maximization
algorithm based on aligning the reference words to the confu-
sion networks, and maximizing the weighted probability of the
correct word at each alignment position. To avoid overfitting,
the weights for an N -way combination are smoothed hierarchi-
cally, i.e., interpolated with the weights from the (N−1)-way
system that preceded it. This tends to give robust weights that
are biased toward the early (i.e., better) subsystems.

The final system incorporated a variety of BLSTM models
with roughly similar performance, but differing in various
metaparameters (number of senones, use of spatial smoothing,
and choice of pronunciation dictionaries).3 To further limit
the number of free parameters to be estimated in system
combination, we performed system selection in two stages.
First, we selected the four best BLSTM systems. We then
combined these with equal weights and treated them as a single
subsystem in searching for a larger combination including
other acoustic models. This yielded our best overall combined
system, as reported in Section VII-C.

VI. MICROSOFT COGNITIVE TOOLKIT (CNTK)

All neural networks in the final system were trained with the
Microsoft Cognitive Toolkit, or CNTK [74], [75] on a Linux-
based multi-GPU server farm. CNTK allows for flexible model
definition, while at the same time scaling very efficiently
across multiple GPUs and multiple servers. The resulting fast
experimental turnaround using the full 2000-hour corpus was
critical for our work.

A. Flexible, Terse Model Definition

In CNTK, a neural network (and the training criteria)
are specified by its formula, using a custom functional lan-
guage (BrainScript), or Python. A graph-based execution en-
gine, which provides automatic differentiation, then trains the
model’s parameters through stochastic gradient descent (SGD).
Leveraging a stock library of common layer types, networks
can be specified very tersely. Samples can be found in [74].

3We used two different dictionaries, one based on a standard phone set and
another with dedicated vowel and nasal phones used only in the pronunciations
of filled pauses (“uh”, “um”) and backchannel acknowledgments (“uh-huh”,
“mhm”), similar to [42].

B. Multi-Server Training using 1-bit SGD
Training the acoustic models in this paper on a single GPU

would take many weeks or even months. CNTK made training
times feasible by parallelizing the SGD training with our
1-bit SGD parallelization technique [76]. This data-parallel
method distributes minibatches over multiple worker nodes,
and then aggregates the sub-gradients. While the necessary
communication time would otherwise be prohibitive, the 1-
bit SGD method eliminates the bottleneck by two techniques:
1-bit quantization of gradients and automatic minibatch-size
scaling.

In [76], we showed that gradient values can be quantized
to just a single bit, if one carries over the quantization error
from one minibatch to the next. Each time a sub-gradient
is quantized, the quantization error is computed and remem-
bered, and then added to the next minibatch’s sub-gradient.
This reduces the required bandwidth 32-fold with minimal
loss in accuracy. Secondly, automatic minibatch-size scaling
progressively decreases the frequency of model updates. At
regular intervals (e.g. every 72h of training data), the trainer
tries larger minibatch sizes on a small subset of data and picks
the largest that maintains training loss.

These two techniques allow for excellent multi-GPU/server
scalability, and reduced the acoustic-model training times on
2000h from months to between 1 and 3 weeks, making this
work feasible.

C. Training hyperparameters
As mentioned, all our models are trained in parallelized

fashion with CNTK and 1-bit SGD enabled. We use the
“FsAdaGrad” learning algorithm, which is an implementation
of Adam [77] in CNTK. A typical learning rate is 3× 10−6,
and learning rates are automatically adjusted with a decrease
factor of 0.7. Momentum is set at a constant value of 2500
throughout model training. For individual acoustic models, we
find that training converges after 1.5 to 2 passes over the 2000-
hour training set.

We do not use dropout or gradient noise in our model
training; an alternative regularization method that we apply
only to BLSTM model training is the spatial smoothing
described in Section III-C.

D. Computational performance
Table VII compares the runtimes, as multiples of speech

duration, of various processing steps associated with the
different acoustic model architectures (figures for DNNs are
given only as a reference point, since they are not used in
our system). Acoustic model (AM) training comprises the
forward and backward dynamic programming passes, as well
as parameter updates. AM evaluation refers to the forward
computation only. Decoding includes AM evaluation along
with hypothesis search (only the former makes use of the
GPU). Runtimes were measured on a 12-core Intel Xeon E5-
2620v3 CPU clocked at 2.4GHz, with an Nvidia Titan X GPU.
We observe that the GPU gives a 10 to 100-fold speedup for
AM evaluation over the CPU implementation. AM evaluation
is thus reduced to a small faction of overall decoding time,
making near-realtime operation possible.
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TABLE VII
RUNTIMES AS FACTOR OF SPEECH DURATION FOR VARIOUS ASPECTS OF ACOUSTIC MODELING AND DECODING, FOR DIFFERENT TYPES OF ACOUSTIC

MODEL

Processing step Hardware DNN ResNet-CNN BLSTM LACE
AM training GPU 0.012 0.60 0.022 0.23
AM evaluation GPU 0.0064 0.15 0.0081 0.081
AM evaluation CPU 0.052 11.7 n/a 8.47
Decoding GPU 1.04 1.19 1.40 1.38

VII. EXPERIMENTS AND RESULTS

A. Speech corpora

We train with the commonly used English CTS (Switch-
board and Fisher) corpora. Evaluation is carried out on the
NIST 2000 CTS test set, which comprises both Switchboard
(SWB) and CallHome (CH) subsets. The waveforms were
segmented according to the NIST partitioned evaluation map
(PEM) file, but the cut points specified could leave too little
nonspeech audio around the edges, interfering with feature
extraction windows. This seemed to cause problems with the
CallHome data, and we therefore padded the PEM segments
with 150ms of dithered silence.4 The Switchboard-1 portion
of the NIST 2002 CTS test set was used for tuning and
development. The acoustic training data is comprised by LDC
corpora 97S62, 2004S13, 2005S13, 2004S11 and 2004S09;
see [12] for a full description.

B. Acoustic Model Details

Forty-dimensional log-filterbank features were extracted ev-
ery 10 milliseconds, using a 25-millisecond analysis window.
The CNN models used window sizes as indicated in Table I,
and the LSTMs processed one frame of input at a time. The
bulk of our models use three state left-to-right triphone models
with 9000 tied states. Additionally, we have trained several
models with 27k tied states. The phonetic inventory includes
special models for noise, vocalized-noise, laughter and silence.
We use a 30k-vocabulary derived from the most common
words in the Switchboard and Fisher corpora. The decoder
uses a statically compiled unigram graph, and dynamically
applies the language model score. The unigram graph has
about 300k states and 500k arcs.

Table III shows the result of i-vector adaptation and LFMMI
training on several of our early systems. We achieve a 5–
8% relative improvement from i-vectors, including on CNN
systems. The last row of Table III shows the effect of LFMMI
training on the different models. We see a consistent 7–
10% further relative reduction in error rate for all models.
Considering the great increase in procedural simplicity of
LFMMI over the previous practice of writing lattices and
post-processing them, we consider LFMMI to be a significant
advance in technology.

C. Overall Results and Discussion

The performance of all our component models is shown in
Table VIII, along with the BLSTM combination, the full sys-
tem combination results, and the measured human transcriber

4Using the sox tool options pad 0.15 0.15 dither -p 14.

error. (Recall that the four best BLSTM systems are combined
with equal weights first, as described in Section V-E.) 5

Table VIII lists all models that are selected for the combined
systems, for one or more of the three rescoring LMs. The only
exception is the VGG+ResNet system, which combines acous-
tic senone posteriors from the VGG and ResNet networks.
While this yields a system that beats the individual acoustic
models, only the individual VGG and ResNet models are used
in the overall system combination.

We also observe that the four model variants chosen for
the combined BLSTM subsystem differ incrementally by one
hyperparameter (smoothing, number of senones, dictionary),
and that the BLSTMs alone achieve an error that is within
3% relative of the full system combination. This validates the
rationale that choosing different hyperparameters is an effec-
tive way to obtain complementary systems for combination
purposes.

VIII. ERROR ANALYSIS

In this section, we compare the errors made by our artificial
recognizer with those made by human transcribers. First we
note that machine and human transcription WERs do not differ
significantly according to the Wilcoxon and Matched Pairs
Sentence Segment Word Error tests as applied by NIST, nor
do they differ according to a Sign test comparing error counts
at the utterance level.

A first high-level question regarding the relation between
word errors by machine and human transcribers is whether
difficulty in one predicts difficulty in the other. Figure 2 shows
scatter plots of speaker-level error rates (machine vs. human),
separated by corpus. Each corpus subset has 40 conversation
sides.

Clearly the errors at that level are correlated, with ρ = 0.65
for SWB and ρ = 0.73 for CH. This suggests that properties of
the speech, either as a function of the content, the speaker, or
the channel (each speaker occurs in exactly one test conversa-
tion), cause errors for both machine and human transcription.

We observe that the CH data has two speakers with outlier
machine error rates (37.5% and 64.7% WER, solid red dots
in Figure 2). These correspond to secondary speakers in their
respective conversation sides, each with only a fraction of the
speech of the dominant speaker. Note that the ASR system
processes each conversation assuming only a single speaker

5When comparing the last row in Table III with the “N-gram LM” results in
Table VIII, note that the former results were obtained with the pruned N-gram
LM used in the decoder and fixed score weights (during lattice generation),
whereas the latter results are from rescoring with the unpruned N-gram LM
(during N-best generation), using optimized score weighting. Accordingly, the
rescoring results are generally somewhat better.
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TABLE VIII
WORD ERROR RATES (%) ON THE NIST 2000 CTS TEST SET WITH DIFFERENT ACOUSTIC MODELS, AND HUMAN ERROR RATE FOR COMPARISON.

UNLESS OTHERWISE NOTED, MODELS ARE TRAINED ON THE FULL 2000 HOURS OF DATA AND HAVE 9K SENONES. THE THIRD RESNET SYSTEM WAS
TRAINED ON GMM-BASED ALIGNMENTS, SKIPPING THE REALIGNMENT WITH CNN MODELS.

Model N-gram LM RNN-LM LSTM-LM
CH SWB CH SWB CH SWB

ResNet, 300h training 19.2 10.0 17.7 8.2 17.0 7.7
ResNet 14.8 8.6 13.2 6.9 12.5 6.6
ResNet, GMM alignments 15.3 8.8 13.7 7.3 12.8 6.9
VGG 15.7 9.1 14.1 7.6 13.2 7.1
VGG + ResNet 14.5 8.4 13.0 6.9 12.2 6.4
LACE 15.0 8.4 13.5 7.2 13.0 6.7
BLSTM 16.5 9.0 15.2 7.5 14.4 7.0
BLSTM, spatial smoothing 15.4 8.6 13.7 7.4 13.0 7.0
BLSTM, spatial smoothing, 27k senones 15.3 8.3 13.8 7.0 13.2 6.8
BLSTM, spatial smoothing, 27k senones, alternate dictionary 14.9 8.3 13.7 7.0 13.0 6.7
BLSTM system combination 13.2 7.3 12.1 6.4 11.6 6.0
Full system combination 13.0 7.3 11.7 6.1 11.0 5.8
Human transcription 11.3 5.9

Fig. 2. Correlation between machine and human word error rates at speaker level. The solid black circles represent SWB speakers not seen in training. The
solid red circles stand for secondary CH speakers that share a conversation side with a dominating primary speaker.

per side. If we remove these outliers, the machine-human error
correlation on CH increases to ρ = 0.80. With secondary
speakers excluded, we can also observe that the machine error
rates cluster tighter than the human ones in both corpora
(SWB: machine 6.1% ± 2.8 vs. human 6.2% ± 3.4; CH:
machine 11.8%± 6.1 vs. human 12.7%± 7.0).

In [48] it was suggested that one of the reasons for the much
higher error rate on CH compared to SWB was that 36 of the
40 SWB test speakers occur in the portion of the SWB corpus
that is used in training. To assess this hypothesis we singled out
the four speakers in the SWB portion that are not found in the
training set; these are shown as solid black circles in Figure 2.
At first, it seems that the speaker-averaged WER for the “seen”
speakers (machine WER 5.9%) is indeed much lower than for
the speakers not found in training (7.5%). However, we can
attribute this to bad luck and small sample size, since the
average machine WER of 7.5% for “unseen” speakers is well
within one standard deviation of the “seen” speakers’ WER
distribution (5.9% ± 2.7), and more tellingly, almost exactly
the same relative difference in WERs between “seen” and
“unseen” speakers is observed for human transcriptions (6.0%

versus 7.7%). Clearly the human transcribers did not have the
benefit of training on the “seen” speakers, so the difference
must be due to the intrinsic difficulty of the speakers, which
affects both transcription systems.

Table IX shows the ten most common substitutions for both
humans and the machine transcription system. Tables X and
XI do the same for deletions and insertions. We see an overall
similarity in human and machine error types, in that short
function words and discourse particles dominate the rankings.
These words are plausible as top error type for two reasons:
they occur frequently, and are often realized in a phonetically
reduced manner and are therefore confusable [78].

Focusing on the substitutions, we see that by far the most
common error in the ASR system is the confusion of a
hesitation in the reference for a backchannel acknowledgment
(“%bcack” after NIST text normalization) in the hypothesis.
Human transcribers make this mistake too, but much less
frequently. The pragmatic significance is that backchannel
words like “uh-huh” are an acknowledgment of the speaker,
also signaling that the speaker should keep talking, while
hesitations like “uh” and “um” are used to indicate that the
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TABLE IX
MOST COMMON SUBSTITUTIONS FOR ASR SYSTEM AND HUMANS. THE NUMBER OF TIMES EACH ERROR OCCURS IS FOLLOWED BY THE WORD IN THE

REFERENCE, AND WHAT APPEARS IN THE HYPOTHESIS INSTEAD.

CH SWB
ASR Human ASR Human
45: (%hesitation) / %bcack 12: a / the 29: (%hesitation) / %bcack 12: (%hesitation) / hmm
12: was / is 10: (%hesitation) / a 9: (%hesitation) / oh 10: (%hesitation) / oh
9: (%hesitation) / a 10: was / is 9: was / is 9: was / is
8: (%hesitation) / oh 7: (%hesitation) / hmm 8: and / in 8: (%hesitation) / a
8: a / the 7: bentsy / bensi 6: (%hesitation) / i 5: in / and
7: and / in 7: is / was 6: in / and 4: (%hesitation) / %bcack
7: it / that 6: could / can 5: (%hesitation) / a 4: and / in
6: in / and 6: well / oh 5: (%hesitation) / yeah 4: is / was
5: a / to 5: (%hesitation) / %bcack 5: a / the 4: that / it
5: aw / oh 5: (%hesitation) / oh 5: jeez / jeeze 4: the / a

TABLE X
MOST COMMON DELETIONS FOR ASR SYSTEM AND HUMANS.

CH SWB
ASR Human ASR Human
44: i 73: i 31: it 34: i
33: it 59: and 26: i 30: and
29: a 48: it 19: a 29: it
29: and 47: is 17: that 22: a
25: is 45: the 15: you 22: that
19: he 41: %bcack 13: and 22: you
18: are 37: a 12: have 17: the
17: oh 33: you 12: oh 17: to
17: that 31: oh 11: are 15: oh
17: the 30: that 11: is 15: yeah

TABLE XI
MOST COMMON INSERTIONS FOR ASR SYSTEM AND HUMANS.

CH SWB
ASR Human ASR Human
15: a 10: i 19: i 12: i
15: is 9: and 9: and 11: and
11: i 8: a 7: of 9: you
11: the 8: that 6: do 8: is
11: you 8: the 6: is 6: they
9: it 7: have 5: but 5: do
7: oh 5: you 5: yeah 5: have
6: and 4: are 4: air 5: it
6: in 4: is 4: in 5: yeah
6: know 4: they 4: you 4: a

current speaker has more to say and wants to keep his or her
turn.6 As turn-management devices, these two classes of words
therefore have exactly opposite functions, and come with
prosodic and contextual cues that a human listener would use
for recognition. For the machine, these words could be more
confusable due to their phonetic similarity, and absence of
other cues. Inconsistent labeling in the training data, the bulk

6The NIST scoring protocol treats hesitation words as optional, and we
therefore delete them from our recognizer output prior to scoring. This
explains why we see many substitutions of backchannels for hesitations, but
not vice-versa.

TABLE XII
OVERALL SUBSTITUTION, DELETION AND INSERTION RATES.

CH SWB
ASR Human ASR Human

sub 6.5 4.1 3.3 2.6
del 3.3 6.5 1.8 2.7
ins 1.4 0.7 0.7 0.7
all 11.1 11.3 5.9 5.9

of which comes from “quick transcription” [47] of the Fisher
corpus, could also contribute to the frequency of this error
type. For perspective, however, there are over 21,000 words
in each test set. Thus the hesitation/backchannel substitutions
contribute only about 0.2% absolute to the overall error rate.

The most frequent substitution for humans on the Switch-
board corpus was mistaking a hesitation in the reference for
the word “hmm.” The scoring guidelines treat “hmm” as a
word distinct from backchannels and hesitations, so this is
not a scoring mistake. Examination of the contexts in which
the error is made show that it is most often intended to
acknowledge the other speaker, i.e. as a backchannel. For
both people and our automated system, the insertion and
deletion patterns are similar: short function words are by
far the most frequent errors. In particular, the single most
common error made by the transcribers was to omit the word
“I.” While we believe further improvement in function and
content words is possible, the significance of the remaining
backchannel/hesitation confusions is unclear.

Table XII shows the overall error rates broken down by
substitutions, insertions and deletions. We see that the human
transcribers have a somewhat lower substitution rate, and a
higher deletion rate. The relatively higher deletion rate might
reflect a human bias to avoid outputting uncertain information,
or the productivity demands on a professional transcriber. In
all cases, the number of insertions is relatively small.

As a final investigation into the qualitative differences
between human and machine errors we conducted an informal
human subject experiment, described in more detail elsewhere
[45]. We presented participants with the NIST reference tran-
scripts, our own human transcripts, and the machine recog-
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nition outputs, side by side. The data was presented one
utterance at a time, randomly sampled from among utterances
where humans and machine differed. Human and machine
transcripts were not identified as such and arranged randomly,
and the subject was asked to identify the human transcript.
After each trial the subject learned whether they were correct
or not, and moved on to the next trial. Overall, participants
achieved a success rate of 53%, not significantly different from
chance. While only an informal experiment, it demonstrated
that systematic differences between human and machine output
are quite hard to discern by people for this type of speech.

IX. RELATION TO PRIOR AND ONGOING WORK

Compared to earlier applications of CNNs to speech recog-
nition [79], [80], our networks are much deeper, and use
linear bypass connections across convolutional layers. They
are similar in spirit to those studied more recently by [31],
[30], [61], [32], [33]. We improve on these architectures with
the LACE model [54], which iteratively expands the effective
window size, layer-by-layer, and adds an attention mask to
differentially weight distant context.

Our spatial regularization technique is similar in spirit to
stimulated deep neural networks [58]. Whereas stimulated
networks use a supervision signal to encourage locality of
activations in the model, our technique is automatic.

Our use of lattice-free MMI is distinctive, and extends
previous work [12], [64] by proposing the use of a mixed
triphone/phoneme history in the language model.

On the language modeling side, we achieve a performance
boost by combining multiple LSTM-LMs in both forward
and backward directions, and by using a two-phase training
regimen to get best results from out-of-domain data. For
our best CNN system, LSTM-LM rescoring yields a relative
word error reduction of 23%, and a 20% relative gain for
the combined recognition system, considerably larger than
previously reported for conversational speech recognition [37].

Conversational speech transcription systems improve con-
tinuously, leveraging multiple acoustic and language models
similar to the techniques used here, as well as with innova-
tions in modeling. Just since the submission of this article,
results that improve on the 5.8% machine error rate for the
Switchboard test set have been reported in [48] and [81], and
our own system has been updated to achieve an error rate of
5.1% [46]. Further advances will no doubt be forthcoming.

X. CONCLUSIONS

We have conducted a two-pronged experiment comparing
state-of-the-art speech recognition and human transcription for
conversational telephone speech, as represented by the NIST
evaluation set. First, we measured human accuracy on this task
by submitting the data to a standard commercial transcription
process, and postprocessed it for the NIST scoring protocol.
We then assembled a high-accuracy recognition system based
on a collection of neural-network-based acoustic and language
models. Key features in achieving good performance included
LSTMs for both acoustic and language modeling, together
with CNNs in the acoustic model, as well as extensive

combination of complementary subsystems for both acoustic
and language modeling. The recognition system achieved error
rates of 5.8% and 11.0% on Switchboard and CallHome por-
tions, respectively, slightly lower than corresponding human
error.7 An analysis of differences in error patterns between the
two version found remarkable similarity. The same speakers
tend to be relative easy or hard to recognize for humans
and machines, and the same kinds of short function words
tend to be substituted, deleted or inserted in errors. Finally,
human subjects had a hard time identifying which errorful
transcripts originated from human or machines in a side-by-
side comparison. For the Switchboard genre (conversations
between strangers) our results support the conclusion that
state-of-the-art speech recognition technology can reach a
level that is comparable to human in both quantitative and
qualitative terms, when given sufficient and matched training
data.
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