
SurfaceConstellations: A Modular Hardware Platform for
Ad-Hoc Reconfigurable Cross-Device Workspaces
Nicolai Marquardt1, Frederik Brudy1, Can Liu2, Benedikt Bengler2,3, Christian Holz4

1University College London, UK 2ICRI Cities, UCL 3IXDS 4Microsoft Research, USA
n.marquardt@ucl.ac.uk, f.brudy@cs.ucl.ac.uk, c.liu@ucl.ac.uk, ben.bengler@ixds.com, cholz@microsoft.com

ABSTRACT
We contribute SurfaceConstellations, a modular hardware
platform for linking multiple mobile devices to easily create
novel cross-device workspace environments. Our platform
combines the advantages of multi-monitor workspaces and
multi-surface environments with the flexibility and extensi-
bility of more recent cross-device setups. The SurfaceCon-
stellations platform includes a comprehensive library of 3D-
printed link modules to connect and arrange tablets into new
workspaces, several strategies for designing setups, and a
visual configuration tool for automatically generating link
modules. We contribute a detailed design space of cross-de-
vice workspaces, a technique for capacitive links between
tablets for automatic recognition of connected devices, de-
signs of flexible joint connections, detailed explanations of
the physical design of 3D printed brackets and support struc-
tures, and the design of a web-based tool for creating new
SurfaceConstellation setups.

Author Keywords
Cross-device interactions; reconfigurable workspaces; multi
surfaces; multi-display environment

ACM Classification Keywords
H.5.2. User Interfaces

INTRODUCTION
Since early visions such as Vannevar Bush’s Memex [4],
multi-display setups have been used to effectively support a
variety of desktop computing activities: from visual analyt-
ics, to financial computing [3], control rooms, business ana-
lytics dashboards, or video and audio editing. The main ad-
vantage of these setups is not only the larger available screen
real estate (i.e. more pixels to display information and inter-
act with), but also the benefit of effectively distributing in-
formation across the distinct inter-connected displays.
Grudin notes that multi-monitor setups provide “space with
a dedicated purpose, always accessible with a glance” and
“can facilitate versatility in use” [13].

This expressive power of multi-display setups has also in-
spired work in cross-device interaction. Cross-device setups
allow people to use interfaces that span across several inter-
connected tablets, phones and other devices. Like multi-
monitor desktop setups, these systems provide a larger inter-
action space (e.g. more content displayed simultaneously,
additional input space for gesture input) to interact with ap-
plications, whilst enabling one to dynamically add or remove
devices from such a device ecology. Most of this work is de-
signed around two primary usage scenarios: mobile, ad-hoc
setups for collaborations (e.g. [5,30,37,38,44]); and interac-
tive environments with a variety of mobile and large interac-
tive surfaces (e.g. [47,53]).

Our goal with SurfaceConstellations (Figure 1) is to bridge
the gap between the power and effectiveness of multi-moni-
tor workstations with the flexibility and ad-hoc configurabil-
ity of cross-device computing. To implement this vision, we
designed a novel modular platform that enables users to eas-
ily assemble a large variety of spatial multi-surface arrange-
ments. Our SurfaceConstellations brackets thereby physi-
cally connect tablets and phones to create larger dedicated
workstation setups. The modularity of our platform enables

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM 978-1-4503-5620-6/18/04…$15.00
https://doi.org/10.1145/3173574.3173928

Figure 1. Modular SurfaceConstellations platform enables creation of spatial cross-device workstation setups.

a large spectrum of possible multi-surface setups that are eas-
ily reconfigurable and can support diverse working styles
and applications.

In particular, we contribute:

§ The SurfaceConstellations hardware design and a design
space taxonomy for the workspace setups it affords;

§ Specifications for the physical design of 3D-printed brack-
ets, two designs for flexible joint connections, techniques
for including weight-balancing support structures, and con-
figuration tools for setting up new workspaces;

§ The capacitive link technique for automatically recogniz-
ing connected touch-screen devices;

§ Demonstration of the versatility of our platform through
four use case applications, implemented using different
cross-devices computing frameworks.

To facilitate the adoption of SurfaceConstellations in future
applications, all hardware designs, 3D-print STL files, 3D
model source files and the software are released as open-
hardware and open-software1.

RELATED WORK
SurfaceConstellations are related to multi-monitor environ-
ments, connected-display devices, and more generally cross-
device interaction on recent mobile devices.

From Multi-monitor setups towards Multi-Display: Envi-
ronments with Interactive Walls and Tabletops
Inspired by early visions [4], multi-monitor setups allow the
distribution of visual interfaces across two or more screens
[19]. Such setups can help to better support interactions with
resource-intensive applications such as visual analytics,
multi-channel audio editing, or financial computing and trad-
ing desks (e.g. [3]).

The same goal – facilitating interaction with large infor-
mation spaces – is also one of the driving factors in advanc-
ing multi-display environments. These setups often include
several interactive screens, whiteboards, tabletops, and mo-
bile devices. For example, both iLand [47] and Augmented
Surfaces [41] envisioned interaction landscapes spanning
across a variety of inter-connected devices. Later, WeSpace
[53], ARIS [2] and Dynamo [20] further investigated the de-
sign space of multi-display environments. Similar multi-dis-
play setups have then been applied to specific use cases, for
example, oil and gas exploration [45], visual analytics [10],
collaborative sense making [56], and emergency response
scenarios [9]. Often, novel interaction techniques had to be
designed to manage such environments: for instance, strate-
gies for application relocation [2], perspective correction for
cursor manipulation [32], hyper-dragging [41], directing
content between devices [14], ad-hoc sharing gestures [30],
and transfer with pick-and-drop [39].

1 https://github.com/nicmarquardt/surfaceconstellations

With SurfaceConstellations, we are interested in combining
the effective workspaces introduced by work in multi-dis-
play environments, with strategies from cross-device com-
puting working on ad-hoc reconfigurable device setups.

Rigid and Reconfigurable Joint Surfaces
Related projects have generally tracked grouped devices and
screens through rigid or flexible links between them, or
through sensing docking events across devices.

Rigid assemblies make for sturdy constructions, which are
well-suited for large stationary devices to support task sepa-
ration and interaction across screens. For example,
BendDesk [52] and Curve [54] mimic a traditional PC work-
station, but replace the table and keyboard area with an ex-
tended, continuous touchscreen. Dell’s SmartDesk reduces
the form factor and weight to two connected screens whilst
maintaining the reconfigurable use [1]. In the mobile space,
Codex resembles a notebook, but consists entirely of
touchscreens [17]. Codex thoroughly explored the design
space of dual-screen mobile devices, spanning interaction
techniques, multitasking across applications and screens, and
pen and touch input, which has inspired work on dual-display
ebook interactions (e.g. [7,8]) and hybrid approaches aug-
menting physical paper [55].

To omit the necessity of a physical connection between
screens, researchers have enabled devices to detect docking
events during runtime. Connectables consisted of movable
screens for interaction across a larger area after docking [48].
An induction-based tracking mechanism mounted to the dis-
plays identified adjacent displays to detect layouts. Hinckley
used Synchronous Gestures to detect when users dock tablets
together through simultaneous accelerations [16]. Similarly,
PhoneTouch requires users to touch their phones to large sta-
tionary displays [42], which detect the touch location and
then establish a common interaction space. Both Siftables
[31] and Droppio [46] further miniaturized this concept to
tangible objects and watches, respectively, that sense the
docking of independent screen units to produce a larger area.
Device configurations can also be obtained from an input
gesture spanning both screens (e.g. Stitching across [18] or
synchronous swipes [27]).

Dynamic Tracking of Cross-Device Formations
Once device tracking is handled by a sensor external to the
involved devices, device constellations afford more flexibil-
ity. A common approach for detecting device locations is a
general-purpose tracker (e.g. Optitrack [33]) to prototype ap-
plications, such as Thaddeus that designed dual-device sys-
tems using external tracking to conduct two design studies
[57]. Propelled by the availability of commodity depth cam-
eras, many projects have integrated outside-in tracking to dy-
namically detect device layouts and support cross-device
scenarios, such as HuddleLamp [37] and Dippon et al.’s
work [12]. Phone as a Pixel acts without a depth camera and
instead displays visual codes on all screens, from which an

external camera identifies device IDs and locations [44]. As
an alternative to optical tracking, GroupTogether’s radio
beacons provide the 3D positions of moving devices [30].

Conversely, inside-out tracking requires no tracking infra-
structure, though typically integrates alternative sensors into
mobile devices or provides reduced tracking quality. Pass-
them-around achieves this with radio tracking integrated into
mobile phones [27], whereas Tracko plays ultrasound signals
to establish 3D locations across devices [21]. Tiling Displays
[26] and Orienteer [11] both use the cameras of all mobile
devices to detect common features and reconstruct device
positions.

In SurfaceConstellations, devices can be grouped together in
physically stable configurations that may still be flexibly re-
configured. Once devices’ positions are configured, either
manually or through our CapacitiveLink modules, no further
tracking is needed, which enables spatially aware connec-
tions without the need for any tracking infrastructure.

Figure 2. Basic SurfaceConstellation bracket design.

SURFACE CONSTELLATIONS
In this section, we introduce our modular SurfaceConstella-
tions platform and present the design space taxonomy, map-
ping out possible configurations. We then discuss technical
details of the hardware components,
in particular: (1) the design of 3D
printed modules, (2) flexible-joint
brackets, (3) the capacitive link tech-
nique, and (4) strategies for adding
support extensions.

Concept
The general concept of the Surface-
Constellations platform is to use
modular, 3D-printed hardware
brackets that physically connect mo-
bile devices (e.g. tablets and phones)
to new workstation setups. As de-
scribed shortly in our design space
taxonomy, adding these physical
connections enables new spatial ar-
rangements of devices, forming a va-
riety of different workspaces, such as
the three-tablet configuration shown

in Figure 2. Whilst there are many different types of brackets
as we discuss in the 3D design section, they all work the same
way: each bracket (Figure 2a) has a cavity recess that holds
a part of the frame of at least two devices (2b); after sliding
the mobile devices into the bracket’s cavities, it physically
holds the two (or more) devices in place (2c). The brackets
create a permanent, but easily re-configurable physical con-
nection between devices. By combining multiple brackets
connecting devices together, one can easily create more ad-
vanced setups, affording diverse individual work and collab-
orative multi-user applications.

Design Space Taxonomy
In our design space taxonomy (extending the taxonomy in-
troduced in Codex [17]) we categorize the principal surface
setups supported by the SurfaceConstellations platform (Fig-
ure 3). The primary dimension depends on the relative angle
between devices (and the second dimension classifies the
symmetry of setups):

(a) Flat: a flat surface with no angle into the 3D space be-
tween tablets. Examples from the design space include
a flat book on a table, a larger interaction canvas with 4
or more tablets [37], game board setups with a central
shared device, as well as wall/line/fan setups.

(b) Convex: the angle between the screen surfaces is larger
than 180 degrees. Examples are: the two-sided sign
setup [17] and the bridge setup with three tablets. Be-
cause convex shapes are outward facing, they better af-
ford collaborative use.

(c) Concave: the angle between the screen surfaces is
smaller than 180 degrees. Examples for these designs
are: the laptop setup, curved design [52,54], dual-
screen laptop, and a financial trading-desk inspired
setup/wall [3].

(d) Closed: the surfaces connect into a 360-degree chained
screen. Examples are: a double-sided screen, a cube-
like connection of screens, and circular setups.

Figure 3. SurfaceConstellation design space taxonomy.

Combining the dimensions/categories above results in hy-
brid structures (Figure 3e). The dimensions of our design
space taxonomy can serve as an inspiration for what can be
achieved with SurfaceConstellations, and we will illustrate
different use cases across this design space in our application
scenarios. We expect that this taxonomy has potential to be
extended in the future by adding new designs enabled
through our platform.

Figure 4. System design parameters (green shades cover the

cases supported by our implementation).

Design Parameters
There are further parameters to consider when designing and
setting up new SurfaceConstellation setups (Figure 4).

First, the number of devices: Whilst technically there is no
upper limit for the number of devices that can be connected,
we see most practical setups using between 2 and 8 devices.

Second, the diversity of devices (e.g. only connecting similar
devices vs. connecting different hardware, such as iPads to-
gether with Android tablets). Heterogeneous setups require a
customized bracket design, as every side of the bracket now
needs to be customized for the device size and thickness of
the individual tablets. Heterogeneous setups also affect the
way software needs to be designed to work across the differ-
ent OS platforms. In a single setup, we can combine different
kinds of devices, such as multi-touch tablets, phones and e-
ink displays [55]. Besides tablet-like devices, we can also
create SurfaceConstellations connected to desktop monitors
or laptops (e.g. adding additional surfaces to the top or the
side of the monitor). To increase the stability of setups con-
nected to a laptop, we need to add reinforcement brackets
fixing the angle of the hinge between the laptop base and
screen (otherwise the weight of additional tablets would
cause the laptop screen to fold flat because most laptop
hinges do not provide sufficient friction to hold the weight of
the full setup in place).

The third parameter considers the structural setup: are all de-
vices placed flat on a desk (e.g. the game board design), is
the setup freestanding (e.g. the trading desk setup, where the
curvature can provide enough support), or are additional sup-
port extensions for the brackets needed to balance the weight
and make a stable setup (more on this later).

The fourth design parameter accounts for the complexity of
the assembly: most of the link brackets we designed can be

directly 3D-printed (or manufactured through other tech-
niques, like injection moulding). However, some bracket de-
signs might require additional assembly steps, for example
to combine different hardware components and materials
(examples are our flexible joint brackets).

The fifth parameter is flexibility, which we discuss in-depth
in a later section: the fixed vs. flexible joint brackets.

Scenario
The following scenario describes an example of how we en-
vision the use of SurfaceConstellations:

A financial analyst starts investigating a new data set about
pension investments. To better compare and interpret the
data, she decides to use multiple tablets and link brackets
provided by her employer, linking three tablets into a work-
station setup (‘Curved’) and opening multiple views of the
data. As the analysis continues over the day, she finds ad-
ditional government data she would like to correlate to her
earlier data sets, and adds a second 3-screen setup to her
desk (linking now six tablets together). In the evening when
she has completed the analysis, she takes the setup apart
(for another person to use) as she will not need it over the
next couple of days when writing the report on her laptop.

As illustrated in this scenario, SurfaceConstellations are at
the sweet spot between ad-hoc, loose multi-tablet setups and
fixed multi-monitor desktops: re-configurations are made
possible and easy, but we expect these to be only sporadic
(e.g. adding tablets to visualize additional data). There are
many possible workstation setups in our design space (Figure
3) that – once configured – would not necessarily require any
(or only minimal) changes. Importantly, our proposed de-
signs are not intended to replace existing work-station setups
(e.g. financial trading desks), but provide more flexible op-
tions and new possible workstation designs.

Creating 3D-Printed Modular Brackets
Next, we will explain the details of how to design, build, and
manufacture the brackets holding devices for SurfaceCon-
stellation setups.

Whilst there are many possible options for holding a tablet
device in place (for example, an all surrounding case, or a
mount at the back of the device), we opted for a design that
holds the devices in place by clipping a bracket onto each
connected corner. Typically, a single bracket connects 2 to 4
devices, directly relating to the number of L-shaped sides of
the bracket (Figure 5 top). A bracket can be flat (for example,
to connect devices on a desk in Figure 3a) or angular (for
most other designs in the design space, such as Figure 3b-e).

Besides the number of connecting sides for the tablet, there
are two key hardware parameters. First, the width of the area
covering the tablet case (Figure 5w); in our designs, this pa-
rameter is usually between 8-12mm. Ideally it does not cover
any part of the screen; though it needs to be wide enough to
hold the tablet in place, which is more difficult with rounded
tablet designs. Second, the thickness of the space holding the

tablet (Figure 5t). This thickness needs to be slightly smaller
than the device’s own thickness, so it applies enough pres-
sure onto the case to hold the device in place (with our
PLA/ABS prints, decreasing thickness by 0.5mm results in
good tension of the bracket onto the device to hold it in
place).

Figure 5. 3D-printed bracket design and design parameters.

Brackets can be manufactured from different materials (e.g.
ABS, wood, acrylic) with a variety of techniques (e.g. CNC
milling, glued acrylic laser-cut layers). We create most of our
brackets using 3D-printing (using Makerbot Replicator 2X,
Ultimaker 2+, and Objet Connex 3). We achieved robust
brackets with both PLA and ABS prints, with infill of 20%
up to 100%. A third parameter of our bracket design to adjust
is the thickness of the bracket’s top and bottom layers (Figure
5d). We have found a thickness of ≥1mm to provide suffi-
ciently robust bracket walls to hold the weight of the tablet.

Figure 6. (a) OpenSCAD parametric bracket design and (b)
code view, (c) MakerBot Customizer view, with sliders on the
left side to adjust parameters (e.g. device thickness, angle).

All our bracket designs are modelled in OpenSCAD [24]
(Figure 6a), which renders 3D models based on parametric
script files and directly creates STL files for 3D printing soft-
ware. Our modelling files (source code: [29]) include varia-
bles for all design parameters for each bracket, such as de-
vice thickness, number of L-shaped links, and angle between
devices (Figure 6b). Using the OpenSCAD script file syntax
also allows us to use these files directly as input for the
Thingiverse MakerBot Customizer [28] website (Figure 6c):
this website interprets the modelling script files and creates
an interface frontend that allows us to use sliders and
dropdown menus to adjust any of the parameters for the 3D
model. All tagged variables in the file are added as interface

elements (e.g. sliders in Figure 6c), and meta comments in
the script file can be used to specify minimum/maximum val-
ues and other conditions [28].

Using the parametric OpenSCAD language, we designed a
basic set of brackets with different parameters: number of
links, angles, and device size and thickness (Figure 7).
Choosing brackets from these base designs allows one to as-
semble most of our design space examples (Figure 3): for
instance, the curved setup requires 2xE and 2xH, whilst the
6-tablet trading desk setup needs 2xB, 4xE, and 2xG. The
STL files of all base designs are included in our SurfaceCon-
stellation library [29] (size for 5 different device sizes: iPad
3, iPad Air, iPad Air 2, and Microsoft Surface 3/4; and pre-
sets for 5 angles, see Figure 7).

Figure 7. Library of bracket base designs.

Weight-balancing and Support Extensions
Next, we address the need for balancing weight to allow for
device setups with free-standing elements. If the weight dis-
tribution of a device setup is unbalanced, additional support
extensions need to complement a bracket to support the
weight, and hold the complete SurfaceConstellation setup in
a stable position without tipping over.

Determining the need for support extensions can be done as
follows: first, we determine the projection of the centre of
mass of the whole setup on the ground. In most cases, we can
assume that the weight distribution of each single device is
even (i.e. the centre of mass of a single device is in the centre
of the volume). We then calculate the centre of mass of the
combined setup and project the coordinates back to the
ground plane (e.g. onto the surface the setup is standing on).
A structure is stable if the projection point is within the base
of support, which is the polygon composed of all the touch-
ing points between the built structure and the ground (Figure
8a). If the projection point is outside that area (8b), we extend
the 3D printed brackets on the bottom with additional parts
to increase the base of support area (8c).

In practice, the structure should also be able to stand external
forces such as user’s touch input, which has different lever-
age depending on the surface orientation and height. To

achieve this, we extend the minimum length calculated as
above with 20% of the height of the entire SurfaceConstella-
tion (this makes sure that the higher the overall setup, the
longer the extensions, thus increasing stability). Figure 9
shows example extensions that were added to the brackets.
To simplify the use of weigh-balancing extensions, we inte-
grated the calculation of support extension into our GUI tool
(explained shortly) for creating new device setups.

For asymmetric and hybrid structures, we need to calculate
the projection calculation of centre of mass in two dimen-
sions. For example, if we attach another tablet on the right
side of the top tablet of the Bend Desk, the mass of centre
will move towards the right side, then the structure could
possibly tip over both backwards and to the right.

Figure 8. Weight balancing and support extensions.

Figure 9. Examples of support extensions for brackets.

Flexible Joint and Variable Thickness Brackets
All bracket designs we have introduced so far are static and
fixed objects with no moving parts. We investigated the pos-
sible designs of flexible joint brackets, allowing adjustments
of the angle between surfaces. For example, when connect-
ing two tablets with such a flexible joint bracket, we can cre-
ate a setup similar to the book design in Codex [17], and go-
ing beyond, adding flexible joints to any part of a Surface-
Constellation. In particular, we explored two techniques for
adding such adjustable joints:

Flexible Joints 1: Ratchet-hinged brackets. We developed
flexible brackets that feature repositionable ratchet joints
(Figure 10a). These can be moved by 90 degrees to both sides
(direction switchable) with detent stops each 22.5 degrees.
Once a final position is found, the hinge can be locked in

place, which quickly sets up workspaces on the fly and al-
lows users to adapt them later. We can also use the flexible
brackets for quick physical prototyping: a person can use the
flexible joint bracket to find the preferred angle in a console
design before 3D-printing a set of solid brackets.

Flexible Joints 2: Dynamic friction-multiplying brackets.
In our second design of a flexible joint bracket, each bracket
comprises two parts that pivot around an axle (Fig. 10b).
When tightening the nut, the resulting friction between the
interleaved extensions produces a rigid but reversible lock-
in-place mechanism. We incorporate a recess in each
bracket, such that the opposite nut locks and disappears in-
side the assembly without visually standing out.

The gain of flexibility of the ratchet-hinged and friction-
bracket designs comes at the cost of increased technical com-
plexity, possibly a slight reduction in stability, and an overall
larger space required for the joint part of the bracket. Whilst
all of them can be locked in place, they might be less resistant
to long-term use compared to rigid brackets.

Figure 10. Flexible joint brackets.

Variable Thickness: Our current bracket design is specific
to a given device thickness as configured through a parame-
ter. It is possible to modify this design by including padding
inside the bracket so devices of varying thickness can be held
securely in place (similar to press-fit 3D-printed designs).
There are different ways to achieve this, for example by add-
ing padding material inside the bracket (Figure 11a, this
would require assembly), or by printing a bending extrusion
inside the bracket that flexes in the range of a few millimetres
to adapt for varying device thickness (Figure 11 shows the
cut profile of a bracket with padding material and flexible
bending extrusion).

Figure 11. Cut profile of variable thickness brackets.

CapacitiveLink: Recognizing Connected Devices
Once we have assembled a new SurfaceConstellations setup,
the software running on the tablets might require information
about which tablet is located where (i.e. adjacent devices).

One strategy to configure the location of devices requires
manual setup, where a user either selects the position of each
device in a visual interface, or links devices by performing
synchronous gestures [16] (e.g. stitching [18]). Another strat-
egy is to use camera-based computer vision techniques (e.g.
the outside-in or inside-out tracking approaches we summa-
rized in related work) to determine the relative location be-
tween tablets. For example, we could use external RGB cam-
eras (e.g. Phone as a Pixel [44], back-facing cameras [11]),
or depth-sensing cameras (e.g. HuddleLamp [37]) to recog-
nize device positions.

We investigated a third option to determine the connection
between tablets. Our CapacitiveLink approach does not re-
quire manual setup or external or internal tracking devices
for positioning (e.g. cameras, RF radios), and relies entirely
on the hardware design of the brackets. Our approach is that
we add a second, conductive material to the 3D-printed
brackets, which overlaps with a small section of the device’s
touchscreen to be recognized as a unique touchpoint. To
build this design, we leverage Rekimoto’s approach of ca-
pacitance tags [40], often used to recognize tangible objects
through triggered capacitive touch points on the screen
[6,50], or re-directing input to tangible controls (e.g. Clip-
on-Gadgets [59]). Unlike PERCs [49] and TUIC [58] tags,
our capacitive link brackets do not require additional elec-
tronics or batteries.

Figure 12. (a) CapacitiveLink using conductive copper material

as connection between tablets and (b) conductive PLA.

Similar to Extension Sticker [22] and 3D-printed tangibles
[23], we use conductive 3D-printed material (Conductive
PLA [36]) triggering touch events on the screen. Similar to
capacitive widgets [50], our brackets are recognized without
the need for a person to touch the conductive material. Our
3D-printed bracket design (Figure 12b), which includes an
inner core of conductive 3D-print material, overlaps with the
touchscreens of connected tablets and triggers a touch con-
tact on each screen (we tested this design first using copper
tape connecting touch screens, Figure 12a). We use the 2D
position of this contact to uniquely identify the bracket the
tablet is connected to. By using a look-up table, we then de-
termine the location of each connected tablet. As seen in the

design of the overlapping areas in Figure 12, the bracket trig-
gers two touch points (marked on screen in the centre of the
green lines), one on the left and one on the right tablet. Trig-
gering these additional touch points does not interfere with
the recognition of other touch screen events, though it does
permanently block one of the multi-touch points of the
screen (e.g. Apple iPad 2/3 recognizes 11 touchpoints).

 Figure 13. One side of a CapacitiveLink bracket design.

To make sure the conductive link reliably triggers touch
events when connected to a tablet, we increased the overall
volume of the printed conductive material (and use infill
>50%). We increased the extrusion of the contact point by
0.1-0.2mm (t in Figure 13) ensuring close connection be-
tween conductive material and touch screen surface. To
avoid contact points disappearing due to adaptation of the
touch screen detection threshold, our CapacitiveLinks are
connected to the frame/back of the device [50]. To simulate
the size of a finger we set the diameter d of the contact point
with the touch screen to 8-10mm. Two parameters are im-
portant for the positioning of the ID touchpoint: l is the length
of one inner side of the bracket, and identical to the maxi-
mum range where we can re-position the contact point (in
most of our brackets this length is ~40-60mm); and DlMIN is
the minimum difference between the position of two touch-
points so that they can be uniquely identified. Our tests with
the PLA printed conductive brackets (d=10mm, t=0.1, in-
fill=50%, for iPad Air 2) showed that due to jitter of the rec-
ognized touch contact, DlMIN would need to be larger than
2mm. This means that with an inner bracket length l=60mm,
we would get approximately 30 unique ID positions. With a
minimum of two unique IDs necessary per bracket (one for
each side), this would allow the use of 15 CapacitiveLink
brackets. We can increase this number by extending the
length of the bracket, or adding more than one touch point
per touchscreen.

One limitation of using CapacitiveLinks is that the conduc-
tive material occludes a small part of the screen. The ideal
use case for using CapacitiveLinks are setups that are fre-
quently reconfigured and where devices often change their
position. The brackets would then help to automatically rec-
ognize each of these changes immediately. In many other
workstation setups, however, CapacitiveLinks might not be
required and a person can do a one-time configuration of the
device positions instead.

SETTING UP SURFACECONSTELLATION
WORKSPACES: CONFIGURATOR GUI TOOL
So far, we have mentioned four different ways in which a
user can set up and use a new SurfaceConstellation work-
space: first, a person can directly use one of our existing com-
plete sets of link brackets for pre-defined setup of devices
(e.g. examples from the design space in Figure 3). Each pack-
age includes the designs of all required brackets (STL files
for direct 3D-print), rendered for different device types.
These packages are included in our SurfaceConstellation li-
brary [29]. Second, a user can choose from the collection of
existing base brackets (Figure 7) and combine them into new
setups of connected devices. Third, if none of the existing
brackets in the library is appropriate, a user can customize
brackets manually with the MakerBot Customizer using our
source file (specifying different angles or device thickness).
Fourth, the most flexible method for creating new brackets is
by using the OpenSCAD script directly. However, this does
require knowledge of the OpenSCAD scripting language.

Whilst the first two options are the easiest to use, the latter
two allow the most flexible customizations (many parame-
ters that can be changed), but are also more complex to use.
To bridge this gap between easy-to-use and powerful op-
tions, we designed a web-based GUI tool (Figure 14) that al-
lows the configuration of entire workspaces via a parameter
menu. Users can choose the number (14a) and type (14b) of
devices they want to use, and then define orientation and an-
gles between them (14c). The resulting workspace is visual-
ized in real-time as an interactive 3D model (14d). The tool
also provides a selection of typical presets to be used as-is
(e.g. 3 tablet console) or as a starting point for new designs
by adjusting the parameter set (14e). Each design can be
saved as a new preset. Furthermore, the tool automatically
calculates the weight distribution and centre of mass of the
constellation setup, and adds any necessary support structure
extensions to the brackets (14f). Finally, the tool renders all
the STL models for any required brackets (14g), and pro-
vides a single link to a ZIP file including all files (14h). To
further simplify the specification of the actual angle between
tablets, we added an additional configuration-by-demonstra-
tion feature: one (or multiple) devices can stream their angle
and orientation (measured by the internal IMU) to the web-
based GUI tool, which then automatically uses this current
angle to modify the setting in the web interface.

Figure 14. GUI tool for creating customized workspaces.

DEVELOPING SOFTWARE AND APPLICATIONS
Once a SurfaceConstellations hardware setup has been cre-
ated and the tablets are physically connected, the next ques-
tion we need to address is how to use existing software with
the setup, or how to develop new applications. Because Sur-
faceConstellation setups are fundamentally similar to cross-
device applications, it is possible to leverage existing toolkits
that facilitate the development of multi-surface applications,
such as Webstrates [25] for dynamically shared media
webpages; XDBrowser [34], which allows adapting websites
for cross-device use; XDSession for testing [35]; or Con-
nichiwa [43] for local hosted, ad-hoc cross-device applica-
tions. We decided to demonstrate the SurfaceConstellation
platform’s versatility with four example applications, built
with different frameworks and tools, whilst at the same time
illustrating diverse setups across the design space taxonomy.
Before we go through these use cases, we describe four de-
velopment strategies for using software with or program-
ming software for SurfaceConstellation setups.

Software Connectivity and Interaction
Applications running on touch-screen devices that are con-
nected in a SurfaceConstellation workstation can be de-
signed in four different ways (summarized in Figure 15):

METHOD 1 | No connection: In this configuration, existing
applications can be used side-by-side without any direct
communication between them (Figure 15a). Examples for
this scenario are an email client on one device and a calendar
application on the other, or a word processor next to a dic-
tionary.

METHOD 2 | Indirect connection: The software running on
each of the devices are communicating indirectly with each

Figure 15. Design characteristics for software running on SurfaceConstellation setups.

other, e.g. through explicit read and write operations on a
backend server or shared storage (Figure 15b). An example
of this method is using a photo editing software on one de-
vice and saving the results to a cloud storage where a blog-
ging platform can access and use the edited photos.

METHOD 3 | Direct local connection: We can leverage di-
rect, local cross-device communication between devices
(e.g. with Wi-Fi, Bluetooth, Figure 15c). Direct connections
allow for network independence and low communication la-
tency [43]. Examples for such software setups are multi-
player games with different views for each player on the con-
nected devices.

METHOD 4 | Distributed MVC: Lastly, the devices can dis-
play views of distributed interface as part of a distributed
model-view-controller (dMVC) architecture. The view is in-
dividual to each device and a backend server controls the ap-
plication logic (Figure 15d). An example of this category is
a web-based visual analytics tool.

These four methods differ in the degree of how closely cou-
pled the software connection is implemented. Whilst for
some use cases it is feasible to set up SurfaceConstellation
with multiple devices that have no direct software-side con-
nectivity (Method 1), adding connectivity can allow more
fluid and seamless interactions with the cross-device appli-
cations (Methods 2-4).

Available Information about Setup and Devices
When designing applications for SurfaceConstellation set-
ups, it can be useful to address the following 4 parameters:

(i) presence, of devices, number of devices, and the identi-
fication of devices. Most cross-device development
frameworks [25,35,43] incorporate a device registra-
tion and discovery mechanism.

 (ii) device capabilities, in particular the resolution of the
displays (e.g. pixels height, width, ppi). This infor-
mation can be shared through the network connection
between devices by using a development framework or
web-based connections (for example, WebSockets).

(iii) orientation of devices in space, e.g. are the devices laid
out flat on a table, or are they positioned standing up
vertically? Integrated IMU sensors can provide this in-
formation automatically.

(iv) relative position of devices in a SurfaceConstellation
setup. This information can be established either via
manual configuration, sensor readings, or through the
CapacitiveLink brackets as described above.

Four Example Applications Across the
SurfaceConstellations Design Space
To best illustrate the flexibility and expressiveness of the
SurfaceConstellations setups across our design space (Figure
3), we describe four use case applications (three custom-built
and one commercial software). Our applications also demon-
strate how to use existing cross-device development frame-
works (in particular, Connichiwa [43] and Webstrates [25])

when developing SurfaceConstellation applications (over-
view of the four use cases in Table 1).

Application Design space Implementation
1. Audio-channel mixing ‘Dual-screen laptop’ Commercial application

2. Board game ‘Bridge’ WebSockets + nodeJS

3. Financial Computing ‘Trading desk’ Connichiwa [43]

4. Visual Analytics ‘Bend-desk’ Webstrates [25]

Table 1. Overview of use-case applications.

APPLICATION 1: Audio-Track Mixing
Multi-touch tablets are increasingly used to control profes-
sional live digital audio mixers (e.g. to control level faders,
gain and tone controls). Providing a flexible spatial arrange-
ment for these tablet devices is an ideal use case for Surface-
Constellation setups. We designed a mixing table hardware
setup supporting three control tablets (Figure 16). Using the
commercial Soundcraft Ui24 mixing system [15] we can
control 24 audio channels and settings. Each of the tablets
can provide access to a different subpage of the mixer's soft-
ware control interface (hosted on a server in the rack unit).

Figure 16. Audio-track mixing setup: (a) control 7-channel

level fader bank, (b) equalizer, and (c) metering.

APPLICATION 2: Bridge Setup for Two-player Board Games
This example implements a board game (like the ScrabbleTM
word game) using the ‘bridge’ setup (Figure 17a). The shared
tablet in the centre shows the playing field, whilst the user-
facing devices show a private view of each user’s letter rack.
On their turn, a user selects a combination of letters, which
is then shown in the central shared playing field. From there,
the person can drag the letters to position them on the playing
board. This example is implemented using WebSocket con-
nections between the devices and a central nodeJS server
managing the shared game state.

APPLICATION 3: Trading Desk for Financial Computing
Trading desks often consist of multiple screens and many
different views of related data. As an example, we built a fi-
nancial trading workspace which consists of stock trading
widgets (Figure 17b). We developed this application with the
Connichiwa [43] framework to run a local server instance on
one of the tablets. This tablet functions as a master device to
which clients can connect, to select which financial data
widget should be displayed on each device.

Figure 17. (a) Multi-player board games; (b) trading-desk.

APPLICATION 4: Hybrid Setup for Visual Analytics
Visual analytics often requires analysts to distribute infor-
mation items across different screens, allowing them to com-
pare different views of the same data. We built a distributed
web application (based on the WebStrates platform [25]) in
which analysts are presented with an overview of available
visualizations for a dataset (Figure 18a). By using additional
brackets, analysts can dynamically add devices to the setup.
Figure 18b shows how a phone is added to the workstation
setup, displaying a control selection interface for the visual-
ization presented on a tablet next to it (18c).

Figure 18. Setup for visual analytics application.

DISCUSSION
Reflecting on SurfaceConstellations designs, we briefly dis-
cuss characteristics of semi-fixed setups, roles of devices,
and possible interaction techniques.

Semi-Fixed vs. Mobile Cross-Device Setups
SurfaceConstellations strike a balance between the tradi-
tional desktop screen arrangements found in expert environ-
ments as well as ad-hoc mobile device groupings. The former
is a specialized arrangement of screens, typically to support
a set of specific tasks (e.g. air traffic control, finance appli-
cations, etc.). Ad-hoc mobile scenarios, in contrast, typically
involve fluid arrangements of devices, quickly positioned
usually by hand to support a certain task (e.g. exchanging or
comparing information) and often span multiple users. Im-
portantly, such scenarios involve personal mobile devices –
the devices we always carry with us.

SurfaceConstellations offer a framework for semi-rigid ar-
rangements of mobile devices. Whilst such arrangements are
more rigid than the fluid gathering of mobile devices, they
can be made persistent if desired and redeem many of the
benefits of traditional multi-monitor setups. At the same
time, they can be reconfigured easily by rearranging device
positions and orientations through different brackets.

Roles of Devices
Closely related to the setups of devices are the roles different
devices may take. From a technical perspective, all con-
nected tablets in a constellation might be of the same kind
(for instance, using only Microsoft Surface tablets), but they
might take very different roles depending on their placement,
the application, and the task at hand. For example, some de-
vices might become primary interaction devices (for exam-
ple, a touch keyboard for rich input) whilst others become
secondary devices (e.g. a drag-and-drop clipboard, or a
touch-enabled thumbnail overview) or even passive, view-
ing-only devices (e.g. a large zoomed-in view of content).
Further investigating the roles (and possibly fluid changes of
roles) of devices remains part of future work.

Interaction Techniques
For the scope of this paper we focused on the hardware de-
signs of the platform. For any SurfaceConstellation work-
station, there is a design opportunity to tailor interaction
techniques to best support interaction in each particular setup
and application. For example, we can develop techniques to
better support cross-device interaction such as dragging ob-
jects across surfaces [18]. Indirect manipulations could be
used when the configured workstation setup has devices or
areas that are inconvenient to reach. Existing overview+de-
tail techniques could be integrated, such as having one sur-
face showing a data map overview and multiple DragMag
views to show details of particular regions [51].

Cross-Device Applications for the Masses
The SurfaceConstellation platform enables anyone with ac-
cess to a 3D printer and multiple tablets/phones to design and
construct one’s own multi-surface workspace. Similar to the
research field of cross-device interactions, we anticipate that
an increasing number of available touch-screen devices will
soon allow people to use their devices in concert – and that
SurfaceConstellations arrangements can help to facilitate
people’s interaction with this larger number of devices. Im-
portantly, we made the SurfaceConstellations designs avail-
able as open hardware and open software [29]. With our de-
signs, taxonomy and examples, we aim to inspire users’ cre-
ativity to build, use and re-appropriate such environments for
various scenarios of use, which we hope takes us one step
closer to making cross-device applications available to the
masses.

ACKNOWLEDGEMENTS
We thank Soundcraft, HARMAN and Scott Wood for their
support of this research project. Frederik Brudy has been
supported by Microsoft Research through the PhD Scholar-
ship Programme. Part of this research funded by ICRI Cities.

REFERENCES
1. Rocco Ancona. 2014. The Future of Workplace

Productivity: Smart Desks and UltraSharp Monitors.
Retrieved September 7, 2017 from
https://blog.dell.com/en-us/smart-desks-and-ul-
trasharp-monitors-are-the-future-of-workplace-
productivity/

2. Jacob T. Biehl and Brian P. Bailey. 2004. ARIS: An
Interface for Application Relocation in an Interactive
Space. In Proceedings of Graphics Interface 2004 (GI
’04), 107–116.

3. Bloomberg L.P. Bloomberg Professional Services:
The Terminal | Hardware. Retrieved from
https://www.bloomberg.com/professional/solu-
tion/bloomberg-terminal

4. Vannevar Bush. 1945. As We May Think. The Atlan-
tic. Retrieved September 4, 2017 from
https://www.theatlantic.com/magazine/ar-
chive/1945/07/as-we-may-think/303881/

5. Jessica R. Cauchard, Markus Löchtefeld, Pourang
Irani, Johannes Schoening, Antonio Krüger, Mike Fra-
ser, and Sriram Subramanian. 2011. Visual Separation
in Mobile Multi-display Environments. In Proceed-
ings of the 24th Annual ACM Symposium on User In-
terface Software and Technology (UIST ’11), 451–
460. https://doi.org/10.1145/2047196.2047256

6. Liwei Chan, Stefanie Müller, Anne Roudaut, and Pat-
rick Baudisch. 2012. CapStones and ZebraWidgets:
Sensing Stacks of Building Blocks, Dials and Sliders
on Capacitive Touch Screens. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12), 2189–2192.
https://doi.org/10.1145/2207676.2208371

7. Nicholas Chen, Francois Guimbretiere, Morgan
Dixon, Cassandra Lewis, and Maneesh Agrawala.
2008. Navigation Techniques for Dual-display e-Book
Readers. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’08),
1779–1788. https://doi.org/10.1145/1357054.1357331

8. Nicholas Chen, François Guimbretière, and Abigail
Sellen. 2013. Graduate Student Use of a Multi-slate
Reading System. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems
(CHI ’13), 1799–1808.
https://doi.org/10.1145/2470654.2466237

9. Apoorve Chokshi, Teddy Seyed, Francisco Marinho
Rodrigues, and Frank Maurer. 2014. ePlan Multi-Sur-
face: A Multi-Surface Environment for Emergency
Response Planning Exercises. In Proceedings of the
Ninth ACM International Conference on Interactive
Tabletops and Surfaces (ITS ’14), 219–228.
https://doi.org/10.1145/2669485.2669520

10. Haeyong Chung, Chris North, Jessica Zeitz Self, Sha-
ron Chu, and Francis Quek. 2014. VisPorter: Facilitat-
ing Information Sharing for Collaborative Sensemak-
ing on Multiple Displays. Personal Ubiquitous Com-
put. 18, 5: 1169–1186. https://doi.org/10.1007/s00779-
013-0727-2

11. David Dearman, Richard Guy, and Khai Truong.
2012. Determining the Orientation of Proximate Mo-
bile Devices Using Their Back Facing Camera. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12), 2231–2234.
https://doi.org/10.1145/2207676.2208377

12. Andreas Dippon, Norbert Wiedermann, and Gudrun
Klinker. 2012. Seamless Integration of Mobile De-
vices into Interactive Surface Environments. In Pro-
ceedings of the 2012 ACM International Conference
on Interactive Tabletops and Surfaces (ITS ’12), 331–
334. https://doi.org/10.1145/2396636.2396693

13. Jonathan Grudin. 2001. Partitioning Digital Worlds:
Focal and Peripheral Awareness in Multiple Monitor
Use. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’01),
458–465. https://doi.org/10.1145/365024.365312

14. Peter Hamilton and Daniel J. Wigdor. 2014. Conduc-
tor: Enabling and Understanding Cross-device Interac-
tion. In Proceedings of the 32Nd Annual ACM Confer-
ence on Human Factors in Computing Systems (CHI
’14), 2773–2782.
https://doi.org/10.1145/2556288.2557170

15. Harman. Soundcraft Ui24R. Soundcraft - Professional
Audio Mixers. Retrieved September 15, 2017 from
http://www.soundcraft.com/products/ui24r

16. Ken Hinckley. 2003. Synchronous Gestures for Multi-
ple Persons and Computers. In Proceedings of the
16th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’03), 149–158.
https://doi.org/10.1145/964696.964713

17. Ken Hinckley, Morgan Dixon, Raman Sarin, Francois
Guimbretiere, and Ravin Balakrishnan. 2009. Codex:
A Dual Screen Tablet Computer. In Proceedings of
the SIGCHI Conference on Human Factors in Compu-
ting Systems (CHI ’09), 1933–1942.
https://doi.org/10.1145/1518701.1518996

18. Ken Hinckley, Gonzalo Ramos, Francois Guimbre-
tiere, Patrick Baudisch, and Marc Smith. 2004. Stitch-
ing: Pen Gestures That Span Multiple Displays. In
Proceedings of the Working Conference on Advanced
Visual Interfaces (AVI ’04), 23–31.
https://doi.org/10.1145/989863.989866

19. Dugald Ralph Hutchings, John Stasko, and Mary
Czerwinski. 2005. Distributed Display Environments.
interactions 12, 6: 50–53.
https://doi.org/10.1145/1096554.1096592

20. Shahram Izadi, Harry Brignull, Tom Rodden, Yvonne
Rogers, and Mia Underwood. 2003. Dynamo: A Pub-
lic Interactive Surface Supporting the Cooperative
Sharing and Exchange of Media. In Proceedings of the
16th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’03), 159–168.
https://doi.org/10.1145/964696.964714

21. Haojian Jin, Christian Holz, and Kasper Hornbaek.
2015. Tracko: Ad-hoc Mobile 3D Tracking Using
Bluetooth Low Energy and Inaudible Signals for
Cross-Device Interaction. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software
& Technology (UIST ’15), 147–156.
https://doi.org/10.1145/2807442.2807475

22. Kunihiro Kato and Homei Miyashita. 2015. Exten-
sionSticker: A Proposal for a Striped Pattern Sticker to
Extend Touch Interfaces and Its Assessment. In Pro-
ceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems (CHI ’15), 1851–
1854. https://doi.org/10.1145/2702123.2702500

23. Kunihiro Kato and Homei Miyashita. 2016. 3D
Printed Physical Interfaces That Can Extend Touch
Devices. In Proceedings of the 29th Annual Sympo-
sium on User Interface Software and Technology
(UIST ’16 Adjunct), 47–49.
https://doi.org/10.1145/2984751.2985700

24. Marius Kintel. OpenSCAD. Software for creating
solid 3D CAD objects (under GPL v2,
https://github.com/openscad/openscad/). Retrieved
June 2, 2017 from http://openscad.org

25. Clemens N. Klokmose, James R. Eagan, Siemen Baa-
der, Wendy Mackay, and Michel Beaudouin-Lafon.
2015. Webstrates: Shareable Dynamic Media. In Pro-
ceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology (UIST ’15), 280–
290. https://doi.org/10.1145/2807442.2807446

26. Ming Li and Leif Kobbelt. 2012. Dynamic Tiling Dis-
play: Building an Interactive Display Surface Using
Multiple Mobile Devices. In Proceedings of the 11th
International Conference on Mobile and Ubiquitous
Multimedia (MUM ’12), 24:1–24:4.
https://doi.org/10.1145/2406367.2406397

27. Andrés Lucero, Jussi Holopainen, and Tero Jokela.
2011. Pass-them-around: Collaborative Use of Mobile
Phones for Photo Sharing. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’11), 1787–1796.
https://doi.org/10.1145/1978942.1979201

28. MakerBot Industries LLC. Developer Documentation
MakerBot Customizer. Retrieved August 22, 2017
from http://customizer.makerbot.com/docs

29. Nicolai Marquardt. SurfaceConstellations Github Re-
pository. Retrieved January 1, 2018 from
https://github.com/nicmarquardt/surfaceconstellations

30. Nicolai Marquardt, Ken Hinckley, and Saul Green-
berg. 2012. Cross-device Interaction via Micro-mobil-
ity and F-formations. In Proceedings of the 25th An-
nual ACM Symposium on User Interface Software and
Technology (UIST ’12), 13–22.
https://doi.org/10.1145/2380116.2380121

31. David Merrill, Jeevan Kalanithi, and Pattie Maes.
2007. Siftables: towards sensor network user inter-
faces. In Proceedings of the 1st International Confer-
ence on Tangible and Embedded Interaction (TEI
’07), 75–78.
http://dx.doi.org/10.1145/1226969.1226984

32. Miguel A. Nacenta, Samer Sallam, Bernard Cham-
poux, Sriram Subramanian, and Carl Gutwin. 2006.
Perspective Cursor: Perspective-based Interaction for
Multi-display Environments. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’06), 289–298.
https://doi.org/10.1145/1124772.1124817

33. NaturalPoint. 2013. Motion Capture Systems by
OptiTrack. http://www.optitrack.com/hardware/. Re-
trieved from http://www.optitrack.com/hardware/

34. Michael Nebeling. 2017. XDBrowser 2.0: Semi-Auto-
matic Generation of Cross-Device Interfaces. In Pro-
ceedings of the 2017 CHI Conference on Human Fac-
tors in Computing Systems (CHI ’17), 4574–4584.
https://doi.org/10.1145/3025453.3025547

35. Michael Nebeling, Maria Husmann, Christoph Zim-
merli, Giulio Valente, and Moira C. Norrie. 2015.
XDSession: Integrated Development and Testing of
Cross-device Applications. In Proceedings of the 7th
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS ’15), 22–27.
https://doi.org/10.1145/2774225.2775075

36. ProtoPlant. Conductive PLA. Retrieved September 10,
2017 from https://www.proto-pasta.com/pages/con-
ductive-pla

37. Roman Rädle, Hans-Christian Jetter, Nicolai Mar-
quardt, Harald Reiterer, and Yvonne Rogers. 2014.
HuddleLamp: Spatially-Aware Mobile Displays for
Ad-hoc Around-the-Table Collaboration. In Proceed-
ings of the Ninth ACM International Conference on
Interactive Tabletops and Surfaces (ITS ’14), 45–54.
https://doi.org/10.1145/2669485.2669500

38. Roman Rädle, Hans-Christian Jetter, Mario Schreiner,
Zhihao Lu, Harald Reiterer, and Yvonne Rogers.
2015. Spatially-aware or Spatially-agnostic?: Elicita-
tion and Evaluation of User-Defined Cross-Device In-
teractions. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15), 3913–3922.
https://doi.org/10.1145/2702123.2702287

39. Jun Rekimoto. 1997. Pick-and-drop: A Direct Manip-
ulation Technique For Multiple Computer Environ-
ments. In Proceedings of the 10th Annual ACM Sym-
posium on User Interface Software and Technology
(UIST ’97), 31–39.
http://dx.doi.org/10.1145/263407.263505

40. Jun Rekimoto. 2002. SmartSkin: An Infrastructure for
Freehand Manipulation on Interactive Surfaces. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’02), 113–120.
https://doi.org/10.1145/503376.503397

41. Jun Rekimoto and Masanori Saitoh. 1999. Augmented
Surfaces: A Spatially Continuous Work Space for Hy-
brid Computing Environments. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’99), 378–385.
https://doi.org/10.1145/302979.303113

42. Dominik Schmidt, Fadi Chehimi, Enrico Rukzio, and
Hans Gellersen. 2010. PhoneTouch: a technique for
direct phone interaction on surfaces. In Proceedings of
the 23nd annual ACM Symposium on User Interface
Software and Technology (UIST ’10), 13–16.
https://doi.org/10.1145/1866029.1866034

43. Mario Schreiner, Roman Rädle, Hans-Christian Jetter,
and Harald Reiterer. 2015. Connichiwa: A Framework
for Cross-Device Web Applications. In Proceedings of
the 33rd Annual ACM Conference Extended Abstracts
on Human Factors in Computing Systems (CHI EA
’15), 2163–2168.
https://doi.org/10.1145/2702613.2732909

44. Julia Schwarz, David Klionsky, Chris Harrison, Paul
Dietz, and Andrew Wilson. 2012. Phone As a Pixel:
Enabling Ad-hoc, Large-scale Displays Using Mobile
Devices. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’12),
2235–2238. https://doi.org/10.1145/2207676.2208378

45. Teddy Seyed, Mario Costa Sousa, Frank Maurer, and
Anthony Tang. 2013. SkyHunter: A Multi-surface En-
vironment for Supporting Oil and Gas Exploration. In
Proceedings of the 2013 ACM International Confer-
ence on Interactive Tabletops and Surfaces (ITS ’13),
15–22. https://doi.org/10.1145/2512349.2512798

46. Teddy Seyed, Xing-Dong Yang, and Daniel Vogel.
2016. Doppio: A Reconfigurable Dual-Face Smart-
watch for Tangible Interaction. In Proceedings of the
2016 CHI Conference on Human Factors in Compu-
ting Systems (CHI ’16), 4675–4686.
https://doi.org/10.1145/2858036.2858256

47. Norbert A. Streitz, Jörg Geißler, Torsten Holmer,
Shin’ichi Konomi, Christian Müller-Tomfelde, Wolf-
gang Reischl, Petra Rexroth, Peter Seitz, and Ralf
Steinmetz. 1999. i-LAND: An Interactive Landscape
for Creativity and Innovation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing

Systems (CHI ’99), 120–127.
https://doi.org/10.1145/302979.303010

48. Peter Tandler, Thorsten Prante, Christian Müller-Tom-
felde, Norbert Streitz, and Ralf Steinmetz. 2001. Con-
nectables: Dynamic Coupling of Displays for the Flex-
ible Creation of Shared Workspaces. In Proceedings
of the 14th Annual ACM Symposium on User Interface
Software and Technology (UIST ’01), 11–20.
https://doi.org/10.1145/502348.502351

49. Simon Voelker, Christian Cherek, Jan Thar, Thorsten
Karrer, Christian Thoresen, Kjell Ivar Øvergaard, and
Jan Borchers. 2015. PERCs: Persistently Trackable
Tangibles on Capacitive Multi-Touch Displays. In
Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (UIST ’15),
351–356. https://doi.org/10.1145/2807442.2807466

50. Simon Voelker, Kosuke Nakajima, Christian Thore-
sen, Yuichi Itoh, Kjell Ivar Øvergaard, and Jan Borch-
ers. 2013. PUCs: Detecting Transparent, Passive Un-
touched Capacitive Widgets on Unmodified Multi-
touch Displays. In Proceedings of the 2013 ACM In-
ternational Conference on Interactive Tabletops and
Surfaces (ITS ’13), 101–104.
https://doi.org/10.1145/2512349.2512791

51. Colin Ware and Marlon Lewis. 1995. The DragMag
Image Magnifier. In Conference Companion on Hu-
man Factors in Computing Systems (CHI ’95), 407–
408. https://doi.org/10.1145/223355.223749

52. Malte Weiss, Simon Voelker, Christine Sutter, and Jan
Borchers. 2010. BendDesk: Dragging Across the
Curve. In ACM International Conference on Interac-
tive Tabletops and Surfaces (ITS ’10), 1–10.
https://doi.org/10.1145/1936652.1936654

53. Daniel Wigdor, Hao Jiang, Clifton Forlines, Michelle
Borkin, and Chia Shen. 2009. WeSpace: The Design
Development and Deployment of a Walk-up and
Share Multi-surface Visual Collaboration System. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’09), 1237–1246.
https://doi.org/10.1145/1518701.1518886

54. Raphael Wimmer, Fabian Hennecke, Florian Schulz,
Sebastian Boring, Andreas Butz, and Heinrich
Hußmann. 2010. Curve: Revisiting the Digital Desk.
In Proceedings of the 6th Nordic Conference on Hu-
man-Computer Interaction: Extending Boundaries
(NordiCHI ’10), 561–570.
https://doi.org/10.1145/1868914.1868977

55. Christian Winkler, Julian Seifert, Christian Reinartz,
Pascal Krahmer, and Enrico Rukzio. 2013. Penbook:
Bringing Pen+Paper Interaction to a Tablet Device to
Facilitate Paper-based Workflows in the Hospital Do-
main. In Proceedings of the 2013 ACM International
Conference on Interactive Tabletops and Surfaces

(ITS ’13), 283–286.
https://doi.org/10.1145/2512349.2512797

56. Pawel Wozniak, Nitesh Goyal, Przemyslaw Ku-
charski, Lars Lischke, Sven Mayer, and Morten Fjeld.
2016. RAMPARTS: Supporting Sensemaking with
Spatially-Aware Mobile Interactions. In Proceedings
of the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16), 2447–2460.
https://doi.org/10.1145/2858036.2858491

57. Pawel Woźniak, Lars Lischke, Benjamin Schmidt,
Shengdong Zhao, and Morten Fjeld. 2014. Thaddeus:
A Dual Device Interaction Space for Exploring Infor-
mation Visualisation. In Proceedings of the 8th Nordic
Conference on Human-Computer Interaction: Fun,
Fast, Foundational (NordiCHI ’14), 41–50.
https://doi.org/10.1145/2639189.2639237

58. Neng-Hao Yu, Li-Wei Chan, Seng Yong Lau, Sung-
Sheng Tsai, I-Chun Hsiao, Dian-Je Tsai, Fang-I Hsiao,
Lung-Pan Cheng, Mike Chen, Polly Huang, and Yi-
Ping Hung. 2011. TUIC: Enabling Tangible Interac-
tion on Capacitive Multi-touch Displays. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’11), 2995–3004.
https://doi.org/10.1145/1978942.1979386

59. Neng-Hao Yu, Sung-Sheng Tsai, I-Chun Hsiao, Dian-
Je Tsai, Meng-Han Lee, Mike Y. Chen, and Yi-Ping
Hung. 2011. Clip-on Gadgets: Expanding Multi-touch
Interaction Area with Unpowered Tactile Controls. In
Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology (UIST ’11),
367–372. https://doi.org/10.1145/2047196.2047243

