
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

A Monadic Framework for Relational Verification
Applied to Information Security, Program Equivalence, and Optimizations

Niklas Grimm
1

Kenji Maillard
2,3

Cédric Fournet
4

Cătălin Hriţcu
2

Matteo Maffei
1

Jonathan Protzenko
4

Tahina Ramananandro
4

Aseem Rastogi
4

Nikhil Swamy
4

Santiago Zanella-Béguelin
4

1
Vienna University of Technology

2
Inria Paris

3
ENS Paris

4
Microsoft Research

Abstract
Relational properties describe multiple runs of one or more

programs. They characterize many useful notions of secu-

rity, program refinement, and equivalence for programs with

diverse computational effects, and they have received much

attention in the recent literature. Rather than developing

separate tools for special classes of effects and relational

properties, we advocate using a general purpose proof assis-

tant as a unifying framework for the relational verification of

effectful programs. The essence of our approach is to model

effectful computations using monads and to prove relational

properties on their monadic representations, making the

most of existing support for reasoning about pure programs.

We apply this method in F
⋆
and evaluate it by encoding a

variety of relational program analyses, including information

flow control, semantic declassification, program equivalence

and refinement at higher order, correctness of program op-

timizations. By relying on SMT-based automation, unary

weakest preconditions, user-defined effects, and monadic

reification, we show that, compared to unary properties, ver-

ifying relational properties requires little additional effort

from the F
⋆
programmer.

1 Introduction
Generalizing unary properties (which describe single runs

of programs), relational properties describe multiple runs of

one or more programs. Relational properties are useful when

reasoning about program refinement, approximation, equiv-

alence, provenance, as well as many notions of security. A

great many relational program analyses have been proposed

in the recent literature, including works by Antonopoulos

et al. (2017); Asada et al. (2016); Banerjee et al. (2016); Barthe

et al. (2012, 2013b, 2014, 2015); Benton et al. (2009); Ştefan

Ciobâcă et al. (2016); Godlin and Strichman (2010); Hedin

and Sabelfeld (2012); Kundu et al. (2009); Küsters et al. (2015);

Yang (2007); Zaks and Pnueli (2008); Murray et al. (2013);

Fehrenbach and Cheney (2016); Bauereiß et al. (2016, 2017);

and Çiçek et al. (2017). While some systems have been de-

signed for the efficient verification of specialized relational

properties of programs (notably information-flow type sys-

tems, e.g., Sabelfeld andMyers (2003a)), others support larger

classes of properties. These include tools based on prod-

uct program constructions for automatically proving rela-

tions between first-order imperative programs (e.g., SymDiff

(Lahiri et al. 2012) and Descartes (Sousa and Dillig 2016)), as

well as relational program logics (Benton 2004) that support

interactive verification of relational properties within proof

assistants (e.g., EasyCrypt (Barthe et al. 2012) and RHTT

(Nanevski et al. 2013)).

We provide a framework in which relational logics and

other special-purpose tools can be recast on top of a general

method for relational reasoning. The method is simple: we

use monads to model and program effectful computations;

and we reveal the pure monadic representation of an effect

in support of specification and proof. Hence, we reduce the

problem of relating effectful computations to relating their

pure representations, and then apply the advanced tools

available for reasoning about pure programs.

While this method should be usable for a variety of proof

assistants, we choose to work in F
⋆
(Swamy et al. 2016), a de-

pendently typed programming language and proof assistant.

By relying on its support for SMT-based automation, unary

weakest preconditions, and user-defined effects (Ahman et al.

2017), we demonstrate, through a diverse set of examples,

that our approach enables the effective verification of re-

lational properties with an effort comparable to proofs of

unary properties in F
⋆
and to proofs in relational logics with

SMT-based automation.

Being based on an expressive semantic foundation, our

approach can be directly used to verify relational properties

of programs. Additionally, we can still benefit from more

specialized automated proof procedures, such as syntax-

directed relational type systems, by encoding them within

our framework. Hence, our approach facilitates compar-

ing and composing special-purpose relational analyses with

more general-purpose semi-interactive proofs; and it encour-

ages prototyping and experimenting with special-purpose

analyses with a path towards their certified implementations.

1.1 A first example
We sketch the main ideas on a proof of equivalence for the

two stateful, recursive functions below, a task not easily

accomplished using specialized relational program logics:

let rec sum_up r lo hi = if lo,hi then (r := !r+lo; sum_up r (lo+1) hi)
let rec sum_dn r lo hi = if lo,hi then (r := !r+hi−1; sum_dn r lo (hi−1))

Both functions sum all numbers between lo and hi into some

accumulator reference r, the former function by counting up

and the latter function by counting down.

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

2 Grimm et al.

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Unary reasoning about monadic computations As a

first step, we embed these computations within a depen-

dently typed language. There are many proposals for how

to do this—one straightforward approach is to encapsulate

effectful computations within a parameterized monad (Atkey

2009). In F
⋆
, as in the original Hoare Type Theory (Nanevski

et al. 2008), these monads are indexed by a computation’s

pre- and postconditions and proofs are conducted using a

unary program logic (i.e., not relational), adapted for use with

higher-order, dependently typed programs. Beyond state, F
⋆

supports reasoning about unary properties of a wide class

of user-defined monadic effects, where the monad can be

chosen to best suit the intended style of unary proof.

Relating reified effectful terms Our goal is to conve-

niently state and prove properties that relate effectful terms,

e.g., prove sum_up and sum_dn equivalent. We do so by

revealing the monadic representation of these two computa-

tions as pure state-passing functions. However, since doing

this naïvely would preclude the efficient implementation of

primitive effects, such as state in terms of a primitive heap,

our general method relies on an explicit monadic reification
coercion for exposing the pure monadic representation of

an effectful computation in support of relational reasoning.

Thus, in order to relate effectful terms, one simply reasons

about their pure reifications. Turning to our example, we

prove the following lemma, stating that running sum_up
and sum_dn in the same initial states produces equivalent

final states. (A proof is given in §2.4.)

r:ref int→ lo:int→ hi:int{hi ≥ lo}→ h:heap{r ∈ h}→
reify (sum_up r lo hi) h ∼ reify (sum_dn r lo hi) h

Flexible specification andproving stylewith SMT-backed
automation Although seemingly simple, proving sum_up
and sum_dn equivalent is cumbersome, if at all possible, in

most prior relational program logics. Prior relational logics

rely on common syntactic structure and control flow between

multiple programs to facilitate the analysis. To reason about

transformations such as loop reversal, rules that exploit syn-

tactic similarity are not very useful and instead a typical

proof in prior systems may involve several indirections, e.g.,

first proving the full functional correctness of each loop with

respect to a purely functional specification and then showing

that the two specifications are equivalent. Through monadic

reification, effectful terms are self-specifying, removing the

need to rewrite the same code in purely-functional style just

to enable specification and reasoning.

Further, whereas many prior systems are specialized to

proving binary relations, it can be convenient to structure

proofs using relations of a higher arity, a style naturally

supported by our method. For example, a key lemma in

While this coercion is inspired by Filinski’s (1994) reify operator, we only use
it to reveal the pure representation of an effectful computation in support

of specification and proof, whereas Filinski’s main use of reification was to

uniformly implement monads using continuations.

the proof of the equivalence above is an inductive proof of

a ternary relation, which states that sum_up is related to

sum_up on a prefix combined with sum_dn on a suffix of

the interval [lo, hi).
Last but not least, using the combination of typechecking,

weakest precondition calculation, and SMT solving provided

by F
⋆
, many relational proofs go through with a degree of au-

tomation comparable to existing proofs of unary properties,

as highlighted by the examples in this paper.

1.2 Contributions and outline
We propose a methodology for relational verification (§2),

covering both broadly applicable ingredients such as repre-

senting effects using monads and exposing their representa-

tion using monadic reification, as well as our use of specific

F
⋆
features that enable proof flexibility and automation. All

these ingredients are generic, i.e., none of them is specific to

the verification of relational properties.

The rest of the paper is structured as a series of case stud-

ies illustrating our methodology at work. Through these

examples we aim to show that our methodology enables

comparing and composing various styles of relational pro-

gram verification in the same system, thus taking a step

towards unifying many prior strands of research. Also these

examples cover a wide range of applications that, when taken

together, exceed the ability of all previous tools for relational

verification of which we are aware. Our examples are divided

into three sections that can be read in any order, each being

an independent case study:

Transformations of effectful programs (§3) Wedevelop

an extensional, semantic characterization of a stateful pro-

gram’s read and write effects, based on the relational ap-

proach of Benton et al. (2006). Based on these semantic read

and write effects, we derive lemmas that we use to prove the

correctness of common program transformations, such as

swapping the order of two commands and eliminating redun-

dant writes. Going further, we encode Benton’s (2004) rela-

tional Hoare logic in our system, providing a syntax-directed

proof system for relational properties as a special-purpose

complement to directly reasoning about a program’s effects.

Information-flow control (§4) We encode several styles

of static information-flow control analyses, while account-

ing for declassification. Highlighting the ability to compose

various proof styles in a single framework, we combine au-

tomated, type-based security analysis with SMT-backed, se-

mantic proofs of noninterference.

Proofs of algorithmic optimizations (§5) With a few

exceptions, prior relational program logics apply to first-

order programs and provide incomplete proof rules that

exploit syntactic similarities between the related programs.

Not being bound by syntax, we prove relations of higher

arities (e.g., 4-ary and 6-ary relations) between higher-order,

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

A Monadic Framework for Relational Verification 3

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

effectful programs with differing control flow by reason-

ing directly about their reifications. We present two larger

examples: First, we show how to memoize a recursive func-

tion using McBride’s (2015) partiality monad and we prove it

equivalent to the original non-memoized version. Second, we

implement an imperative union-find data structure, adding

the classic union-by-rank and path compression optimiza-

tions in several steps and proving stepwise refinement.

From these case studies, we conclude that our method for

relational reasoning about reified monadic computations is

both effective and versatile. We are encouraged to continue

research in this direction, aiming to place proofs of rela-

tional properties of effectful programs on an equal footing

with proofs of pure programs in F
⋆
as well as other proof

assistants and verification tools.

The code for the examples in this paper is available at

https://github.com/FStarLang/FStar/tree/master/examples/rel

Compared to this code, the listings in the paper are edited

for clarity and sometimes omit uninteresting details. The

appendices describe additional case studies that we omit

because of space, including cryptographic security proofs

and dynamic information flow control.

2 Methodology for relational verification
In this section we review in more detail the key F

⋆
features

we use and how each of them contributes to our verification

method for relational properties. Two of these features are

general and broadly applicable: (§2.1) modeling effects us-

ing monads and keeping the effect representation abstract

to support efficient implementation of primitive effects and

(§2.3) using monadic reification to expose the effect represen-

tation. The remaining features are more specific to F
⋆
and

enable proof flexibility and automation: (§2.2) using a unary

weakest precondition calculus to produce verification condi-

tions in an expressive dependently typed logic; (§2.4) using

dependent types together with pre- and postconditions to ex-

press arbitrary relational properties of reified computations;

(§2.4) embedding the dependently typed logic into SMT logic

to enable the SMT solver to reason by computation.

None of these generic ingredients is tailored to the verifi-

cation of relational properties, and while F
⋆
is currently the

only verification system to provide all these ingredients in

a unified package, each of them also appears in other sys-

tems. This makes us hopeful that this relational verification

method can also be applied with other proof assistants (e.g.,

Coq, Lean, Agda, Idris, etc.), for which the automation would

likely come in quite different styles.

2.1 Modeling effects using monads
At the core of F

⋆
is a language of dependently typed, total

functions. Function types are written x:t→ Tot t' where the
co-domain t' may depend on the argument x:t. Since it is

the default in F
⋆
, we often drop the Tot annotation (except

where needed for emphasis) and also the name of the formal

argument when it is unnecessary, e.g., we write int→ bool
for _:int→ Tot bool. We also write #x:t→ t' to indicate that

the argument x is implicitly instantiated.

Our first step is to describe effects using monads built

from total functions (Moggi 1989). For instance, here is the

standard monadic representation of state in F
⋆
syntax.

type st (mem:Type) (a:Type) = mem→ Tot (a ∗ mem)

This defines a type st indexed by types for thememory (mem)

and the result (a). We use st as the representation type of a

new STATE_m effect we add to F
⋆
, with the total qualifier en-

abling the termination checker for STATE_m computations.

total new_effect {
STATE_m (mem:Type) : a:Type→ Effect
with repr = st mem;

return = λ(a:Type) (x:a) (m:mem)→ x, m;

bind = λ(a b:Type) (f:st mem a) (g:a→ st mem b) (m:mem)→
let z, m' = f m in g z m';

get = λ() (m:mem)→m, m; put = λ(m:mem) _→ (), m }

This defines the return and bind of this monad, and two

actions: get for obtaining the current memory, and put for
updating it. The new effect STATE_m is still parameterized by

the type of memories, which allows us to choose a memory

model best suited to the programming and verification task

at hand. We often instantiate mem to heap (a map from ref-

erences to their values, as in ML), obtaining the STATE effect

shown below—we use other memory types in §4 and §5.

total new_effect STATE = STATE_m heap

While such monad definitions could in principle be used

to directly extend the implementation of any functional lan-

guage with the state effect, a practical language needs to

allow keeping the representation of some effects abstract

so that they are efficiently implemented primitively (Peyton

Jones 2010). F
⋆
uses its simple module system to keep the

monadic representation of the STATE effect abstract and im-

plements it under the hood using the ML heap, rather than

state passing (and similarly for other primitive ML effects

such as exceptions). Whether implemented primitively or

not, the monadic definition of each effect is always themodel
used by F

⋆
to reason about effectful code, both intrinsically

using a (non-relational) weakest precondition calculus (§2.2)

and extrinsically using monadic reification (§2.3).

For the purpose of verification, monads provide great flex-

ibility in the modeling of effects, which enables us to express

relational properties and to conduct proofs at the right level

of abstraction. For instance, in §4.3 we extend a state monad

with extra ghost state to track declassification, and in §5.1 we

define a partiality monad for memoizing recursive functions.

Moreover, since the difficulty of reasoning about effectful

code is proportional to the complexity of the effect, we do

not use a single full-featured monad for all code; instead we

define custom monads for sub-effects and relate them using

monadic lifts. For instance, we define a READER monad for

https://github.com/FStarLang/FStar/tree/master/examples/rel

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

4 Grimm et al.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

computations that only read the store, lifting READER to

STATE only where necessary (§4.1 provides a detailed exam-

ple). While F
⋆
code is always written in an ML-like direct

style, the F
⋆
typechecker automatically inserts binds, returns

and lifts under the hood (Swamy et al. 2011).

2.2 Unary weakest preconditions for user-defined
effects and intrinsic proof

For each user-defined effect, F
⋆
derives a weakest precondi-

tion calculus for specifying unary properties and computing

verification conditions for programs using that effect (Ah-

man et al. 2017). Each effect definition induces a computation

type indexed by a predicate transformer describing that com-

putation’s effectful semantics.

For state, we obtain a computation type ‘STATE a wp’ in-
dexed by a result type a and by wp, a predicate transformer

of type (a→ heap→ Type)→ heap→ Type, mapping post-

conditions (relating the result and final state of the compu-

tation) to preconditions (predicates on the initial state). The

types of the get and put actions of STATE are specified as:

val get : unit→ STATE heap (λ post (h:heap)→ post h h)
val put : h':heap→ STATE unit (λ post (h:heap)→ post () h')

The type of get states that, in order to prove any postcondi-

tion post of ‘get ()’ evaluated in state h, it suffices to prove

post h h, whereas for put h' it suffices to prove post () h'. F⋆

users find it more convenient to index computations with

pre- and postconditions as in HTT (Nanevski et al. 2008), or

sometimes not at all, using the following abbreviations:

ST a (requires p) (ensures q) = STATE a (λ post h0→
p h0 ∧ (∀ (x:a) (h1:heap). q h0 x h1 =⇒ post x h1))

St a = ST a (requires (λ _→⊤)) (ensures (λ _ _ _→⊤))

F
⋆
computes weakest preconditions generically for any

effect. Intuitively, this works by putting the code into an ex-

plicit monadic form and then translating the binds, returns,

actions, and lifts from the expression level to the weakest pre-

condition level. This enables a convenient form of intrinsic
proof in F

⋆
, i.e., one annotates a term with a type capturing

properties of interest; F
⋆
computes a weakest precondition

for the term and compares it to the annotated type using a

built-in subsumption rule, checked by an SMT solver.

For example, the sum_up function from §1.1 can be given

the following type:

r:ref int→ lo:nat→ hi:nat{hi ≥ lo}→
ST unit (requires λh→ r ∈ h) (ensures λ_ _ h→ r ∈ h)

This is a dependent function type, for a functionwith three

arguments r, lo, and hi returning a terminating, stateful com-

putation. The refinement type hi:nat{hi ≥ lo} restricts hi to
only those natural numbers greater than or equal to lo. The
computation type of ‘sum_up r lo hi’ simply requires and en-

sures that its reference argument r is present in the memory.

F
⋆
computes a weakest precondition from the implementa-

tion of sum_up (using the types of (!) and (:=) provided by

the heap memory model used by STATE) and proves that

its inferred specification is subsumed by the user-provided

annotation. The same type can also be given to sum_dn.

2.3 Exposing effect definitions via reification
Intrinsic proofs of effectful programs in F

⋆
are inherently

restricted to unary properties. Notably, pre- and postcondi-

tions are required to be pure terms, making it impossible for

specifications to refer directly to effectful code, e.g., sum_up
cannot directly use itself or sum_dn in its specification. To

overcome this restriction, we need a way to coerce a termi-

nating effectful computation to its underlying monadic rep-

resentation which is a pure term—Filinski’s (1994) monadic

reification provides just that facility.

Each new effect in F
⋆
induces a reify operator that exposes

the representation of an effectful computation in terms of its

underlying monadic representation (Ahman et al. 2017). For

the STATE effect, F
⋆
provides the following (derived) rule for

reify, to coerce a stateful computation to a total, explicitly

state-passing function of type heap→ t ∗ heap. The argu-

ment and result types of reify e are refined to capture the

pre- and postconditions intrinsically proved for e .

S ; Γ ⊢ e : ST t (requires pre) (ensures post)

S ; Γ ⊢ reify e : h:heap{pre h}→ Tot (r:(t∗heap){post h (fst r) (snd r)})

The semantics of reify is to traverse the term and to grad-

ually expose the underlying monadic representation. We

illustrate this below for STATE, where the constructs on the

right-hand side of the rules are the pure implementations

of return, bind, put, and get as defined on page 3, but with

type arguments left implicit:

reify (return e) { STATE.return e
reify (bind x← e1 in e2) { STATE.bind (reify e1) (λx→ reify e2)

reify (get e) { STATE.get e
reify (put e) { STATE.put e

Armed with reify, we can write an extrinsic proof of a
lemma relating sum_up and sum_dn (discussed in detail

in §2.4), i.e., an “after the fact” proof that is separate from

the definition of sum_up and sum_dn and that relates their

reified executions. We further remark that in F
⋆
the standard

operational semantics of effectful computations is modeled

in terms of reification, so proving a property about a reified

computation is really the same as proving the property about

the evaluation of the computation itself.

The reify operator clearly breaks the abstraction of the

underlying monad and needs to be used with care. Ahman

et al. (2017) show that programs that do not use reify (or

its converse, reflect) can be compiled efficiently. Specifically,

if the computationally relevant part of a program is free of

reify then the STATE computations can be compiled using

primitive state with destructive updates.

Less frequently, we use reify’s dual, reflect, which packages a pure

function as an effectful computation.

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

A Monadic Framework for Relational Verification 5

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

To retain these benefits of abstraction, we rely on F
⋆
’s

module system to control how the abstraction-breaking reify
coercion can be used in client code. In particular, when ab-

straction violations cannot be tolerated, we use F
⋆
’s Ghost

effect (explained in §2.4) to mark reify as being usable only in
computationally irrelevant code, limiting the use of monadic

reification to specifications and proofs. This allows one to

use reification even though effects like state and exceptions

are implemented primitively in F
⋆
.

2.4 Extrinsic specification and proof, eased by
SMT-based automation

We now look at the proof relating sum_up and sum_dn in

detail, explaining along the way several F
⋆
-specific idioms

that we find essential to making our method work well.

Computational irrelevance (Ghost effect) The Ghost
effect is used to track a form of computational irrelevance.

Ghost t (requires pre) (ensures post) is the type of a pure

computation returning a value of type t satisfying post, pro-
vided pre is valid. However, this computation must be erased

before running the program, so it can only be used in speci-

fications and proofs.

Adding proof irrelevance (Lemma) F
⋆
provides two

closely related forms of proof irrelevance. First, a pure term

e:t can be given the refinement type x:t{ϕ} when it validates

the formula ϕ[e/x], although no proof of ϕ is materialized.

For example, borrowing the terminology of Nogin (2002), the

value () is a squashed proof of u:unit{0 ≤ 1}. Combining proof

and computation irrelevance, e : Ghost unit pre (λ()→ post)
is a squashed proof of pre→ post. This latter form is so com-

mon that we write it as Lemma (requires pre) (ensures post),
further abbreviated as Lemma post when pre is ⊤.
Proof relating sum_up and sum_dn Spelling out the

main lemma of §1.1, our goal is a value of the following type:

val equiv_sum_up_dn (r:ref int) (lo:int) (hi:int{hi ≥ lo}) (h:heap{r ∈ h})
: Lemma (v r (reify (sum_up r lo hi) h) == v r (reify (sum_dn r lo hi) h))

where v r (_, h) = h.[r] and h.[r] selects the contents of the
reference r from the heap h.

An attempt to give a trivial definition for equiv_sum_up_dn
that simply returns a unit value () fails, because the SMT

solver cannot automatically prove the strong postcondition

above. Instead our proof involves calling an auxiliary lemma

sum_up_dn_aux, proving a ternary relation:

val sum_up_dn_aux (r:ref int) (lo:int) (mid:int{mid ≥ lo})
(hi:int{hi ≥ mid}) (h:heap{r ∈ h})

: Lemma (v r (reify (sum_up r lo hi) h)
== v r (reify (sum_dn r lo mid) h)
+ v r (reify (sum_up r mid hi) h) − h.[r])

(decreases (mid − lo))
let equiv_sum_up_dn r lo hi h = sum_up_dn_aux r lo hi hi h

While the statement of equiv_sum_up_dn is different from

the statement of sum_up_dn_aux, the SMT-based automa-

tion fills in the gaps and accepts the proof sketch. In par-

ticular, the SMT solver figures out that sum_up r hi hi is a
no-op by looking at its reified definition. In other cases, the

user has to provide more interesting proof sketches that in-

clude not only calls to lemmas that the SMT solver cannot

automatically apply but also the cases of the proof and the

recursive structure. This is illustrated by the following proof:

let rec sum_up_dn_aux r lo mid hi h =

if lo , mid then (sum_up_dn_aux r lo (mid − 1) hi h;
sum_up_commute r mid hi (mid − 1) h;
sum_dn_commute r lo (mid − 1) (mid − 1) h)

This proof is by induction on the difference betweenmid and
lo (as illustrated by the decreases clause of the lemma, this

is needed because we are working with potentially-negative

integers). If this difference is zero, then the property is trivial

since the SMT solver can figure out that sum_dn r lo lo is a

no-op. Otherwise, we call sum_up_dn_aux recursively for

mid − 1 as well as two further commutation lemmas (not

shown) about sum_up and sum_dn and the SMT automation

can take care of the rest.

Encoding computations to SMT So how did F
⋆
figure

out automatically that sum_up r hi hi and sum_dn r lo lo are
no-ops? For a start the F

⋆
normalizer applied the semantics of

reify sketched in §2.3 to partially evaluate the term and reveal

the monadic representation of the STATE effect by traversing

the term and unfolding the monadic definitions of return,

bind, actions and lifts. In the case of reify (sum_up r hi hi) h,
for instance, reduction intuitively proceeds as follows:

reify (sum_up r hi hi) h
{ reify (if hi , hi then (r := !r + lo; sum_up r (lo + 1) hi)) h
{∗ if hi , hi then (STATE.bind (reify (Ref.read r) h) (λ x→

STATE.bind (reify (Ref.upd r (x + lo))) (λ _→
reified_sum_up r (hi + 1) hi))) h

else STATE.return () h
{∗ if hi , hi then let x, h' = reify (Ref.read r) h in

let _, h'' = reify (Ref.upd r (x + lo)) h' in
reified_sum_up r (hi + 1) hi h''

else ((), h)

What is left is pure monadic code that F
⋆
then encodes to

the SMT solver in a way that allows it to reason by computa-

tion (Aguirre et al. 2016). In the case of reify (sum_up r hi hi) h
the SMT solver can trivially show that hi , hi is false and
thus the computation returns the pair ((), h).
While our work did not require any extension to F

⋆
’s

theory (Ahman et al. 2017), we significantly improved F
⋆
’s

logical encoding to perform normalization of open terms

based on the semantics of reify (a kind of symbolic execution)

before calling the SMT solver. This allowed us to scale and

validate the theory of Ahman et al. (2017) from a single 2-

line example to the ≈5,300 lines of relationally verified code

presented in this paper.

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

6 Grimm et al.

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

Subject Section 1st run (ms) Replay (ms) Loc

Loops 1.1 79757 2085 143

Reorderings 3.1 3857 2169 193

Benton (2004) 3.2 98072 62264 1504

Static IFC 4.1 44832 7672 917

Hybrid IFC 4.2 37826 1315 55

Declassification 4.3 15064 3463 257

Memoization 5.1 8583 7210 719

Union-find 5.2 46725 12367 332

Cryptography A 8234 7396 627

IFC Monitor D 22118 6726 611

Total 365068 112667 5358

Table 1. Code size (lines of code without comments) and

proof-checking time (ms) for our examples.

2.5 Empirical evaluation of our methodology
For this first example, we reasoned directly about the se-

mantics of two effectful terms to prove their equivalence.

However, we often prefer more structured reasoning princi-

ples to prove or enforce relational properties, e.g., by using

program logics, syntax-directed type systems, or even dy-

namic analyses. In the rest of this paper, we show through

several case studies, that these approaches can be accommo-

dated, and even composed, within our framework.

Table 1 summarizes the empirical evaluation from these

case studies. Each row describes a specific case study, its size

in lines of source code, and the verification time using F
⋆
and

the Z3-4.5.1 SMT solver. The verification timeswere collected

on an Intel Xeon E5-1650 at 3.5 GHz and 16GB of RAM. The

“1st run” column indicates the time it takes F
⋆
and Z3 to find a

proof. This proof is then used to generate hints (unsat cores)

that can be used as a starting point to verify subsequent

versions of the program. The “replay” column indicates the

time it takes to verify the program given the hints recorded

in the first run. Proof replay is usually significantly faster,

indicating that although finding a proof may initially be quite

expensive, revising a proof with hints is fast, which greatly

aids interactive proof development.

3 Correctness of program transformations
Several researchers have devised custom program logics for

verifying transformations of imperative programs (Barthe

et al. 2009; Benton 2004; Carbin et al. 2012). We show how

to derive similar rules justifying the correctness of generic

program transformations within our monadic framework.

We focus on stateful programs with a fixed-domain, finite

memory. We leave proving transformations of commands

that dynamically allocate memory to future work.

3.1 Generic transformations based on read- and
write-footprints

Here and in the next subsection, we represent a command c
as a function of type unit→ St unit that may read or write

arbitrary references in memory.

type command = unit→ St unit

In trying to validate transformations of commands, it is tra-

ditional to employ an effect system to delimit the parts of

memory that a command may read or write. Most effect

systems are unary, syntactic analyses. For example, consider

the classic frame rule from separation logic:

{P}c{Q} ⇒ {P ∗ R}c{Q ∗ R}
The command c requires ownership of a subset of the heap

P in order to execute, then returns ownership of Q to its

caller. Any distinct heap fragment R remains unaffected by

the function. Reading this rule as an effect analysis, one

may conclude that c may read or write the P-fragment of

memory—however, this is just an approximation of c’s ex-
tensional behavior. Benton et al. (2006) observe that a more

precise, semantic characterization of effects arises from a

relational perspective. Adopting this perspective, one can

define the footprint of a command extensionally, using two

unary properties and one binary property.

Capturing a command’s write effect is easy with a unary

property, ‘writes c ws’ stating that the initial and final heaps
agree on the contents of their references, except those in ws.

type addrs = S.set addr
let writes (c:command) (ws:addrs) = ∀(h:heap).
let h' = snd (reify (c ()) h) in
(∀ r. r ∈ h⇐⇒ r ∈ h') ∧ (∗ no allocation ∗)
(∀ r. addr_of r < ws =⇒ h.[r] == h'.[r]) (∗ only refs in ws changed ∗)

Stating that a command only reads references rs is similar

in spirit to noninterference (§4.1). Interestingly, it is impos-

sible to describe the set of locations that a command may

read without also speaking about the locations it may write.

The relation ‘reads c rs ws’ states that if c writes at most the

references in ws, then executing c in heaps that agree on the

references in rs produces heaps that agree on ws, i.e., c does
not depend on references outside rs.

let equiv_on (rs:addr_set) (h0:heap) (h1:heap) =
∀a (r:ref a). addr_of r ∈ rs ∧ r ∈ h0 ∧ r ∈ h1 =⇒ h0.[r] == h1.[r]
let reads (c:command) (rs ws:addrs) = ∀(h0 h1: heap).
let h'0, h'1 = snd (reify (c ()) h0), snd (reify (c ()) h1) in
(equiv_on rs h0 h1 ∧ writes c ws) =⇒ equiv_on ws h'0 h'1

Putting the pieces together, we define a read- and write-

footprint-indexed type for commands:

type cmd (rs ws:addrs) = c:command{writes c ws ∧ reads c rs ws}

One can also define combinators to manipulate footprint-

indexed commands. For example, here is a ‘>>’ combinator

for sequential composition. Its type proves that read and

write-footprints compose by a pointwise union, a higher-

order relational property; the proof requires an (omitted)

auxiliary lemma seq_lem (recall that variables preceded by

a # are implicit arguments):

let seq (#r1 #w1 #r2 #w2 : addrs) (c1:cmd r1 w1) (c2:cmd r2 w2) :
command = c1(); c2()

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

A Monadic Framework for Relational Verification 7

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

let (>>) #r1 #w1 #r2 #w2 (c1:cmd r1 w1) (c2:cmd r2 w2) :
cmd (r1 ∪ r2) (w1 ∪ w2) = seq_lem c1 c2; seq c1 c2

Making use of relational footprints, we can prove other

relations between commands, e.g., equivalences that jus-

tify program transformations. Command equivalence c0 ∼ c1
states that running c0 and c1 in identical initial heaps pro-

duces (extensionally) equal final heaps.

let (∼) (c0:command) (c1:command) = ∀h.
let h0, h1 = snd (reify (c0 ()) h), snd (reify (c1 ()) h) in
∀(r:ref α). (r ∈ h0⇐⇒ r ∈ h1) ∧ (r ∈ h0 =⇒ h0.[r] == h1.[r])

For instance, we can prove that two commands can be

swapped if theywrite to disjoint sets, and if the read footprint

of one does not overlap with the write footprint of the other—

this lemma is identical to a rule for swapping commands in

a logic presented by Barthe et al. (2009).

let swap #rs1 #rs2 #ws1 #ws2 (c1:cmd rs1 ws1) (c2:cmd rs2 ws2)
:Lemma (requires (disjoint ws1 ws2 ∧ disjoint rs1 ws2 ∧

disjoint rs2 ws1))
(ensures ((c1 >> c2) ∼ (c2 >> c1)))

= ∀_intro (λ h→ let _ = reify (c1 ()) h, reify (c2 ()) h in
() <: Lemma (equiv_on_h (c1 >> c2) (c2 >> c1) h))

In Appendix B we verify two other common command-

transformations based on similar equivalences flavor: idem-

potence of commands and elimination of redundant writes.

3.2 Relational Hoare Logic
Beyond generic footprint-based transformations, one may

also prove program-specific equivalences. Several logics have

been devised for this, including, e.g., Benton’s (2004) Rela-

tional Hoare logic (RHL). We show how to derive RHLwithin

our framework by proving the soundness of each of its rules

as lemmas about a program’s reification.

Model To support potentially diverging computations, we

instrument shallowly-embedded effectful computations with

a fuel argument, where the value of the fuel is irrelevant for

the behavior of a terminating computation.

type computation = f: (fuel:nat→ St bool)
{ ∀h fuel fuel' . fst (reify (f fuel) h) == true ∧ fuel' > fuel
=⇒ reify (f fuel') h == reify (f fuel) h }

let terminates_on c h = ∃fuel . fst (reify (c fuel) h) == true

We model effectful expressions whose evaluation always

terminates and does not change the memory state, and as-

signments, conditionals, sequences of computations, and

potentially diverging while loops.

Deriving RHL An RHL judgement ‘related c1 c2 pre post’
(where c1, c2 are effectful computations, and pre, post are
relations over memory states) means that the executions of

c1, c2 starting in memories h1, h2 related by pre, both diverge
or both terminate with memories h1', h2' related by post.

let related (c1 c2 : computation) (pre post: (heap→ heap→ prop)) =
(∗ if precondition holds on initial memory states, then ∗)

∀h1 h2 . pre h1 h2 =⇒
(∗ c1 and c2 both terminate or both diverge, and ∗)
((c1 `terminates_on` h1⇐⇒ c2 `terminates_on` h2) ∧
(∀ fuel h1' h2' . (reify (c1 fuel) h1 == (true, h1') ∧
reify (c2 fuel) h2 == (true, h2')) =⇒ (∗ if both terminate, ∗)
post h1' h2')) (∗ then postcondition holds on final memory states ∗)

From these reification-based definitions, we prove every

rule of RHL. Of the 20 rules and equations of RHL presented

by Benton (2004), 16 need at most 5 lines of proof annotation

each, among which 10 need none and are proven automati-

cally. Rules related to while loops often require some manual

induction on the fuel.

With RHL in hand, we can prove program equivalences

applying syntax-directed rules, focusing the intellectual ef-

fort on finding and proving inductive invariants to relate

loop bodies. When RHL is not powerful enough, we can

escape back to the reification of commands to complete a

direct proof in terms of the operational semantics. In Ap-

pendix C we provide a detailed sketch of a program-specific

equivalence built using our embedding of RHL in F
⋆
.

4 Information-flow control
In this section, we present a case study examining various

styles of information-flow control (IFC), a security paradigm

based on noninterference (Goguen and Meseguer 1982), a

property that compares two runs of a program differing

only in the program’s secret inputs and requires the non-

secret outputs to be equal. Many special-purpose systems,

including syntax-directed type systems, have been devised

to enforce noninterference-like security properties (see, e.g.,

Hedin and Sabelfeld 2012; Sabelfeld and Myers 2006).

We start our IFC case study by encoding a classic IFC type

system (Volpano et al. 1996) for a small deeply-embedded im-

perative language and proving its correctness (§4.1). In order

to augment the permissiveness of our analysis we then show

how to compose our IFC type system with precise semantic

proofs (§4.2). As IFC is often too strong for practical use, the

final step in our IFC case study is a semantic treatment of

declassification based on delimited release (Sabelfeld and

Myers 2003b) (§4.3). An additional case study on a runtime

monitor for IFC is presented in Appendix D. We conclude

that our method for relational verification is flexible enough

to accommodate various IFC disciplines, allowing compar-

isons and compositions within the same framework.

4.1 Deriving an IFC type system
Consider the following small while language consisting of
expressions, which may only read from the heap, but not

modify it, and commands, which may write to the heap

and branch, depending on its contents. The definition of the

language should be unsurprising, the only subtlety worth

noting is the decr expression in the while command, a metric

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

8 Grimm et al.

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

CSub

Γ, pc : l1 ⊢ c l2 ≤ l1

Γ, pc : l2 ⊢ c

CAssign

Γ ⊢ e : Γ (r)
Γ, pc : Γ (r) ⊢ r := e

CCond

Γ ⊢ e : l Γ, pc : l ⊢ c1 Γ, pc : l ⊢ c2
Γ, pc : l ⊢ if e = 0 then c1 else c2

Figure 1. A classic IFC type system (selected rules)

used to ensure loop termination.

e ::= i | r | e1 ⊕ e2
c ::= skip | r := e | c1; c2 | if e = 0 then c1 else c2

| while e , 0 do c (decr e ′)

A classic IFC type system Volpano et al. (1996) devise an

IFC type system to check that programs executing over a

memory containing both secrets (stored in memory loca-

tions labeled High) and non-secrets (in locations labeled

Low) never leak secrets into non-secret locations. The type

system includes two judgments Γ ⊢ e : l , which states that

the expression e (with free variables in Γ) depends only on

locations labeled l or lower; and Γ, pc : l ⊢ c , which states

that a command c in a context that is control-dependent on
the contents of memory locations labeled l , does not leak
secrets. Some selected rules of their system, as adapted to

our example language, are shown in Figure 1.

Multiple effects to structure the while interpreter We

deeply embed the syntax of while in F
⋆
using data types

exp and com, for expressions and commands, respectively.

The expression interpreter interp_exp only requires reading

the value of the variables from the store, whereas the com-

mand interpreter, interp_com, also requires writes to the

store, where store is an integer store mapping a fixed set of

integer references ‘ref int’ to int. Additionally, interp_com
may also raise anOut_of_fuel exception when it detects that

a loop may not terminate (e.g., because the claimed metric is

not actually decreasing). We could define both interpreters

using a single effect, but this would require us to prove that

interp_exp does not change the store and does not raise ex-

ceptions. Avoiding the needless proof overhead, we use a

Reader monad for interp_exp and StExn, a combined state

and exceptions monad, for interp_com. By defining Reader
as a sub_effect of StExn, expression interpretation is trans-

parently lifted by F
⋆
to the larger effect when interpreting

commands. Using these effects, interp_exp and interp_com
form a standard, recursive, definitional interpreter for while,
with the following trivial signatures.

val interp_exp: exp→Reader int
val interp_com: com→ StExn unit

Deriving IFC typing for expressions For starters, we use

a store_labeling = ref int→ label, where label ∈ {High, Low},
to partition the store between secrets (High) and non-secrets
(Low). An expression is noninterferent at level l when its

interpretation does not depend on locations labeled greater

than l in the store. To formalize this, we define a notion of

low-equivalence on stores, relating stores that agree on the

contents of all Low-labeled references, and noninterferent

expressions (at level Low, i.e., ni_exp env e Low) as those
whose interpretation is identical in low-equivalent stores.

type low_equiv (env:store_labeling) (s0 s1:store) =
∀(r:ref int). env x=Low =⇒ s0.[r] == s1.[r]

let ni_exp (env:store_labeling) (e:exp) (l:label) =
∀(s0 s1:store). (low_equiv env s0 s1 ∧ l == Low) =⇒
reify (interp_exp e) s0 == reify (interp_exp e) s1

With this definition of noninterference for expressions we

capture the semantic interpretation of the typing judgment

Γ ⊢ e : l : if the expression e can be assigned the label Low,
then the computation of e is only influenced by Low values.

Deriving IFC typing for commands As explained previ-

ously, the judgment Γ, pc : l ⊢ c deems c noninterferent when
run in context control-dependent only on locations whose

label is at most l . More explicitly, the judgment establishes

the following two properties: (1) locations labeled below l
are not modified by c—this is captured by no_write_down,
a unary property; (2) the command c does not leak the con-

tents of a High location to Low location—this is captured by

ni_com', a binary property.

let run c s = match reify (interp_com c) s with
| Inr Out_of_fuel, _→ Loops | _, s'→Returns s'

let no_write_down env c l s = match run c s with
| Loops→⊤| Returns s'→∀(i:id). env i < l =⇒ s'.[i] == s.[i]

let ni_com' env c l s0 s1 = match run c s0, run c s1 with
| Returns s0', Returns s1'→ low_equiv env s0 s1 =⇒

low_equiv env s0' s1'
| Loops, _ | _, Loops→⊤

The type system is termination-insensitive, meaning that

a program may diverge depending on the value of a secret.

Consider, for instance, two runs of the program while hi
<> 0 do {skip}; lo := 0, one with hi = 0 and another

with hi = 1. The first run terminates and writes to lo; the
second run loops forever. As such, we do not expect to prove

noninterference in case the program loops. Putting the pieces

together, we define Γ, pc : l ⊢ c to be ni_com Γ c l .

let ni_com (env:store_labeling) (c:com) (l:label) =
(∀ s0 s1. ni_com' env c l s0 s1) ∧ (∀ s. no_write_down env c l s)

As in the case of expression typing, we derive each rule

of the command-typing judgment as a lemma about ni_com.

For example, here is the statement for the CCond rule:

val cond_com (env:store_labeling) (e:exp) (ct:com) (cf:com) (l:label)
: Lemma (requires (ni_exp env e l ∧ ni_com env ct l ∧ ni_com env cf l))

(ensures (ni_com env (If e ct cf) l))

The proofs of many of these rules are partially automated

by SMT—they take about 250 lines of specification and proof

in F
⋆
. Once proven, we use these rules to build a certified,

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

A Monadic Framework for Relational Verification 9

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

syntax-directed typechecker for while programs that repeat-

edly applies these lemmas to prove that a program satisfies

ni_com. This typechecker has the following type:

val tc_com : env:store_labeling→ c:com→
Exn label (requires ⊤) (ensures λInl l→ ni_com env c l | _→⊤)

4.2 Combining syntactic IFC analysis with semantic
noninterference proofs

Building on §4.1, we show how programs that fall outside the

syntactic information-flow typing discipline can be proven

secure using a combination of typechecking and semantic

proofs of noninterference. This example is evocative (though

at a smaller scale) of the work of Küsters et al. (2015), who

combine automated information-flow analysis in the Joana

analyzer (Hammer and Snelting 2009) with semantic proofs

in the KeY verifier for Java programs (Darvas et al. 2005;

Scheben and Schmitt 2011). In contrast, we sketch a combina-

tion of syntactic and semantic proofs of relational properties

in a single framework. Consider the followingwhile program,

where the label of c and lo is Low and the label of hi is High.

while c ,0 do hi := lo + 1; lo := hi + 1; c := c − 1 (decr c)

The assignment lo := hi + 1 is ill-typed in the type system

of §4.1, since it directly assigns a High expression to a Low
location. However, the previous command overwrites hi so
that hi does not contain a High value anymore at that point.

As such, even though the IFC type system cannot prove it, the

program is actually noninterferent. To prove it, one could

directly attempt to prove ni_com for the entire program,

which would require a strong enough (relational) invariant

for the loop. A simpler approach is to prove just the sub-

program hi := lo + 1; lo := hi + 1 (c_s) noninterferent, while
relying on the type system for the rest of the program. The

sub-program can be automatically proven secure:

let c_s_ni () : Lemma (ni_com env c_s Low) = ()

This lemma has exactly the form of the other standard, typ-

ing rules proven previously, except it is specialized to the

command in question. As such, c_s_ni can just be used in

place of the standard sequence-typing rule (CSeq) when

proving the while loop noninterferent.

We can even modify our automatic typechecker from §4.1

to take as input a list of commands that are already proved

noninterferent (by whichever means), and simply look up

the command it tries to typecheck in the list before trying to

typecheck it syntactically. The type (and omitted implemen-

tation) of this typechecker is very similar to that of tc_com,

the only difference is the extra list argument:

val tc_com_hybrid : env:store_labeling→ c:com→
list (cl:(com∗label){ni_com env (fst cl) (snd cl)})→
Exn label (ensures λol→ Inl? ol =⇒ ni_com env c (Inl?.v ol))

We can complete the noninterference proof automatically

by passing the (c_s, Low) pair proved in ni_com by lemma

c_s_ni (or directly by SMT) to this hybrid IFC typechecker:

let c_loop_ni () : Lemma (ensures ni_com env c_loop Low) =
c_s_ni(); ignore (reify (tc_com_hybrid env c_loop [c_s, Low]) ())

Checking this in F
⋆
works by simply evaluating the invoca-

tion of tc_com_hybrid; this reduces fully to Inl Low and the

intrinsic type of tc_com_hybrid ensures the postcondition.

4.3 Semantic declassification
Beyond noninterference, reasoning directly about relational

properties allows us to characterize various forms of declas-
sificationwhere programs intentionally reveal some informa-

tion about secrets. For example, Sabelfeld and Myers (2003b)

propose delimited release, a discipline in which programs are

allowed to reveal the value of only certain pure expressions.

In a simple example by Sabelfeld and Myers some amount

of money (k) is transferred from one account (hi) to another

(lo). Simply by observing whether or not the funds are re-

ceived, the owner of the lo account gains some information

about the other account, namely whether or not hi contained
at least k units of currency—this is, however, by design.

let transfer (k:int) (hi:ref int) (lo:ref int) =
if k < !hi then (hi := !hi − k; lo := !lo + k)

To characterize this kind of intentional release of infor-

mation, delimited release describes two runs of a program

in initial states where the secrets, instead of being arbitrary,

are related in some manner, e.g., the initial states agree on

the value of the term being explicitly declassified. This is

easily captured in our setting. For example, we can prove

the following lemma for transfer, which shows that lo gains

no more information than intended.

let transfer_ok (k:int) (hi lo:ref int{addr_of lo ,addr_of hi})
(s0 s1:heap{lo ∈ s0 ∧ hi ∈ s0 ∧ lo ∈ s1 ∧ hi ∈ s1}) : Lemma

(∗ initial memories agree on lo and on the declassified term ∗)
(requires (s0.[lo] == s1.[lo] ∧ (k < s0.[hi]⇐⇒ k < s1.[hi])))
(ensures ((snd (reify (transfer k hi lo) s0)).[lo] ==

(snd (reify (transfer k hi lo) s1)).[lo])) = ()

Delimited release was about the what dimension of declas-

sification (Sabelfeld and Sands 2009). We also built a very

simple model that is targeted at the when dimension, illus-

trating a customization of the monadic model to the target

relational property. For instance, to track when information

is declassified, we augment the state with a bit recording

whether the secret component of the state was declassified

and is thus allowed to be leaked.

type ifc_state = { secret:int; public:int; release:bool }
new_effect STATE_IFC = STATE_h ifc_state

In this case the noninterference property depends on the

extra instrumentation bit we added to the state.

let ni (f:unit→ St unit) =
∀s0 s1. let (_, s0'), (_, s1') = reify (f ()) s0, reify (f ()) s1 in
s0'.release ∨ s1'.release ∨ (low_equiv s0 s1 =⇒ low_equiv s0' s1')

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

10 Grimm et al.

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

5 Program optimizations and refinement
This section presents two complete examples to prove a

few, classic algorithmic optimizations correct. These prop-

erties are very specific to their application domains and a

special-purpose relational logic would probably not be suit-

able. Instead, we make use of the generality of our approach

to prove application-specific relational properties (including

4- and 6-ary relations) of higher-order programs with local

state. In contrast, most prior relational logics are specialized

to proving binary relations, or, at best, properties of n runs

of a single first-order program (Sousa and Dillig 2016).

5.1 Effect for memoizing recursive functions
First, we look at memoizing total functions, including mem-

oizing a function’s recursive calls based on a partiality rep-

resentation technique due to McBride (2015). We prove that

a memoized function is extensionally equal to the original.

We define a custom effect Memo for this task. Memo is

a state monad where the state consists of a (partial, finite)

mapping from the domain type of the functions (dom) to

their codomain type (codom). This effect has two actions:

• get : dom→Memo (option codom), which returns a

memoized value if it exists; and

• put : dom→ codom→Memo unit, which adds a new
memoization pair to the state.

Take 1: Memoizing total functions Our goal is to turn a

total function g into a memoized function f computing the

same values as g. This relation between f’s reification and g
is captured by the computes predicate below, depending on

an invariant of the memoization state, valid_memo. A mem-

oization state h is valid for memoizing some total function

g : (dom→ codom) when h is a subset of the graph of g:

let valid_memo (h:memo_st) (g:dom→ codom) =

for_all_prop (λ (x,y)→ y == g x) h
let computes (f: dom→Memo codom) (g:dom→ codom) =

∀h0. valid_memo h0 g =⇒ (∀ x. (let y, h1 = reify (f x) h0 in
y == g x ∧ valid_memo h1 g))

We have f `computes`g when given any state h0 containing
a subgraph of g, f x returns g x and maintains the invariant

that the result state h1 is a subgraph of g. It is easy to program
and verify a simple memoizing function:

let memoize (g : dom→ codom) (x:dom) =

match get x with Some y→ y | None→ let y = g x in put x y; y
let memoize_computes g :Lemma ((memoize g) `computes` g) = ...

The proof of this lemma is straightforward: we only need to

show that the value y we get back from the heap in the first

branch is indeed g x which is enforced by the valid_memo
in the precondition of computes.

This abstract model could be implemented efficiently, for instance by an

imperative hash-table with a specific memory-management policy.

Take 2: Memoizing recursive calls Now, what if we want

tomemoize a recursive function, for example, a function com-

puting the Fibonacci sequence? We also want to memoize

the intermediate recursive calls, and in order to achieve it,

we need an explicit representation of the recursive structure

of the function. Following McBride (2015), we represent

this by a function x:dom→ partial_result x, where a partial
result is either a finished computation of type codom or a

request for a recursive call together with a continuation.

type partial_result (x0:dom) =

| Done : codom→ partial_result x0
| Need : x:dom{x ≺ x0}→ cont:(codom→ partial_result x0)→

partial_result x0

As we define the fixed point using Need x f, we crucially

require x ≺ x0, meaning that the value of the function is

requested at a point x where function’s definition already

exists. For example encoding Fibonacci amounts to the fol-

lowing code where the 2 recursive calls in the second branch

have been replaced by applications of the Need constructor:

let fib_skel (x:dom) : partial_result x =
if x ≤ 1 then Done 1 else
Need (x − 1) (λ y1→Need (x − 2) (λ y2→Done (y1 + y2)))

We define the fixpoint of such a function representation f:

let rec fixp (f: x:dom→ partial_result x) (x0:dom) : codom =

let rec complete_fixp x = function
| Done y→ y
| Need x' cont→ let y = fixp f x' in complete_fixp x (cont y)

in complete_fixp x0 (f x0)

To obtain a memoized fixpoint, we need to memoize func-

tions defined only on part of the domain, x:dom{p x}.

let partial_memoize (p:dom→ Type)
(f : x:dom{p x}→Memo codom) (x:dom{p x}) =
match get x with Some y→ y | None→ let y = g x in put x y; y

let rec memoize_rec (f: x:dom→ partial_result x) (x0:dom) =

let rec complete_memo_rec x :Memo codom = function
| Done y→ y
| Need x' cont→
let y = partial_memoize (λ y→ y ≺ x) (memoize_rec f) x' in
complete_memo_rec (cont y)

in complete_memo_rec x0 (f x0)

It is relatively easy to prove by structural induction on the

code of memoize_rec that, for any skeleton of a recursive

function f, we have that (memoize_rec f) `computes`(fixp f).
The harder part is proving that fixp fib_skel is extension-
ally equal to fibonacci, the natural recursive definition of the

Fibonacci sequence, since these two functions are not syntac-

tically similar—but at least this proof involves reasoning only

about pure functions. The good news is that having already

proven that memoize_rec fib_skel computes fixp fib_skel,
we gain a proof of the equivalence of memoize_rec fib_skel
to fibonacci by transitivity.

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

A Monadic Framework for Relational Verification 11

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

5.2 Stepwise refinement and n-ary relations:
Union-find with two optimizations

In this section, we prove several classic optimizations of a

union-find data structure introduced in several stages, each

a refinement. For each refinement step, we employ relational

verification to prove that the refinement preserves the canon-

ical structure of union-find. We specify correctness using, in

some cases, 4- and 6-ary relations, which are easily manipu-

lated in our monadic framework.

Basic union-find implementation A union-find data

structure maintains disjoint partitions of a set, such that

each element belongs to exactly one of the partitions. The

data structure supports two operations: find, that identifies
to which partition an element belongs, and union, that takes
as input two elements and combines their partitions.

An efficient way to implement the union-find data struc-

ture is as a forest of disjoint trees, one tree for each partition,

where each node maintains its parent and the root of each

tree is the designated representative of its partition. The find

operation returns the root of a given element’s partition (by

traversing the parent links), and the union operation simply

points one of the roots to the other.

We represent a union-find of set [0, n − 1] as the type

‘uf_forest n’ (below), a sequence of ref cells, where the ith

element in the sequence is the ith set element, containing its

parent and the list of all the nodes in the subtree rooted at

that node. The list is computationally irrelevant (i.e., erased)—
we only use it to express the disjointness invariant and the

termination metric for recursive functions (e.g. find).

type elt (n:N) = i:N{i < n} × erased (list N)
type uf_forest (n:N) = s:seq (ref (elt n)){length s = n}

The basic find and union operations are shown below,

where set and get are stateful functions that read and write

the ith index in the uf sequence. Reasoning about mutable

pointer structures requires maintaining invariants regarding

the liveness and separation of the memory referenced by

the pointers. While important, these are orthogonal to the

relational refinement proofs—so we elide them here, but still

prove them intrinsically in our code.

let rec find #n uf i = let p, _ = get uf i in if p = i then i else find uf p
let union #n uf i1 i2 = let r1, r2 = find uf i1, find uf i2 in

let _, s1 = get uf r1 in let _, s2 = get uf r2 in
if r1 ,r2 then (set uf r1 (r2, s1); set uf r2 (r2, union s1 s2))

Union by rank The first optimization we consider is

union_by_rank, which decides whether to merge r1 into r2,
or vice versa, depending on the heights of each tree, aiming

to keep the trees shallow. We prove this optimization in two

steps, first refining the representation of elements by adding

a rank field to elt n and then proving that union_by_rank
maintains the same set partitioning as union.

type elt (n:N) = i:N{i < n} × N × erased (list nat) (∗ added a rank ∗)

We formally reason about the refinement by proving that

the outputs of the find and union functions do not depend on

the newly added rank field. The rank_independence lemma

(a 4-ary relation) states that find and unionwhen run on two

heaps that differ only on the rank field, output equal results

and the resulting heaps also differ only on the rank field.

let equal_but_rank uf h1 h2 = ∀ i. parent uf i h1 = parent uf i h2
∧ subtree uf i h1 = subtree uf i h2

let rank_independence #n uf i i1 i2 h1 h2 : Lemma
(requires (equal_but_rank uf h1 h2))
(ensures (let (r1,f1), (r2,f2) = reify (find uf i) h1,reify (find uf i) h2 in
let (_,u1), (_,u2) = reify (union uf i1 i2) h1,reify (union uf i1 i2) h2 in
r1 == r2 ∧ equal_but_rank uf f1 f2 ∧ equal_but_rank uf u1 u2))

Next, we want to prove the union_by_rank refinement

sound. Suppose we run union on a heap h producing h1; and
suppose we run union_by_rank in h producing h2. Clearly,
we cannot prove that find for a node j returns the same result

in h1 and h2. But we prove that the canonical structure of the
forest is the same in h1 and h2, by showing that two nodes

are in the same partition in h1 if and only if they are in the

same partition in h2:

val union_by_rank_refinement #n uf i1 i2 h j1 j2 : Lemma
(let (_, h1), (_, h2) =
reify (union uf i1 i2) h, reify (union_by_rank uf i1 i2) h in
fst (reify (find uf j1) h1) == fst (reify (find uf j2) h1)⇐⇒
fst (reify (find uf j1) h2) == fst (reify (find uf j2) h2))

This property is 6-ary relation, relating 1 run of union
and 1 run of union_by_rank to 4 runs of find—its proof is a
relatively straightforward case analysis.

Path compression Finally, we consider find_compress,
which, in addition to returning the root for an element, sets

the root as the new parent of the element to accelerate sub-

sequent find queries. To prove the refinement of find to

find_compress sound, we prove a 4-ary relation showing

that if running find on a heap h results in the heap h1, and
running find_compress on h results in the heap h2, then the

partition of a node j is same in h1 and h2. This also implies

that find_compress retains the canonical structure of the

union-find forest.

val find_compress_refinement #n uf i h j
: Lemma (let (r1, h1), (r2, h2) =
reify (find uf i) h, reify (find_compress uf i) h in
r1 == r2 ∧ fst (reify (find uf j) h1) == fst (reify (find uf j) h2))

6 Related work
Much of the prior related work focused on checking specific

relational properties of programs, or general relational prop-

erties using special-purpose logics. In contrast, we argue

that proof assistants that support reasoning about pure and

effectful programs can, using our methodology, model and

verify relational properties in a generic way. The specific

incarnation of our methodology in F
⋆
exploits its efficient

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

12 Grimm et al.

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

implementation of effects enabled by abstraction and con-

trolled reification; a unary weakest precondition calculus

as a base for relational proofs; SMT-based automation; and

the convenience of writing effectful code in direct style with

returns, binds, and lifts automatically inserted.

Static IFC tools Sabelfeld and Myers (2003a) survey a

number of IFC type systems and static analyses for show-

ing noninterference, trading completeness for automation.

More recent verification techniques for IFC aim for better

completeness (Amtoft and Banerjee 2004; Amtoft et al. 2012;

Banerjee et al. 2016; Barthe et al. 2014; Beringer and Hof-

mann 2007; Nanevski et al. 2013; Rabe 2016; Scheben and

Schmitt 2011), while compromising automation. The two

approaches can be combined, as discussed in in §4.2.

Relational program logics and type systems A variety

of program logics for reasoning about general relational prop-

erties have been proposed previously (Aguirre et al. 2017;

Barthe et al. 2009; Benton 2004; Yang 2007), while others

apply general relational logics to specific domains, including

access control (Nanevski et al. 2013), cryptography (Barthe

et al. 2009, 2012, 2013a; Petcher and Morrisett 2015), differ-

ential privacy (Barthe et al. 2013b; Zhang and Kifer 2017),

mechanism design (Barthe et al. 2015), cost analysis (Çiçek

et al. 2017), program approximations (Carbin et al. 2012).

RF
⋆
, is worth pointing out for its connection to F

⋆
. Barthe

et al.’s (2014) extend a prior, value-dependent version of

F
⋆
(Swamy et al. 2013) with a probabilistic semantics and

a type system that combines pRHL with refinement types.

Like many other relational Hoare logics, RF
⋆
provided an

incomplete set of rules aimed at capturing many relational

properties by intrinsic typing only.

In this paper we instead provide a versatile generic method

for relational verification based on modeling effectful com-

putations using monads and proving relational properties

on their monadic representations, making the most of the

support for full dependent types and SMT-based automation

in the latest version of F
⋆
. This generic method can both be

used directly to verify programs or as a base for encoding

specialized relational program logics.

Product program constructions Product program con-

structions and self-composition are techniques aimed at re-

ducing the verification of k-safety properties (Clarkson and

Schneider 2010) to the verification of traditional (unary)

safety proprieties of a product program that emulates the

behavior of multiple input programs. Multiple such construc-

tions have been proposed (Barthe et al. 2016) targeted for

instance at secure IFC (Barthe et al. 2011; Naumann 2006; Ter-

auchi and Aiken 2005; Yasuoka and Terauchi 2014), program

equivalence for compiler validation (Zaks and Pnueli 2008),

equivalence checking and computing semantic differences

(Lahiri et al. 2012), program approximation (He et al. 2016).

Sousa and Dillig’s (2016) recent Descartes tool for k-safety

properties also creates k copies of the program, but uses

lockstep reasoning to improve performance by more tightly

coupling the key invariants across the program copies. Re-

cently Antonopoulos et al. (2017) propose a tool that obtains

better scalability by using a new decomposition of programs

instead of using self-composition for k-safety problems.

Other program equivalence techniques Beyond the ones

already mentioned above, many other techniques targeted

at program equivalence have been proposed; we briefly re-

view several recent works: Benton et al. (2009) do manual

proofs of correctness of compiler optimizations using par-

tial equivalence relations. Kundu et al. (2009) do automatic

translation validation of compiler optimizations by checking

equivalence of partially specified programs that can rep-

resent multiple concrete programs. Godlin and Strichman

(2010) propose proof rules for proving the equivalence of

recursive procedures. Lucanu and Rusu (2015) and Ştefan

Ciobâcă et al. (2016) generalize this to a set of co-inductive

equivalence proof rules that are language-independent. Auto-

matically checking the equivalence of processes in a process

calculus is an important building block for security protocol

analysis (Blanchet et al. 2008; Chadha et al. 2016).

Semantic techniques Many semantic techniques have

been proposed for reasoning about relational properties such

as observational equivalence, including techniques based on

binary logical relations (Ahmed et al. 2009; Benton et al.

2009, 2013, 2014; Dreyer et al. 2010, 2011, 2012; Mitchell

1986), bisimulations (Koutavas and Wand 2006; Sangiorgi

et al. 2011; Sumii 2009) and combinations thereof (Hur et al.

2012, 2014). While these very powerful techniques are often

not directly automated, they can be used to provide semantic

correctness proofs for relational program logics (Dreyer et al.

2010, 2011) and other verification tools (Benton et al. 2016).

7 Conclusion
This paper advocates verifying relational properties of ef-

fectful programs using generic tools that are not specific to

relational reasoning: monadic effects, reification, dependent

types, non-relational weakest preconditions, and SMT-based

automation. Our experiments in F
⋆
verifying relational prop-

erties about a variety of examples show thewide applicability

of this approach. One of the strong points is the great flexibil-

ity in modelling effects and expressing relational properties

about code using these effects. The other strong point is

the good balance between interactive control, SMT-based

automation, and the ability to encode even more automated

specialized tools where needed. Thanks to this, the effort

required from the F
⋆
programmer for relational verification

seems on par with non-relational reasoning in F
⋆
and with

specialized relational program logics.

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

A Monadic Framework for Relational Verification 13

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

References
A. Aguirre, C. Hriţcu, C. Keller, and N. Swamy. From F* to SMT (extended

abstract). Talk at 1st International Workshop on Hammers for Type

Theories (HaTT), 2016.

A. Aguirre, G. Barthe, M. Gaboardi, D. Garg, and P. Strub. A relational logic

for higher-order programs. CoRR, abs/1703.05042, 2017.
D. Ahman, C. Hriţcu, K. Maillard, G. Martínez, G. Plotkin, J. Protzenko,

A. Rastogi, and N. Swamy. Dijkstra monads for free. POPL. 2017.
A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation

independence. In Shao and Pierce (2009).

T. Amtoft and A. Banerjee. Information flow analysis in logical form. In

R. Giacobazzi, editor, Static Analysis, 11th International Symposium, SAS
2004, Verona, Italy, August 26-28, 2004, Proceedings. 2004.

T. Amtoft, J. Dodds, Z. Zhang, A. W. Appel, L. Beringer, J. Hatcliff, X. Ou,

and A. Cousino. A certificate infrastructure for machine-checked proofs

of conditional information flow. In P. Degano and J. D. Guttman, editors,

Principles of Security and Trust - First International Conference, POST 2012,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Proceedings.
2012.

T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and S. Wei.

Decomposition instead of self-composition for k-safety. In Proceedings of

the 38th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI 2017), to appear., 2017.

K. Asada, R. Sato, and N. Kobayashi. Verifying relational properties of

functional programs by first-order refinement. Science of Computer
Programming, 2016.

R. Atkey. Parameterised notions of computation. Journal of Functional
Programming, 19:335–376, 2009.

A. Banerjee, D. A. Naumann, and M. Nikouei. Relational logic with framing

and hypotheses. In A. Lal, S. Akshay, S. Saurabh, and S. Sen, editors,

36th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2016, December 13-15, 2016,
Chennai, India. 2016.

G. Barthe, B. Grégoire, and S. Zanella-Béguelin. Formal certification of

code-based cryptographic proofs. In Shao and Pierce (2009).

G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-

composition. Mathematical Structures in Computer Science, 21(6):1207–
1252, 2011.

G. Barthe, B. Grégoire, and S. Zanella-Béguelin. Probabilistic relational

Hoare logics for computer-aided security proofs. In 11th International
Conference on Mathematics of Program Construction. 2012.

G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub.

Easycrypt: A tutorial. In A. Aldini, J. Lopez, and F. Martinelli, editors,

Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tuto-
rial Lectures. 2013a.

G. Barthe, B. Köpf, F. Olmedo, and S. Zanella-Béguelin. Probabilistic re-

lational reasoning for differential privacy. ACM Trans. Program. Lang.
Syst., 35(3):9:1–9:49, 2013b.

G. Barthe, C. Fournet, B. Grégoire, P. Strub, N. Swamy, and S. Zanella-

Béguelin. Probabilistic relational verification for cryptographic imple-

mentations. POPL. 2014.
G. Barthe, M. Gaboardi, E. J. G. Arias, J. Hsu, A. Roth, and P. Strub. Higher-

order approximate relational refinement types for mechanism design

and differential privacy. POPL. 2015.
G. Barthe, J. M. Crespo, and C. Kunz. Product programs and relational

program logics. J. Log. Algebr. Meth. Program., 85(5):847–859, 2016.
T. Bauereiß, A. Pesenti Gritti, A. Popescu, and F. Raimondi. Cosmed: A

confidentiality-verified social media platform. In J. C. Blanchette and

S. Merz, editors, Interactive Theorem Proving - 7th International Confer-
ence, ITP 2016, Nancy, France, August 22-25, 2016, Proceedings. 2016.

T. Bauereiß, A. Pesenti Gritti, A. Popescu, and F. Raimondi. Cosmedis: A

distributed social media platform with formally verified confidentiality

guarantees. In 2017 IEEE Symposium on Security and Privacy, SP 2017,

San Jose, CA, USA, May 22-26, 2017. 2017.
M. Bellare and P. Rogaway. The security of triple encryption and a frame-

work for code-based game-playing proofs. In Advances in Cryptology –
EUROCRYPT 2006, 2006.

N. Benton. Simple relational correctness proofs for static analyses and

program transformations. POPL. 2004.
N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading, writing and

relations. In N. Kobayashi, editor, Programming Languages and Systems,
4th Asian Symposium, APLAS 2006, Sydney, Australia, November 8-10,
2006, Proceedings. 2006.

N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational seman-

tics for effect-based program transformations: higher-order store. In

A. Porto and F. J. López-Fraguas, editors, Proceedings of the 11th Interna-
tional ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, September 7-9, 2009, Coimbra, Portugal. 2009.

N. Benton, M. Hofmann, and V. Nigam. Proof-relevant logical relations for

name generation. TLCA. 2013.
N. Benton, M. Hofmann, and V. Nigam. Abstract effects and proof-relevant

logical relations. POPL. 2014.
N. Benton, A. Kennedy, M. Hofmann, and V. Nigam. Counting successes:

Effects and transformations for non-deterministic programs. In S. Lindley,

C. McBride, P. W. Trinder, and D. Sannella, editors, A List of Successes
That Can Change the World - Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday. 2016.

L. Beringer and M. Hofmann. Secure information flow and program logics.

In 20th IEEE Computer Security Foundations Symposium, CSF 2007, 6-8
July 2007, Venice, Italy. 2007.

B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected

equivalences for security protocols. J. Log. Algebr. Program., 75(1):3–51,
2008.

M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Proving acceptability

properties of relaxed nondeterministic approximate programs. In J. Vitek,

H. Lin, and F. Tip, editors, ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June 11 -
16, 2012. 2012.

G. Castagna and A. D. Gordon, editors. Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017 , 2017. ACM.

R. Chadha, V. Cheval, Ştefan Ciobâcă, and S. Kremer. Automated verifica-

tion of equivalence properties of cryptographic protocols. ACM Trans.
Comput. Log., 17(4):23:1–23:32, 2016.

E. Çiçek, G. Barthe, M. Gaboardi, D. Garg, and J. Hoffmann. Relational cost

analysis. In Castagna and Gordon (2017).

M. R. Clarkson and F. B. Schneider. Hyperproperties. J. Comput. Secur., 18
(6):1157–1210, 2010.

Ştefan Ciobâcă, D. Lucanu, V. Rusu, and G. Rosu. A language-independent

proof system for full program equivalence. Formal Asp. Comput., 28(3):
469–497, 2016.

Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to anal-

ysis of secure information flow. In D. Hutter and M. Ullmann, editors,

Security in Pervasive Computing, Second International Conference, SPC
2005, Boppard, Germany, April 6-8, 2005, Proceedings. 2005.

D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A relational modal logic

for higher-order stateful adts. In M. V. Hermenegildo and J. Palsberg,

editors, Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2010, Madrid, Spain, January
17-23, 2010. 2010.

D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical relations.

Logical Methods in Computer Science, 7(2), 2011.
D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and

control effects on local relational reasoning. J. Funct. Program., 22(4-5):
477–528, 2012.

S. Fehrenbach and J. Cheney. Language-integrated provenance. In J. Cheney

and G. Vidal, editors, Proceedings of the 18th International Symposium
on Principles and Practice of Declarative Programming, Edinburgh, United

http://arxiv.org/abs/1703.05042
http://arxiv.org/abs/1703.05042
http://dx.doi.org/10.1145/3009837.3009878
http://dx.doi.org/10.1145/1480881.1480925
http://dx.doi.org/10.1145/1480881.1480925
http://dx.doi.org/10.1007/978-3-540-27864-1_10
http://dx.doi.org/10.1007/978-3-642-28641-4_20
http://dx.doi.org/10.1007/978-3-642-28641-4_20
http://www.jaist.ac.jp/~terauchi/papers/pldi17-blazer-preprint.pdf
http://dx.doi.org/10.1016/j.scico.2016.02.007
http://dx.doi.org/10.1016/j.scico.2016.02.007
http://dx.doi.org/10.1017/S095679680900728X
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.11
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.11
http://dx.doi.org/10.1145/1480881.1480894
http://dx.doi.org/10.1145/1480881.1480894
http://dx.doi.org/10.1017/S0960129511000193
http://dx.doi.org/10.1017/S0960129511000193
http://hal.inria.fr/docs/00/76/58/64/PDF/main.pdf
http://hal.inria.fr/docs/00/76/58/64/PDF/main.pdf
http://dx.doi.org/10.1007/978-3-319-10082-1_6
http://dx.doi.org/10.1145/2492061
http://dx.doi.org/10.1145/2492061
http://dx.doi.org/10.1145/2535838.2535847
http://dx.doi.org/10.1145/2535838.2535847
http://dx.doi.org/10.1145/2676726.2677000
http://dx.doi.org/10.1145/2676726.2677000
http://dx.doi.org/10.1145/2676726.2677000
http://dx.doi.org/10.1016/j.jlamp.2016.05.004
http://dx.doi.org/10.1016/j.jlamp.2016.05.004
http://dx.doi.org/10.1007/978-3-319-43144-4_6
http://dx.doi.org/10.1007/978-3-319-43144-4_6
http://dx.doi.org/10.1109/SP.2017.24
http://dx.doi.org/10.1109/SP.2017.24
http://dx.doi.org/10.1109/SP.2017.24
http://dx.doi.org/10.1145/964001.964003
http://dx.doi.org/10.1145/964001.964003
http://dx.doi.org/10.1007/11924661_7
http://dx.doi.org/10.1007/11924661_7
http://dx.doi.org/10.1145/1599410.1599447
http://dx.doi.org/10.1145/1599410.1599447
http://dx.doi.org/10.1007/978-3-642-38946-7_6
http://dx.doi.org/10.1007/978-3-642-38946-7_6
http://dx.doi.org/10.1145/2535838.2535869
http://dx.doi.org/10.1145/2535838.2535869
http://dx.doi.org/10.1007/978-3-319-30936-1_3
http://dx.doi.org/10.1007/978-3-319-30936-1_3
http://dx.doi.org/10.1109/CSF.2007.30
http://dx.doi.org/10.1016/j.jlap.2007.06.002
http://dx.doi.org/10.1016/j.jlap.2007.06.002
http://dx.doi.org/10.1145/2254064.2254086
http://dx.doi.org/10.1145/2254064.2254086
http://dx.doi.org/10.1145/3009837
http://dx.doi.org/10.1145/3009837
http://dx.doi.org/10.1145/3009837
http://dl.acm.org/citation.cfm?id=2926715
http://dl.acm.org/citation.cfm?id=2926715
http://dx.doi.org/10.1145/3009837
http://dx.doi.org/10.1145/3009837
https://www.cs.cornell.edu/fbs/publications/Hyperproperties.pdf
http://dx.doi.org/10.1007/s00165-016-0361-7
http://dx.doi.org/10.1007/s00165-016-0361-7
http://dx.doi.org/10.1007/978-3-540-32004-3_20
http://dx.doi.org/10.1007/978-3-540-32004-3_20
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.2168/LMCS-7(2:16)2011
http://dx.doi.org/10.1017/S095679681200024X
http://dx.doi.org/10.1017/S095679681200024X
http://dx.doi.org/10.1145/2967973.2968604

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

14 Grimm et al.

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

Kingdom, September 5-7, 2016. 2016.
A. Filinski. Representing monads. POPL. 1994.
B. Godlin and O. Strichman. Inference rules for proving the equivalence

of recursive procedures. In Z. Manna and D. A. Peled, editors, Time for
Verification, Essays in Memory of Amir Pnueli. 2010.

J. A. Goguen and J. Meseguer. Security policies and security models. 1982
IEEE Symposium on Security and Privacy, 00:11, 1982.

C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and object-

sensitive information flow control based on program dependence graphs.

Int. J. Inf. Sec., 8(6):399–422, 2009.
S. He, S. K. Lahiri, and Z. Rakamaric. Verifying relative safety, accuracy,

and termination for program approximations. In S. Rayadurgam and

O. Tkachuk, editors,NASA Formal Methods - 8th International Symposium,
NFM 2016, Minneapolis, MN, USA, June 7-9, 2016, Proceedings. 2016.

D. Hedin and A. Sabelfeld. A perspective on information-flow control. In

T. Nipkow, O. Grumberg, and B. Hauptmann, editors, Software Safety
and Security - Tools for Analysis and Verification, volume 33 of NATO
Science for Peace and Security Series - D: Information and Communication
Security, pages 319–347. IOS Press, 2012.

C. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of bisimulations

and kripke logical relations. In J. Field and M. Hicks, editors, Proceedings
of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28, 2012. 2012.

C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. A logical step forward in

parametric bisimulations. Technical Report MPI-SWS-2014-003, 2014.

V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-

order imperative programs. In Morrisett and Jones (2006).

S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct using

parameterized program equivalence. In M. Hind and A. Diwan, editors,

Proceedings of the 2009 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21,
2009. 2009.

R. Küsters, T. Truderung, B. Beckert, D. Bruns, M. Kirsten, and M. Mohr.

A hybrid approach for proving noninterference of Java programs. In

C. Fournet, M. W. Hicks, and L. Viganò, editors, IEEE 28th Computer
Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015.
2015.

S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. SYMDIFF: A

language-agnostic semantic diff tool for imperative programs. In P. Mad-

husudan and S. A. Seshia, editors, Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings. 2012.

D. Lucanu and V. Rusu. Program equivalence by circular reasoning. Formal
Asp. Comput., 27(4):701–726, 2015.

C. McBride. Turing-completeness totally free. In R. Hinze and J. Voigtlän-

der, editors, Mathematics of Program Construction - 12th International
Conference, MPC 2015, Königswinter, Germany, June 29 - July 1, 2015.
Proceedings. 2015.

J. C. Mitchell. Representation independence and data abstraction. In POPL
’86. 1986.

E. Moggi. Computational lambda-calculus and monads. LICS. 1989.
J. G. Morrisett and S. L. P. Jones, editors. Proceedings of the 33rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2006, Charleston, South Carolina, USA, January 11-13, 2006, 2006.
ACM.

L. Moura and N. Bjørner. Efficient e-matching for smt solvers. In Proceedings
of the 21st International Conference on Automated Deduction: Automated
Deduction. 2007.

T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,

C. Lewis, X. Gao, and G. Klein. sel4: From general purpose to a proof of

information flow enforcement. In 2013 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. 2013.

A. Nanevski, J. G. Morrisett, and L. Birkedal. Hoare type theory, polymor-

phism and separation. JFP , 18(5-6):865–911, 2008.

A. Nanevski, A. Banerjee, and D. Garg. Dependent type theory for verifica-

tion of information flow and access control policies. ACM TOPLAS, 35
(2):6, 2013.

D. A. Naumann. From coupling relations to mated invariants for checking

information flow. In D. Gollmann, J. Meier, and A. Sabelfeld, editors,

Computer Security - ESORICS 2006, 11th European Symposium on Re-
search in Computer Security, Hamburg, Germany, September 18-20, 2006,
Proceedings. 2006.

A. Nogin. Quotient types: A modular approach. TPHOLs. 2002.
A. Petcher and G. Morrisett. The foundational cryptography framework. In

R. Focardi and A. C. Myers, editors, Principles of Security and Trust - 4th
International Conference, POST 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015, Proceedings. 2015.

S. Peyton Jones. Tackling the Awkward Squad: monadic input/output, con-
currency, exceptions, and foreign-language calls in Haskell, pages 47–96.
IOS Press, 2010.

M. N. Rabe. A temporal logic approach to Information-flow control. PhD
thesis, Saarland University, 2016.

A. Sabelfeld and A. C. Myers. Language-based information-flow security.

IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003a.
A. Sabelfeld and A. C. Myers. A model for delimited information release. In

Software Security - Theories and Systems, Second Mext-NSF-JSPS Interna-
tional Symposium, ISSS 2003, Tokyo, Japan, November 4-6, 2003, Revised
Papers, 2003b.

A. Sabelfeld and A. C. Myers. Language-based information-flow security.

IEEE J.Sel. A. Commun., 21(1):5–19, 2006.
A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the

roller coaster of information-flow control research. In A. Pnueli, I. Virbit-

skaite, and A. Voronkov, editors, Perspectives of Systems Informatics, 7th
International Andrei Ershov Memorial Conference, PSI 2009, Novosibirsk,
Russia, June 15-19, 2009. Revised Papers. 2009.

A. Sabelfeld and D. Sands. Declassification: Dimensions and principles.

Journal of Computer Security, 17(5):517–548, 2009.
D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for

higher-order languages. ACM Trans. Program. Lang. Syst., 33(1):5:1–5:69,
2011.

C. Scheben and P. H. Schmitt. Verification of information flow properties

of java programs without approximations. In B. Beckert, F. Damiani,

and D. Gurov, editors, Formal Verification of Object-Oriented Software -
International Conference, FoVeOOS 2011, Turin, Italy, October 5-7, 2011,
Revised Selected Papers. 2011.

Z. Shao and B. C. Pierce, editors. Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009, 2009. ACM.

M. Sousa and I. Dillig. Cartesian hoare logic for verifying k-safety properties.

In C. Krintz and E. Berger, editors, Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016. 2016.

E. Sumii. A complete characterization of observational equivalence in

polymorphic lambda-calculus with general references. In E. Grädel

and R. Kahle, editors, Computer Science Logic, 23rd international Work-
shop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra, Portugal,
September 7-11, 2009. Proceedings. 2009.

N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic program-

ming in ML. ICFP , 2011.
N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verifying

higher-order programs with the Dijkstra monad. PLDI , 2013.
N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,

K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoué,

and S. Zanella-Béguelin. Dependent types and multi-monadic effects in

F*. POPL. 2016.
T. Terauchi and A. Aiken. Secure information flow as a safety problem.

In C. Hankin and I. Siveroni, editors, Static Analysis, 12th International
Symposium, SAS 2005, London, UK, September 7-9, 2005, Proceedings. 2005.

http://dx.doi.org/10.1145/174675.178047
http://dx.doi.org/10.1007/978-3-642-13754-9_8
http://dx.doi.org/10.1007/978-3-642-13754-9_8
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1007/s10207-009-0086-1
http://dx.doi.org/10.1007/s10207-009-0086-1
http://dx.doi.org/10.1007/978-3-319-40648-0_19
http://dx.doi.org/10.1007/978-3-319-40648-0_19
http://dx.doi.org/10.3233/978-1-61499-028-4-319
http://dx.doi.org/10.1145/2103656.2103666
http://dx.doi.org/10.1145/2103656.2103666
http://sf.snu.ac.kr/gil.hur/publications/spbs.pdf
http://sf.snu.ac.kr/gil.hur/publications/spbs.pdf
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1542476.1542513
http://dx.doi.org/10.1145/1542476.1542513
http://dx.doi.org/10.1109/CSF.2015.28
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/s00165-014-0319-6
http://dx.doi.org/10.1007/978-3-319-19797-5_13
http://dx.doi.org/http://doi.acm.org/10.1145/512644.512669
http://dx.doi.org/10.1109/LICS.1989.39155
http://dl.acm.org/citation.cfm?id=1111037
http://dl.acm.org/citation.cfm?id=1111037
http://dl.acm.org/citation.cfm?id=1111037
http://dx.doi.org/10.1007/978-3-540-73595-3_13
http://dx.doi.org/10.1109/SP.2013.35
http://dx.doi.org/10.1109/SP.2013.35
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf
http://dx.doi.org/10.1145/2491522.2491523
http://dx.doi.org/10.1145/2491522.2491523
http://dx.doi.org/10.1007/11863908_18
http://dx.doi.org/10.1007/11863908_18
http://dx.doi.org/10.1007/3-540-45685-6_18
http://dx.doi.org/10.1007/978-3-662-46666-7_4
https://www.microsoft.com/en-us/research/publication/tackling-awkward-squad-monadic-inputoutput-concurrency-exceptions-foreign-language-calls-haskell/
https://www.microsoft.com/en-us/research/publication/tackling-awkward-squad-monadic-inputoutput-concurrency-exceptions-foreign-language-calls-haskell/
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1007/978-3-642-11486-1_30
http://dx.doi.org/10.1007/978-3-642-11486-1_30
http://dx.doi.org/10.3233/JCS-2009-0352
http://dx.doi.org/10.1145/1889997.1890002
http://dx.doi.org/10.1145/1889997.1890002
http://dx.doi.org/10.1007/978-3-642-31762-0_15
http://dx.doi.org/10.1007/978-3-642-31762-0_15
http://dl.acm.org/citation.cfm?id=1480881
http://dl.acm.org/citation.cfm?id=1480881
http://dl.acm.org/citation.cfm?id=1480881
http://dx.doi.org/10.1145/2908080.2908092
http://dx.doi.org/10.1007/978-3-642-04027-6_33
http://dx.doi.org/10.1007/978-3-642-04027-6_33
https://www.cs.umd.edu/~mwh/papers/swamy11monad.html
https://www.cs.umd.edu/~mwh/papers/swamy11monad.html
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
http://dx.doi.org/10.1007/11547662_24

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

A Monadic Framework for Relational Verification 15

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow

analysis. J. Comput. Secur., 4(2-3):167–187, 1996.
H. Yang. Relational separation logic. Theor. Comput. Sci., 375(1-3):308–334,

2007.

H. Yasuoka and T. Terauchi. Quantitative information flow as safety and

liveness hyperproperties. Theor. Comput. Sci., 538:167–182, 2014.
A. Zaks and A. Pnueli. CoVaC: Compiler validation by program analysis of

the cross-product. In J. Cuéllar, T. S. E. Maibaum, and K. Sere, editors, FM
2008: Formal Methods, 15th International Symposium on Formal Methods,
Turku, Finland, May 26-30, 2008, Proceedings. 2008.

D. Zhang and D. Kifer. LightDP: towards automating differential privacy

proofs. POPL. 2017.

http://dl.acm.org/citation.cfm?id=353629.353648
http://dl.acm.org/citation.cfm?id=353629.353648
http://dx.doi.org/10.1016/j.tcs.2006.12.036
http://dx.doi.org/10.1016/j.tcs.2013.07.031
http://dx.doi.org/10.1016/j.tcs.2013.07.031
http://dx.doi.org/10.1007/978-3-540-68237-0_5
http://dx.doi.org/10.1007/978-3-540-68237-0_5
http://www.cse.psu.edu/~dbz5017/pub/popl17.pdf
http://www.cse.psu.edu/~dbz5017/pub/popl17.pdf

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

16 Grimm et al.

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

The appendices present additional case studies.

Cryptographic security proofs (Appendix A) We show

how to model basic game steps of code-based cryptographic

proofs of security (Bellare and Rogaway 2006) by proving

equivalences between probabilistic programs. We prove per-

fect secrecy of one-time pad encryption, and a crucial lemma

in the proof of semantic security of ElGamal encryption, an

elementary use of Barthe et al.’s (2009) probabilistic rela-

tional Hoare logic.

Twoadditional command transformations (Appendix B)
Expanding on §3.1, we prove the correctness of two more

command transformations using semantic footprints: idem-

potence of commands and elimination of redundant writes.

RHL example (Appendix C) Making use of the RHL em-

bedding from §3.2, we prove an example hoisting an assign-

ment out of a loop.

Soundness of an IFCmonitor (Appendix D) Using reifi-

cation we prove the noninterference of a dynamic IFC moni-

tor implemented as checks in an effectful interpreter.

A Cryptographic security proofs
We show how to construct a simple model for reasoning

about probabilistic programs that sample values from dis-

crete distributions. In this model, we prove the soundness of

rules of probabilistic Relational Hoare Logic (pRHL) (Barthe

et al. 2009) allowing one to derive (in-)equalities on prob-

ability quantities from pRHL judgments. We illustrate our

approach by formalizing two simple cryptographic proofs:

the perfect secrecy of one-time pad encryption and a crucial

lemma used by Barthe et al. (2009) in the proof of semantic

security of ElGamal encryption.

The simplicity of our examples pales in comparison with

complex proofs formalized in specialized tools based on

pRHL like EasyCrypt (Barthe et al. 2012) or FCF (Petcher and

Morrisett 2015), yet our examples hint at a way to prototype

and explore proofs in pRHL with a low entry cost.

A.1 A monad for random sampling
We begin by defining a monad for sampling from the uniform

distribution over bitvectors of a fixed length q. We implement

the monad as the composition of the state and exception

monads where the state is a finite tape of bitvector values

together with a pointer to a position in the tape. The RAND
effect provides a single action, sample, which reads from

the tape the value at the current position and advances the

pointer to the next position, or raises an exception if the

pointer is past the end of the tape.

type value = bv q
type tape = seq value
type id = i:N{i < size}
type store = id ∗ tape
type rand a = store→M (option a ∗ id)
total new_effect {

RAND: a:Type→ Effect
with repr = rand a;

bind = λ(a b:Type) (c:rand a) (f:a→ rand b) s→
let r, next = c s in
match r with
| None→None, next
| Some x→ f x (next, snd s);

return = λ(a:Type) (x:a) (next,_)→ (Some x, next);
sample = λ() s→ let next, t = s in

if next + 1 < size then (Some (t n), n + 1)

else (None, n) }
effect Rand a = RAND a (λ initial_tape post→∀x. post x)

Assuming a uniform distribution over initial tapes, we de-

fine the unnormalizedmeasure of a functionp:a→Nwith re-

spect to the denotation of a reified computation in f :Rand a
as

let mass f p = sum (λ t→ let r,_ = f (0, t) in p r)

where sum: (tape→N)→N is the summation operator over

finite tapes. When p only takes values in {0, 1}, it can be

regarded as an event whose probability with respect to the

distribution generated by f is

Pr[f : p] = 1

|tape| ×
∑

t ∈ tape

p (fst (f t)) = mass f p
|tape|

Weuse the shorthand Pr[f = v] = |tape|−1×mass f (pointv)
for the probability of a successful computation returning a

valuev , where let point x = λy→ if y = Some x then 1 else 0.

A.2 Perfect secrecy of one-time pad encryption
The following effectful program uses a one-time key k sam-

pled uniformly at random to encrypt a bitvectorm:

let otp (m:value) : Rand value = let k = sample () in m ⊕ k

We show that this construction, known as one-time pad, pro-
vides perfect secrecy. That is, a ciphertext does not give away
any information about the encrypted plaintext, provided

the encryption key is used just once. Or equivalently, the

distribution of the one-time pad encryption of a message is

independent of the message itself, ∀m0, m1, c . Pr[otpm0 =

c] = Pr[otpm1 = c]. We prove this by applying two rules of

pRHL, namely [R-Rand] and [PrLe]. The former allows us to

relate the results of two probabilistic programs by showing

a bijection over initial random tapes that would make the

relation hold (intuitively, permuting equally probable initial

tapes does not change the resulting distribution over final

tapes). The latter allows us to infer a probability inequality

from a proven relation between probabilistic programs. To-

gether, the two rules allow us to prove the following lemma:

val mass_leq: #a:Type→ #b:Type→
c1:(store→M (a ∗ id))→ c2:(store→M (b ∗ id))→
p1:(a→ nat)→ p2:(b→ nat)→ bij:bijection→ Lemma
(requires (∀ t. let r1,_ = c1 (to_id 0,t) in

let r2,_ = c2 (to_id 0,bij.f t) in p1 r1 ≤ p2 r2))

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

A Monadic Framework for Relational Verification 17

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

(ensures (mass c1 p1 ≤ mass c2 p2))

The proof is elementary from rearranging terms in summa-

tions according to the given bijection. The following secrecy

proof of one-time pad is immediate from this lemma using

as bijection on initial tapes λt→ upd t 0 (t 0 ⊕ m0 ⊕ m1):

val otp_secure: m0:value→m1:value→ c:value→ Lemma
(let f0, f1 = reify (otp m0), reify (otp m1) in
mass f0 (point c) == mass f1 (point c))

A.3 A step in the proof of semantic security of
ElGamal encryption

Another example following a similar principle is a proba-

bilistic equivalence used in the proof of semantic security

of ElGamal encryption by Barthe et al.’s (2009). This equiv-

alence, named mult_pad in that paper, proves the indepen-

dence of the adversary’s view from the hidden bit b that

the adversary has to guess in the semantic security indistin-

guishability game, and thus shows that the adversary cannot

do better than a random guess.

ElGamal encryption is parametric on a cyclic group of

order q, and a generator д. Roughly stated, the equivalence

says that if one applies the group operation to a uniformly

distributed element of the group and some other element, the

result is uniformly distributed, that is z $← Zq ; ζ ← дz ×mb
and z $← Zq ; ζ ← дz induce the same distribution on ζ
(which is thus independent of b). To prove this, we modify

theRAND effect to use random tapes of elements ofZq rather
than bitvectors, an define

let elgamal0 (m:group) : Rand group = let z = sample () in g^z
let elgamal1 (m:group) : Rand group = let z = sample () in (g^z) ∗ m

and prove, again using mass_leq, the following lemma

val elgamal_equiv: m:group→ c:group→ Lemma
(let f1, f2 = reify (elgamal0 m), reify (elgamal1 m) in
mass f1 (point c) == mass f2 (point c))

B Additional command transformations
Our first equivalence, listed below, shows that if a command’s

read and write footprints are disjoint, then it is idempotent.

The proofs of idem and the other lemmas below are per-

haps peculiar to SMT-based proofs. In all cases, the proofs

involve simply mentioning the terms reify (c ()) h, which
suffice to direct the SMT solver’s quantifier instantiation

engine towards finding a proof. While more explicit proofs

are certainly possible, with experience, concise SMT-based

proofs can be easier to write.

let idem #rs #ws (c:cmd rs ws):
Lemma (requires (disjoint rs ws)) (ensures ((c >> c) ∼ c))
= ∀_intro (λ h→ let (), h1 = reify (c ()) h in

let _ = reify (c ()) h1 in ()

<: Lemma (equiv_on_h (c >> c) c h))

Next, we show elimination of redundant writes by proving

that c1 >> c2 is equivalent to c2 if c1’s write footprint is (a) a
subset of c2’s write footprint, and (b) disjoint from c2’s read
footprint.

let redundant_writes #rs1 #rs2 #ws1 #ws2
(c1:cmd rs1 ws1) (c2:cmd rs2 ws2)
: Lemma (requires (disjoint ws1 rs2 ∧ ws1 ⊆ ws2))

(ensures ((c1 >> c2) ∼ c2))
= ∀_intro (λ h→ let _ = reify (c1 ()) h, reify (c2 ()) h in

() <: Lemma (equiv_on_h (c1 >> c2) c2 h))

C RHL Example
Following Benton (2004), we prove an example hoisting an

assignment out of a loop:

⊢

while (I < N)
X := Y + 1;
I := I + X

L

⇝

X := Y + 1;
while (I < N)

I := I + X

R

:

Ileft = Iright∧
Nleft = Nright∧
Yleft = Yright

Φ

⇛
Ileft = Iright∧
Nleft = Nright∧
Yleft = Yright

In other words, the judgement above preserves the invariant

Φ stating that the two programs L and R compute the same

values for I ,N ,Y , with X being neglected (which is already

useful enough ifX is known to be dead in the code following

the while loops).

let proof () : Lemma (ensures (related L R Φ Φ)) =

(∗ intermediate invariants for the loop bodies ∗)
let Φ1 = Φ ∧ (X

right
= Y

right
+ 1) in

let Φ2 = Φ1 ∧ (Xleft
= X

right
) in

assert (related skip (assign X (Y + 1)) Φ Φ1); (∗ dead assign ∗)
assert (related (assign X (Y + 1)) skip Φ1 Φ2); (∗ dead assign ∗)
assert (related (assign I (I + X)) (assign I (I + X)) Φ2 Φ2); (∗ assign ∗)
assert (related (seq (assign X (Y + 1)) (assign I (I + X)))

(assign i (I + X)) Φ1 Φ2); (∗ seq, elim. skip ∗)
r_while (I < N) (I < N) (seq (assign X (Y + 1)) (assign I (I + X)))

(assign I (I + X)) Φ1;

(∗ seq, elim. skip ∗)
assert (related L (while (I < N) (assign I (Y + 1))) Φ1 Φ)

r_while B B′ C C ′ Φ :

⊢ C ⇝ C ′ : Φ ∧ Bleft ∧ B′right ⇛ Φ ∧ (Bleft = B′
right
)

⊢ while B do C ⇝ while B′ do C ′ : Φ ∧ (Bleft = B′
right
)⇛

Φ ∧ ¬(Bleft ∨ B′right)
The proof shows that applications of RHL rules (including

dead assignment rules) are actually syntax-directed, so that

the only nontrivial effort needed is to provide the intermedi-

ate verification condition relating the bodies of the loops.

In more detail, for a given proposition ϕ, assert ϕ tries to

prove ϕ and, if successful, adds ϕ to the proof context as a

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

18 Grimm et al.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

EVar

S, Γ ⊢ r → ⟨S (r) , Γ (r)⟩

EInt

i : int

S, Γ ⊢ i → ⟨i, L⟩

EBinOp

S ⊢ e1 → ⟨v1, l1⟩ S, Γ ⊢ e2 → ⟨v2, l2⟩
S, Γ ⊢ e1 ⊕ e2 → ⟨v1 ⊕ v2, l1 ⊔ l2⟩

CAssign

S, Γ ⊢ e → ⟨ve , le ⟩ Γ (r) = lr
le ⊔ pc ≤ lr

S, Γ, pc ⊢ r := e → S [r 7→ ve]

CCondTrue

S, Γ ⊢ e → ⟨ve , le ⟩ ve = 0 S, Γ, (pc ⊔ le) ⊢ c1 → S1

S, Γ, pc ⊢ if e = 0 then c1 else c2 → S1

Figure 2. Semantics of the IFC monitor

fact that can be automatically reused by the later parts of

the proof. To prove ϕ, proof search relies not only on the

current proof context, but also on those lemmas in the global

context that are associated with triggering patterns: if the
shape of ϕ matches the triggering pattern of some lemma f
in the global context, then f is applied (triggered) and the

proof search recursively goes on with the preconditions of

f . This proof search is actually performed by the Z3 SMT

solver through e-matching (Moura and Bjørner 2007).

In our example , assert (related skip (assign X (Y + 1)) Φ Φ1)

tries to prove that an assignment can be erased; based on

the syntax of both commands of the relation, e-matching

successfully selects the corresponding dead assignment rule

of RHL. In fact, this assert also allows specifying the inter-
mediate condition Φ1 that is to be used to verify the rest of

the bodies of L and R, which cannot always be guessed by

proof search. Alternatively, the user can also explicitly apply

an RHL rule by directly calling the corresponding lemma,

which is illustrated by the call to r_while to prove that the

two while loops are related. In that case, the postcondition of

the lemma is added to the proof context for the remainder of

the proof. This way, the user can avoid explicitly spelling out

the fact proven by the lemma; moreover, since the lemma to

apply is explicitly given, the SMT solver only has to prove

the preconditions of the lemma, if any.

This example is 33 lines of F* code and takes 25 seconds to

check. This time could be improved substantially. However,

perhaps more interesting, this experiment suggests devel-

oping tactics to automatically use Benton’s RHL whenever

possible, while still keeping the possibility to escape back to

semantic approaches wherever RHL is not powerful enough.

We leave this as future work.

D Soundness of an IFC monitor
Another popular technique for the enforcement of IFC are

runtime monitors: the idea is to dynamically track the se-

curity labels of expressions and to check them at runtime

in order to detect IFC violations, which cause the execution

to halt. Here we implement an interpreter for the while lan-

guage presented in §4.1 extended with the security monitor

proposed by Sabelfeld and Russo (2009): a selection of the

semantic rules is reported in Figure 2. The store S maps refer-

ences to integers, while the store labeling Γ maps references

to security labels, which are then used to derive labels for ex-

pressions. Assignments are subject to the expected security

checks at run-time.

We embed themonitor in F
⋆
, obtaining amachine-checked

proof of soundness for it. The interpretation functions for

expressions and commands have the following signatures:

val interp_exp_monitor: store_labeling→ exp→Reader (int ∗ label)
val interp_com_monitor: store_labeling→ label→ com→ StExn unit

We prove termination-insensitive non-interference for

interpretation with the monitor and capture this with the

following lemma:

val dyn_ifc (s0:store) (s1:store) (env:store_labeling) (c:com) (pc:label) :
Lemma (requires (low_equiv env s0 s1))
(ensures (match (reify (interp_com_monitor env pc c)) s0,

(reify (interp_com_monitor env pc c)) s1 with
| (Inl _, s0'), (Inl _, s1')→ low_equiv env s0' s1'
| _→⊤))

Intuitively, we show that for any two low-equivalent initial

stores, the two resulting stores are also low equivalent, if

the interpretation with the monitor terminates without a

runtime exception.

While the result looks similar to the one shown for the

type system, there is a subtle difference in the enforced se-

curity property. Consider the following example where the

label of hi is High and the label of lo is Low:

if (hi=0) skip else lo := 0

The assignment to a low reference on the else branch is leak-

ing information about the value of the high reference in the

conditional expression. Nevertheless, if the then-branch of

the conditional is taken, the monitor will not report a viola-

tion, as it does not inspect the else-branch. This example does

however not break our theorem, since our theorem only re-

lates pairs of programs that terminate normally, while for all

stores in which the else branch is taken, the execution of the

interpreter halts with an error. The monitor is collapsing the

implicit-flow channel into an erroneous termination chan-

nel, thereby enforcing error-insensitive non-interference. For

comparison, notice that the (termination-insensitive) type

system from §4.1 accepts a variant of the program above, in

which the low assignment is replaced by a non-terminating

loop.

	Abstract
	1 Introduction
	1.1 A first example
	1.2 Contributions and outline

	2 Methodology for relational verification
	2.1 Modeling effects using monads
	2.2 Unary weakest preconditions for user-defined effects and intrinsic proof
	2.3 Exposing effect definitions via reification
	2.4 Extrinsic specification and proof, eased by SMT-based automation
	2.5 Empirical evaluation of our methodology

	3 Correctness of program transformations
	3.1 Generic transformations based on read- and write-footprints
	3.2 Relational Hoare Logic

	4 Information-flow control
	4.1 Deriving an IFC type system
	4.2 Combining syntactic IFC analysis with semantic noninterference proofs
	4.3 Semantic declassification

	5 Program optimizations and refinement
	5.1 Effect for memoizing recursive functions
	5.2 Stepwise refinement and n-ary relations: Union-find with two optimizations

	6 Related work
	7 Conclusion
	References
	A Cryptographic security proofs
	A.1 A monad for random sampling
	A.2 Perfect secrecy of one-time pad encryption
	A.3 A step in the proof of semantic security of ElGamal encryption

	B Additional command transformations
	C RHL Example
	D Soundness of an IFC monitor

