
AutoType: Synthesizing Type-Detection Logic for
Rich Semantic Data Types using Open-source Code

Cong Yan∗
University of Washington
congy@cs.washington.edu

Yeye He
Microsoft Research

yeyehe@microsoft.com

ABSTRACT

Given a table of data, existing systems can often detect basic atomic
types (e.g., strings vs. numbers) for each column. A new genera-
tion of data-analytics and data-preparation systems are starting
to automatically recognize rich semantic types such as date-time,
email address, etc., for such metadata can bring an array of benefits
including better table understanding, improved search relevance,
precise data validation, and semantic data transformation. However,
existing approaches only detect a limited number of types using
regular-expression-like patterns, which are often inaccurate, and
cannot handle rich semantic types such as credit card and ISBN
numbers that encode semantic validations (e.g., checksum).

We developed AutoType, a system that can synthesize type-
detection logic for rich data types, by leveraging code from open-
source repositories like GitHub. Users only need to provide a set of
positive examples for a target data type and a search keyword, our
system will automatically identify relevant code, and synthesize
type-detection functions using execution traces. We compiled a
benchmark with 112 semantic types, out of which the proposed
system can synthesize code to detect 84 such types at a high preci-
sion. Applying the synthesized type-detection logic on web table
columns have also resulted in a significant increase in data types
discovered compared to alternative approaches.
ACM Reference Format:

Cong Yan and Yeye He. 2018. AutoType: Synthesizing Type-Detection Logic
for Rich Semantic Data Types using Open-source Code. In SIGMOD’18:
2018 International Conference on Management of Data, June 10–15, 2018,
Houston, TX, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3183713.3196888

1 INTRODUCTION

Metadata has long been recognized as an important aspect of data
management. Classical metadata management problems, such as
data provenance [31, 37, 39] and schema mappings [13, 26], have
produced long and fruitful lines of research.

An important yet thus-far overlooked class of metadata is seman-
tic data types. While basic atomic types (such as strings vs. numbers)
∗Work done at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196888

Figure 1: An example table with sales transactions. The se-

mantic data types can often be inferred from values alone.

Figure 2: Credit card numbers encode rich semantic infor-

mation and computes a checksum using Luhn’s algorithm.

Figure 3: ISBN numbers also contain rich information and

use a different GS1 checksum for data validation.

is straightforward and widely-used, semantic data types are much
more rich and fine-grained (e.g., credit-card-number, UPC-code, etc.).
We observe that like atomic types, semantic data types can often-
times also be automatically inferred from data values alone, both
intuitively for humans and programatically using code.

Consider the example spreadsheet in Figure 1, which contains
sales transactions of a retailer. This table lists customer names,
their phone-numbers, addresses, date and time of transactions, lo-
gin IP-addresses, credit-cards used, and the ISBN (international
standard for book identifiers) of books purchased. Assume for a
moment that the column names at the top of the table are not given.
As human beings, it is actually not that hard to determine the types
of the first few columns by just looking at their values; and with
some efforts one could write programs to recognize such types.
The last two columns may appear cryptic to human eyes without
column names. They can actually be algorithmically recognized
as credit-card-number and ISBN, respectively, because their types
encode rich semantics and require strict checksum validations.

Specifically, Figure 2 shows the structure of a valid credit-card

number. The first digit indicates the card issuer (e.g., Visa, Master,
etc.), and the next five digits indicate the issuing bank (e.g., Chase,
BOA, etc.). The last digit is a check digit, whose value is calculated
based on all previous digits using an algorithm known as Luhn’s

https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888

Industry/Domain Example Data Types

Science (Biology, Chemistry, etc.) CAS registry, International Chemical Identifier, Hill notation, Protein ID, SMILE notation, . . .
Financial & Commerce Credit card, UPC code, EAN code, ABA routing number, SWIFT code, CUSIP securities, . . .

Transportation VIN number, Shipping container ISO 6346, UIC Wagon number, Maritime Ship Identifier, . . .
Technology & Telecommunication IMEI code, IPv4, IPv6, MSISDN, OID, MAC address, URL, RGB color, CMYK color, . . .

Geo-location Longitude/Latitude, Mailing address, UTM coordinates, MGRS, USNG coordinates, NAD83 . . .

Miscellaneous Phone number, Person name, Date, Time, Email, National identification number, . . .

Table 1: Example semantic data types across different domains and industries.

checksum algorithm [7] (shown in the right part of Figure 2), so
that incorrectly-entered credit card numbers can be quickly and
inexpensively detected. Leveraging this semantic validation, one
can safely conclude that the second-to-last column in Figure 1
is credit-card since all numbers contain valid card issuer/bank
information, and pass the credit-card-specific checksum.

As another example, Figure 3 shows the structure of ISBN-13

numbers. In this case sub-parts of the numbers can be decoded for
rich semantics such as country names, publisher names, book titles,
etc. The last digit is again a check digit, but in this case computed
using a different GS1 algorithm [5] (an industry standard in business
communication). With this type-specific validation, one can again
determine that the last column is likely ISBN from values alone.

Semantic data types with sophisticated validation (where check-
sum is one example mechanism) are surprisingly common. These
include many widely-used types such as UPC-code (unique identi-
fiers for trade items), US-VIN-number (vehicle identifiers in US), as
well as many others as listed in Table 1.

Our observation is that data types in most cases can be algorith-
mically detected from values, like all the columns in Figure 1. For
types like credit card, there already exists validation functions like
bool isValidCreditCard() (where the challenge is to find them),
but for many other data types, validations are often implicit that
require re-purposing existing code snippets. For example, there are
code on GitHub that parse date strings (e.g., “Sep 15, 2011”) into
components such as year, month, day, etc. Our observation is that in
this process, the validity of date strings is implicitly checked using
domain-specific logic (e.g., “Sep” and “Oct” are valid months but
“Abc” is not). Our key contribution is to automatically identify and
reuse such logic from existing code to eventually synthesize new
type-detection functions, without requiring developers to program
such logic from scratch.

In the context of a commercial data preparation system, we
identified a benchmark of 112 example data types whose automatic
detection is beneficial1. Table 1 shows a subset of these types (with
the full list in Appendix A). Note these types can by no means
exhaustively capture all useful data types. In reality there is a long
tail of concepts and data types specific to different industries (e.g.,
financial, pharmaceutical, etc.), as well as different languages and
cultures (e.g., dates and addresses that are not in US English or
the “en-us”). Writing type-detection logic from scratch for each
such scenario is clearly costly and could not scale; automatically
harvesting and reusing type-detection logic is thus crucial.

1We plan to release both the benchmark data, as well as synthesized type-detection
functions to benefit the community at large. We are working with our product and
legal teams to make this happen. These resources will be released in a future date on
GitHub at https://github.com/congy/AutoType.

Applications of rich types. Automatically detecting rich data
types enables a wide variety of applications and experiences, some
of which are discussed below (more in Appendix C).

Table understanding. An obvious benefit of automatic type de-
tection is to help users understand tables that they may otherwise
be unfamiliar with. For instance, suppose in Figure 1 the column
names are either not given or too generic/cryptic (which is often
the case [20]). Users can better understand this table if columns can
be automatically annotated with types (e.g., the last two columns
are credit-card and ISBN).

Figure 4: Once the column is detected as longitude / lati-

tude, transformations can be automatically suggested, e.g.

converting to city, timezone, and other coordinate systems.

Table search. Keyword search of structured tables, both on the
Web [15, 16] and in enterprises [20], are important and have led to
influential systems like Google Web Table Search2 and Microsoft
Power Query Table Search3. However, a main challenge is that
table column headers are often missing or non-descriptive, making
keyword search difficult. If columns can be automatically enriched
with with semantic types (e.g., ip-address, credit card, etc.), it is
clearly beneficial to search relevance.

Data quality validation. One intended use of the type-detection
logic produced by AutoType is in a commercial data preparation
system, where the goal is to automatically detect column types
and check data validity. For instance, if 99% of values in a column
are detected as ISBN but a small fraction is not, the system can
automatically flag outliers as potential errors for users to inspect.

Semantic data transformation. Another application in data prepa-
ration is to enable rich and type-specific transformations. In Figure 4
for example, once a column is detected as type longitude/latitude,
users can click and select from a list of semantic transformations
specific to this type. As we will show, AutoType can naturally
support such transformations as it leverages existing code.

Types-detection in existing commercial systems. Realizing
the benefits of types, a new generation of commercial data systems
start to introduce a limited number of semantic types. For instance,
Trifacta4 detects around 10 types (Figure 5(a)). Microsoft Power BI5
also supports a few date-time types (Figure 5(b)).
2http://research.google.com/tables
3http://office.microsoft.com/powerbi
4https://docs.trifacta.com/display/PE/Supported+Data+Types, retrieved in 2017-09.
5https://docs.microsoft.com/en-us/power-bi/desktop-data-types, retrieved in 2017-09.

https://github.com/congy/AutoType
http://research.google.com/tables
http://office.microsoft.com/powerbi
https://docs.trifacta.com/display/PE/Supported+Data+Types
https://docs.microsoft.com/en-us/power-bi/desktop-data-types

(a) Trifacta (b) Power BI

Figure 5: A limited number of types used in commercial sys-

tems (retrieved in 2017-09).

Our analysis suggests that at the time of this writing, existing
systems often rely on manually-defined regex patterns to detect
data types. As one could imagine, using syntactic patterns can
be inaccurate (e.g., Trifacta detect 16 digit numbers with certain
prefixes as credit cardwithout validating checksum), and thus can
lead to false-positive detection.

AutoType using open-source code. Our objective of Auto-
Type is produce type-detection logic for a large number of semantic
types, so that a data preparation system can leverage it to auto-
matically detect types out-of-the-box. It quickly becomes clear that
regex patterns alone are not sufficient (e.g., we would not want to
predict all columns with 12-digit numbers to be UPC).

One alternative is to manually write detection code for each
type from scratch. While engineers can write code for common
types (e.g., date-time and email-address), this becomes difficult as
we go into the long and fat tail of rich semantic types (such as
ones in Table 1), which include notation standards in disciplines
like chemistry and astronomy, as well as many industry-specific
ISO standards (e.g., ISO 6346 for the container shipping industry6).
Engineers often have to obtain a rudimentary level of domain-
specific knowledge by reading specifications before they can start
writing code, which is both costly and error-prone.

Our key observation is that for decades developers have been
writing custom-code to process data of various types, and placed
their code in places like the public GitHub or proprietary enter-
prise Git [3]. Since in many cases the logic to handle different data
types already exist in such code, our goal is to design an extensible
search system, which when given any target data type, can auto-
matically discover and synthesize corresponding type-detection logic
using existing code. Again since the 112 types tested here are by no
means exhaustive, being able to easily extend to new types is a key
requirement.

Using AutoType, developers of our data-preparation system
only need to provide (1) a few positive examples of a target type
and (2) a name for the type. (Alternatively, they may just point
AutoType to an existing data column whose type needs to be
detected, which would already have both information). AutoType
automatically searches and synthesizes type-detection logic that
developers can then manually inspect and verify.

6https://en.wikipedia.org/wiki/ISO_6346

In an enterprise setting, AutoType can be equally applicable, as
administrators or data stewards can connect AutoType with their
proprietary enterprise code repositories to find type-detection logic
relevant to them. Logic so discovered can then be inspected and
“registered” by administrators for the benefit of all enterprise users.

It is worth emphasizing that AutoType is intended to assist
technical users like developers and administrators; non-technical
end-users can benefit from applications enabled by rich semantic
types transparently.

2 PROBLEM DEFINITION

We formally define our type-detection problem as follows.
Definition 1. Program Synthesis for Type-detection. Given a

large collection of code repositories R (e.g., GitHub), a set of user-
provided positive examples P for a target data typeT, and a keyword
name N describing T; automatically produce a ranked list of syn-
thesized type-detection functions using code in R, whose execution
would lead to a Boolean result for predicting whether an input
string is of type T.

Note that the input required in Definition 1 is relatively easy
to provide. For instance, the positive examples P and keyword
name N are often readily available – users7 only need to point
AutoType to an existing data column (e.g., in Figure 1) and that is
already sufficient. For R we use the popular open-source repository
GitHub, but any code repository such as CodePlex [2] or proprietary
Enterprise Git [3] can also be used.

Enumerable vs. un-enumerable types. In this work, we focus
on using synthesized code to detect “types” whose value domains
are too big to be exhaustively enumerated. All the columns/types in
Figure 1 are in this category – these types often involve a numeric
component, (e.g., date or ip-address), whose exhaustive enumera-
tion is inefficient or unnecessary. Compact detection logic in the
form of code is often the best for such types.

“Data types” can sometimes refer to types with categorical val-
ues that are enumerated, e.g., the list of all countries or state-
abbreviations, etc. Such types often contain a limited number of
constant string values, for which knowledge-bases [12, 40] and
mapping tables [42] that exhaustively enumerate them is typically
the best for detection [19, 36]. While AutoType can still find code
to recognize such types (e.g., we find GitHub code that can parse
country-codes or airport-codes, and return relevant information
of input entities), in this work we do not focus on the enumer-
able types since they can already be handled reasonably well using
knowledge-bases.

Data types vs. data semantics. At the risk of stating the obvi-
ous, wewant to emphasize that in this work wemake the distinction
between data types and data semantics. We define data types to be
type information that can be unambiguously inferred from data
values alone, such as date, address, and credit-card. (For columns
whose types cannot be uniquely identified we can fall back to prim-
itive types like string and number). Note that this notion of types is
different from the semantics of data, where an address can mean
mailing-address vs. billing-address, or a number can be GDP vs.

7In this work, we use “users” to refer to technical users like developers when the
context is clear.

https://en.wikipedia.org/wiki/ISO_6346

Code search & analysis

Search keyword for type T

P: positive examples in type T

Function ranking & synthesis

Github repository url

Code invoking function

Data transformations

Input:

AutoType

Output:

ranked functions for
human inspection

Candidate	functions

Ranked	list	of	synthesized	code,
&	explanations	in	DNF

Negative ex. generator

N: negative examplesP

(bcard.py_6==True ⋀ bcard.py_18==True) ⋁
(bcard.py_9==True ⋀ bcard.py_18==True)

Input num card_brand

4147202263232835 4147 Visa

371449635398431 3714 Amex

6011016011016011 6011 Discover

Critical branches and
returns in DNF

Figure 6: Overview of AutoType architecture.

population. Column semantics is clearly useful but difficult to de-
termine in the absence of contexts such as column headers. We
thus consider data semantics to be beyond the scope of this work.
3 SYSTEM OVERVIEW

Figure 6 gives an overview of the AutoType system. The top part
shows input to AutoType. As discussed in Definition 1, users only
need to provide the name of a target type T (e.g., “credit card”) as
a search keyword, and a few positive example values P (e.g., valid
credit card numbers).

In the first code search and analysis component, AutoType uses
the search keyword to retrieve top-k relevant repositories, utilizing
GitHub and Bing’s Search API. Functions from these repositories
are analyzed based on certain criteria (e.g., whether they can be com-
piled and executed) to produce candidate functions F (Section 4).

Using the set of positive examples P, we design automatic meth-
ods to dynamically generate negative examples N likely not in type
T. Note that while we can also ask users to provide negative ex-
amples, unlike positive examples it is often difficult for humans to
systematically enumerate negative examples (Section 6).

1 class CreditCard:

2 def read_from_number(s):

3 # Get 4-digit prefix of card numbers

4 num = int(s[:4])

5 # Visa starts with 4

6 if num /1000 == 4:

7 self.card_brand = 'Visa'

8 # Mastercard starts with 50-55

9 elif num /100 >=50 and num /100 <=55:

10 self.card_brand = 'Mastercard '

11 # Handle other types: Discover , JCB , ...

12 elif ...

13

14 # Next , validate credit -card checksum

15 temp_sum = ... # computing luhn sum

16 if temp_sum % 10 == 0:

17 self.cardnumber = s

18 # More processing for bank info , etc.

Figure 7: Positive and negative examples, and their cor-

responding execution traces (branches taken, objects re-

turned) for running the function in Listing 1.

19 ...

20 return self

Listing 1: Code processing a credit card string

The main Function ranking and synthesis component takes as
input the set of candidate functions F, positive examples P and neg-
ative examples N. It first modifies each function F ∈ F by injecting
profiling logic, so that during execution, program internal states
such as paths taken and objects returned can be recorded. We then
execute each modified function F using examples in P and N as
parameter. For example, we can execute the read_from_number()
function in Listing 1, using positive/negative examples in Figure 7.

Using information such as key branches taken during execution,
AutoType automatically generates an explanation in disjunctive-
normal-form (DNF) [22], that can explain positive examples away
from the negative ones. In the example of Listing 1, AutoType
will be able to find a perfect explanation that tells positive and
negative examples apart using the following DNF: (b6 == True ∧
b16 == True) ∨ (b9 == True ∧ b16 == True) ∨ ..., where bi indicates
the branch value on line i . This DNF clearly explains important
execution states (in this case branches) that should be taken by
valid credit card numbers.

Note that DNF explanations of a function is dependent on in-
put examples used. For instance, if input examples only contain
Visa-credit-cards instead, the DNF may be produced as (b6 ==
True ∧ b16 == True) accordingly.

AutoType analyzes across all candidate functions F from the
previous step, and uses a holistic optimization formulation to rank
results. Note that from the ranked functions, users can inspect
DNF along with source code (e.g., variable names, comments, and
detailed logic) to verify whether a function is indeed relevant to a
target type (Section 5).

As a by-product of identifying relevant code, AutoType also
produces semantic data transformations that are internal states of
executing these functions (e.g., card-brand/issuer of credit cards,
shown at the bottom of Figure 6).

In the following we describe components of AutoType in detail.

4 CODE SEARCH AND ANALYSIS

AutoType first searches and identifies candidate functions F from
relevant code repositories.

4.1 Code search using keywords

AutoType uses the type name N as a keyword query to search
for relevant repositories on GitHub and GithubGist [4] (which
hosts a large number of diverse code snippets). We leverage both
the GitHub search API as well the Bing search API (with queries
like “credit card site:github.com”). We take the union of top-
40 repositories returned by these two APIs since their results are
often complementary. For the scope of this work, we only focus
on Python repositories but the techniques discussed here can be
easily adapted to other languages. The identifiers of top-returned
repositories are then extracted for the complete repositories to be
crawled locally using the GitHub clone.

Discussions. It is worth noting that the search keyword used in
this step is not required to be precise, for it only serves as a crude
pruning step to weed out irrelevant repositories. For instance, for
type IPv4 the query “IP address” works fine, and for ISBN-13 the
query “ISBN” also works. The positive examples P and negative
examples N can more precisely describe the desired types, which
help to pinpoint to relevant type-detection functions (Section 5).

4.2 Code analysis for candidate functions

For each crawled repository, AutoType uses Python’s built-in AST
parser [8] to analyze all .py source files and obtain abstract syntax
trees (ASTs). We then extract functions from AST, and identify the
ones that are (1) suitable for single-parameter invocations, and (2)
actually compilable and executable.

1 F(s);

2 a=classA (); a.F(s);

3 a=classA(s); a.F();

4 F(); #Within F(), replace sys.argv with s

5 F(); #Within F(), replace input() with s

6 fp=open('f.txt','w'); fp.write(s); F('f.txt');

Listing 2: Examples of invoking functions F that potentially

accept one parameter string s.
For the first criterion, we focus on functions suitable for single-

parameter invocations. Using AST-level information, AutoType
handles six variants of functions that can accept a single parame-
ter, as discussed below (each of which corresponds to an example
snippet in Listing 2):
(1) Non-class function that takes a single parameter;
(2) In-class, single-parameter member function, whose class has
parameter-less constructors;
(3) In-class, parameter-less member function, whose class has
single-parameter constructors;
(4) Non-class, parameter-less function that takes an implicit pa-
rameter from system arguments;
(5) Non-class, parameter-less function that takes an implicit pa-
rameter from console input;
(6) Non-class, parameter-less function that takes an implicit pa-
rameter by reading input from files.
In addition to functions, AutoType also directly execute code

snippets outside functions in python files. In the interest of space
we leave more details of this step and its extensions (e.g. invoking
functions with multiple parameters) to Appendix D.

For the functions that can be invoked in these ways, we then test
whether they are actually compilable and executable. One challenge
in programmatically compiling and executing Python projects is

that most of them have external dependencies (other Python pack-
ages). To address this, AutoType parses the requirements.txt file if
available (which describes required dependencies), as well as excep-
tion messages thrown during execution, to automatically identify
and install missing packages using pip. This execute-parse-install-
rerun processmay loop formultiple times (each timewith a different
exception) before the function can successfully execute.

5 FUNCTION SYNTHESIS AND RANKING

Given candidate functions F, AutoType executes each F ∈ F using
positive examples P and negative examplesN, in order to find salient
features from execution traces to differentiate P and N.

In AutoType P is given by users and N is automatically gener-
ated. However, to better focus on the core ranking part, for now
we will assume that N is already given, and defer the discussion on
automatically generating N to Section 6.

5.1 Profile execution traces

As discussed in Section 3, our key idea is that given a target type T,
if a function F ∈ F handles data of type T, then its internal program
states can often be used to reliably differentiate positive examples
from negative ones, because the positive examples (or the input
values expected by F) would likely follow paths corresponding
to normal data processing, whereas the negative examples that F
cannot handle would likely error out and thus take different paths.
This observation was illustrated with the example in Figure 7 and
is very common across data/functions tested.

Specifically, we record each branch value and return value during
execution. Branch values determine whether a branch is taken and
directly control program paths (illustrated as “bi == True/False”),
while return values often reflect important execution results (illus-
trated as ri). Note that this tracing is inter-procedure: traces of all
functions invoked directly and indirectly by F will all be recorded.

To obtain complete execution traces of F across the full call stack
(e.g., including other functions invoked by F), we programmatically
instrumentcompiled Python byte-code to dump all branch compar-
isons and return values. More details about the instrumentation
can be found in Appendix D.2.

Note that while our implementation modifies byte-code which
is specific to Python, this approach can be easily applied to any
other languages that supports programmatic instrumentation (e.g.,
Pin for C/C++ [27] or BTrace [1] for Java). Furthermore, for any
programming language that supports programmatic debugging
(e.g., Javascript [6] and Ruby [9]), one could also step through
source code line-by-line, and record internal execution states, to
also achieve implementation without code modification.

5.2 Rank functions by DNF

Using the observation that branches and return values are useful
features, in this step we rank functions F ∈ F based on how well
they can differentiate P from N.

Featurization. For each example e ∈ P ∪ N, the execution of
F ∈ F with parameter e creates traces that include branch/return
events, denoted as T (e). First, we featurize events in T (e) to make
them suitable for reasoning.

In principle, we can log all events and model them as sequences to
preserve order information; or as multi-sets that are unordered but
retain the occurrence counts (e.g., for loops); or simply as sets. We

find that for function ranking, the set-based featurization is already
expressive enough. Furthermore, given that the number of examples
in P is often limited (e.g., around 20), it can be advantageous to use
set-based model to avoid data sparsity.

For each branch/return event, we create binary features and treat
them as a set. Specifically, for branch conditions, each branch bi
is translated into two binary features, bi == True and bi == False,
corresponding to each branch condition.

For return values ri , if ri is already an atomic value (e.g., bool,
number) we simply print its value; if ri is of collection type (e.g.,
dict, list), we print the length of ri ; if ri is a composite object,
we print whether ri is None (i.e., Python’s equivalent of Null). We
then create simple binary featurizations: for boolean ri , we just use
ri = True and ri = False, for numbers and lengths we use ri = 0
and ri , 0. Note that an alternative strategy is to dump constituent
atomic values of all objects (recursively if needed), and create more
complex featurizations. However given the large number of features
and a relative small number of examples, to avoid data sparsity we
choose to use the simpler featurization.

With these, each execution of a function F ∈ F over one example
e ∈ P ∪ N, is featurized as a set of binary clauses as shown in
Figure 7. We denote each such trace as T (e).

Example 1. Executing function F in Listing 1 using e+1 in Figure 7
produces a trace: T (e+1) = {b6 == True, b16 == True, r20 , None}.
Similarly, T (e+2) = {b6 == False,b9 == True, b16 == True, r20 ,
None}, etc. Note that exceptions, such as ones encountered by e−3
in Figure 7, is also recorded in the trace.

Ranking as Optimization. Given the featurized trace T (e) for
each execution, we are now ready to formulate the function rank-
ing problem. Recall that our formulation has two objectives: (1)
quantitatively determine how well F ∈ F differentiates P and N,
so that we can compare across all candidate functions F; (2) gener-
ate human-understandable explanations to assist users understand
whether F can indeed work as expected to process target type T.

Observing that the desired explanations in programs are often
disjunctions of multiple conjunctive literal features, we propose to
use disjunctive-normal-form (DNF) [22] as our generated explana-
tions, which is a widely-used canonical logical form. The intuition
for using DNF is that each conjunction of literals often correspond
to a specific program-path/return-conditions that a subset of posi-
tive examples satisfy, and using a disjunction corresponds to taking
a union of these subsets.

Example 2. In the example of Listing 1, one possible DNF expla-
nation is (b6 == True ∧ b16 == True) ∨ (b9 == True ∧ b16 == True)
∨..., whose conjunctive clauses correspond to sub-paths that valid
credit card input will pass through.

Note that valid credit card input may pass through branch con-
ditions in Listing 1 that may not be relevant for type-detection.
We thus define a notion to allow a partial conjunctive clause C to
“cover” an example e ∈ P ∪ N. Define B(F) =

⋃
e ∈P∪NT (e) as the

union of all possible binary clauses from executions of F .

Definition 2. Cover. A conjunctive clauseC = c1∧c2∧ . . . ,∧cm
with ci ∈ B(F), is said to cover an example e ∈ P ∪ N, if ci ⊆
T (e),∀ci ∈ C . We denote this by C ⊆ T (e). We further define the
set of examples covered by C as Cov(C) = ∪e ∈P∪N{e |C ⊆ T (e)}.

Example 3.Given thatT (e+2) = {b6 == False,b9 == True, b16 ==
True, r20 , None}, the conjunctive clauseC = (b9 == True∧b16 ==
True) covers e+2 , because the set of literals inC is a subset ofT (e+2).

Intuitively, a clause C covers an example e if the conditions
specified in C is a sub-part of, and consistent with T (e).

Given the definition of cover, intuitively we want to find an ideal
DNF explanation, such that the union of its conjunctive clauses
cover all of P, and none of N.

However, recall that in our problem setting, because users are not
required to provide N, we automatically generate N by dynamically
mutating positive examples (to be discussed in Section 6). In some
cases some N so generated may accidentally be positive examples.
For example, in Figure 7 when we mutate digits in e+1 to generate
e−2 , the resulting e

−
2 actually passes the checksum (the chance of

this happening is 1
10). As such, while we want to ideally generate

an DNF that covers all of P and none of N, in practice this is hard
to guarantee, and we could use “no N” as a “hard” constraint. We
arrive at an optimization formulation that maximizes the coverage
of P, while limiting the coverage of N as a soft-constraint.

Definition 3. Best-DNF-Cover. Given a function F ∈ F, positive
examples P and negative examples N.Find a logical clause in DNF
using literals from B(F), that can cover as many examples in P as
possible, subject to a budget of covering at most θ |N| examples in
N, for some given θ ∈ [0, 1].

max∀D∈DNF(B(F)),
D=C1∨C2 ...∨Cn

������ ⋃i ∈[n]Cov(Ci) ∩ P
������ (1)

s.t.

������ ⋃i ∈[n]Cov(Ci) ∩ N
������ ≤ θ |N| (2)

This formulation reflects the consideration that not all gener-
ated negative examples in N are truly negative, and a θ fraction of
negative examples may be covered.

Definition 4. Best-k-Concise-DNF-Cover. Given a function F ∈ F,
positive examples P and negative examples N. Find a logical clause
in DNF using literals from B(F), whose constituent conjunctions
contain up to k literals, that can cover as many examples in P as
possible, subject to a budget of covering at most θ |N| examples in
N, for some given θ ∈ [0, 1].

The optimization formulation of Best-k-Concise-DNF-Cover will
be exactly Equation (1) and (2), plus an additional constraint n ≤ k .

The consideration behind using DNF (instead of full execution
paths) and restricting the number of clauses is that otherwise com-
plicated DNF (with hundreds of literals) is hard for humans to
understand. Furthermore, very specific DNF recording full-path
information often reduces the generalizability [32] of the resulting
DNF. For example, it may be too brittle to handle slight variation
in positive examples, thus hurting the quality of synthesized vali-
dation function in recognizing unseen positive examples.

In practice, we observe that for most cases, a few key branches or
return conditions can succinctly capture the common characteris-
tics of positive examples in a target T. We thus propose a k-concise
version of Problem 3 defined below, requiring each conjunctive

Algorithm 1 Generate DNF for Best-k-Concise-Cover

INPUT: P,N,θ , F
1: Partition c ∈ B(F) into groups {G1, ...,Gm }, where cx ∈ Gi ∧

cy ∈ Gi iff Cov(cx) = Cov(cy)
2: S = {c1, ..., cm |ci ∈ Gi }

3: L = {C |C ∈ 2S , |C | ≤ k}
4: cur ← ∅
5: while |Cov(cur)| < |P| and best , � do

6: L′ = {C |C ∈ L, |CovN(cur ∨C)| ≤ θ |N|}
7: best ← argmaxC ∈L′ |CovP(cur ∨C)| − |CovP(cur)|
8: cur ← cur ∨ best

return cur

clause to include at most k literals. We find in our experiments that
limiting the complexity of DNF improves function ranking.

Example 4. Suppose in a Best-k-Concise-DNF-Cover problemwith
k = 2, θ = 0.2 and P and N as shown in Figure 7. As can be verified,
one best cover is (b6 == True ∧ b16 == True) ∨ (b9 == True ∧ b16
== True), which covers all P while satisfying the budget of mistake
coverage on N.

Theorem 4. The problem in Definition 4 is NP-hard. Furthermore,
it cannot be approximated within a factor of 2(logn)

δ
, for some δ ,

unless 3SAT ∈ DTIME(2n
3
4 +ϵ
).

The hardness result can be obtained using a reduction from set-
union knapsack (a proof of this is in Appendix F). In light of the
complexity and inapproximability, we propose a greedy algorithm
for Best-DNF-Cover.

We first partition literals in B(F): literals with identical coverage
of P

⋃
N are merged in groups, denoted as G1(F), ...,Gm (F). Usu-

ally literals in each group represent redundant features in sub-paths
taken by a subset of examples (there may be hundreds of such fea-
tures, many of which are redundant). We then pick one literal from
each group into a candidate set S , and enumerate all conjunctive
clauses up to length k using literals in S , which is effectively a
subset of the power-set of S , denoted as L = {C |C ∈ 2S , |C | ≤ k}
(the space allowed by Definition 4). This has a total complexity of
O(|S |k) (where k is a small fixed constant, and |S | is much smaller
than the number of raw features).

We then greedily pick the best conjunctive clause from L that
achieves the most additional coverage of positive examples, without
violating the constraint on the negative examples. This algorithm is
illustrated in Algorithm 1. We useCovP andCovN as shorthand no-
tations for coverage of positive and negative examples, respectively.
Note that other heuristics, such as picking the conjunctive clause
with the best positive-to-negative ratio, are also possible choices.

Ranking-by-DNF. Given functions F, positive examples P and
negative ones N, for each function F ∈ F, we generate DNF (F) as
formulated in Definition 4. Functions are ranked by the positive-
example coverage CovP(Ci), with the negative coverage CovN(Ci)
used as a tie-breaker.

5.3 Synthesize validation function from DNF

If users are satisfied with DNF generated by AutoType, and select
a top-returned function F , the DNF associated with F , DNF(F), will
be used to automatically synthesize type-validation function based

on F . When AutoType runs on a new input s on F , it records the
trace and featurizes into T (s), and check whether T (s) is consistent
with the DNF(F). The pseudo-code of this step is in Appendix G.

5.4 Manual Verification of Functions

For developers, it is often important to manually verify the cor-
rectness of functions synthesized by AutoType. Conceptually, a
function may be incorrect because: (1) it is not related to the target
data type at all; and (2) it intends to process the target type but
does not work as designed (e.g., buggy, not comprehensive, etc.).

From our experience, the first category of false-positives is easy
to detect, because variable names, function names and comments
often provide sufficient contexts. The second category is more
difficult to catch, but the positive/negative examples AutoType
leverages are very effective in pruning out such functions.

We should note that as good engineering practices, developers
should always build comprehensive unit tests for corner cases, irre-
spective of whether the code is written by themselves, taken from
open-source repositories, or synthesized automatically. For exam-
ple for credit-card it would be good to have unit tests for different
types of card numbers (e.g., Visa, Master, Amex, etc.) that should re-
turn true, and a few others that should return false. (Note that these
should be built independent of examples used by AutoType). Since
these are required even if developers choose to write code from
scratch, they are not additional burdens imposed by AutoType.

In addition to function correctness, developers also need to verify
license and security aspects of open-source code. We leave such
discussions to Appendix E.

6 GENERATE NEGATIVE DATA

So far we have assumed that the negative examples N are given
as discussed in Section 5. In practice, since it is difficult for users
to systematically provide representative negative examples, Auto-
Type obviates the burden by automatically generating examples
that are likely negative.

Our first observation is that N cannot be trivially generated (e.g.,
random strings) such that they are entirely different from P. For
example, suppose the target type T is in the numeric domain (e.g.,
credit-card). If we were to use random strings like “ABC123.?” as
N, then almost all functions that accept an int, denoted as Fint ,
will process P normally, while throwing exceptions for the random
N. Thus all Fint will create significantly different traces between
N and P, as if they can all detect P, which is clearly incorrect. The
issue is that randomly generated N is so different from P that they
are not useful in telling which functions are truly relevant.

In theory, if we were able to really test all “representative” data
values covering the entire space of possible input, it would allow
us to know that certain functions are more “selective” than general
Fint and hence potentially more relevant (conceptually using an
argument reminiscent of version-space algebra). However, in prac-
tice function executions are expensive (e.g. some may invoke web
service calls), such that running millions of N across thousands of
candidate functions is not viable.

Our observation is that small “mutations” of P of a given type
T can often generate informative negative examples that are more
discriminative. For example, by randomly mutating digits in valid
credit-card numbers and using them as N, with high likelihood

we produce invalid numbers (e.g., due to checksum), thus allowing
a true credit-card-checksum function to be selected. In comparison,
general Fint functions accept any integers and would not be able
to tell the small difference between this N and P.

As we will see below, the optimal strategy to “mutate” P to
generate true N varies across data types in T. However, there exists
a strict hierarchy of strategies ordered by the amount of mutations
injected. This allows us to dynamically test different strategies,
starting from the strategy with the least amount of mutation.

We observe that in most data types, punctuation often serve as
structural delimiters (e.g., dots in ip-address, spaces in date, dashes
in phone-number, etc.), while non-punctuation characters typically
contain real content. In addition, each data type T often has its
type-specific “alphabet”, defined as follows.

Definition 5. Let Σ be the complete alphabet with all punctua-
tion ΣP , and non-punctuation ΣP (which includes both numbers
and letters), respectively. For a string s , let C(s) be the set of char-
acters in s . Given P of a type T, we define Σ(P) =

⋃
s ∈PC(s) as the

inferred alphabet of T, any c ∈ Σ(P) as an in-alphabet character.
We can additionally define ΣP (P) =

⋃
s ∈P (C(s) ∩ ΣP) as the

in-alphabet, non-punctuation characters for a given P.

Example 5. Given a set of valid IPv4-addresses P (e.g., the IPv4

column in Figure 1), the inferred alphabet is Σ(P) = {0, . . . , 9}∪{“.”}.
The in-alphabet, non-punctuation characters is ΣP (P) = {0, . . . , 9},
representing address information; while “.” is the only punctuation
used for structuring addresses into segments.

For the date type with examples of the format of “Jan 01, 2011”,
the inferred alphabet is Σ(P) = {0, . . . , 9} ∪ {a,b, . . .} ∪ {“ ”, “,”}
(space and comma). The punctuation is again structural to separate
components such as year, month and day.

With these, we now describe a hierarchy of three mutation strate-
gies, strictly ordered by the amount of mutations injected into P.

S1. Mutate-preserve-structure. Given an example s ∈ P, with
some fixed probability p, this strategy replaces each in-alphabet
non-punctuation character from s , with another in-alphabet non-
punctuation character randomly drawn from ΣP (P).

Within our hierarchy, S1 performs the least amount of mutation
to positive examples. By replacing non-punctuation characters in
s ∈ P with other in-alphabet non-punctuation characters, while
leaving structural components (i.e. punctuation) intact, this will
likely generates new positive examples as opposed to negative ones.
For example, for many types such as IPv6, phone-numbers, JSON, and
XML, S1 still generates positive data with high likelihood.

However, for a class of data types that maintain strong internal
consistency, such as types with internal checksum like credit-card,
ISBN, VIN, etc., S1 will likely produce enough negative examples
(e.g., with a probability 9

10 for credit-card) such thatAutoType can
already identify relevant functions. Similarly, for other types with
global structures (but not checksum) such as address, where small
changes to an address like “1 Wall St., New York, NY 10286” can
often lead to an invalid address “1 Wzll St., New Aork, NY 90286”,
good semantic address-parsers can again differentiate between P
and N. For these types we can stop after trying S1, but for remain-
ing types where no functions can differentiate between P and N
generated using S1, we move on to S2 to inject more mutations.

S2. Mutate-preserve-alphabet. Given an example s ∈ P, with
some fixed probability p, this strategy replaces each in-alphabet
character (punctuation and non-punctuation) in s with another
in-alphabet character randomly drawn from Σ(P).

S2 differs from S1 in that we are now mutating punctuation
characters in addition to non-punctuation, which for some types
may break the internal structure maintained through punctuation.
For example, for types like date and IPv6, mutating positive example
s ∈ P will likely generate negative examples when punctuation in s
is altered. So for these types S2 is sufficient as AutoType will find
functions that can differentiate between to P and N so generated.

However, types like gene-sequences and Roman-numeral contain
only non-punctuation characters drawn from type-specific alpha-
bets (e.g., “ACGT” for gene-sequences, “XVILCDM” for Roman-numeral,
etc.). For such types, S2 still does not generate negative examples
and we will resort to S3 below.

S3. Mutate-random. Given an example s ∈ P, with some fixed
probability p this strategy replaces each in-alphabet character in s

with any random character drawn from the full English alphabet Σ.
In S3, by replacing characters with random ones, we inject the

most amount of mutations and will generate negative examples for
types like gene-sequences and Roman-numeral (for which S2 fails).

Proposition 1. Given any s ∈ P, let S1(s), S2(s), S3(s) be the
spaces of mutations with policy S1, S2 and S3, respectively. The fol-
lowing set-containment relationship holds: S1(s) ⊆ S2(s) ⊆ S3(s).

This proposition shows that S1, S2 and S3 form a hierarchy
strictly ordered by the amount of mutations on P (a proof of this is
in Appendix H).

Such a hierarchical relationship is useful, because given a new
target type T, we do not known a priori which strategy is appro-
priate for T. However, because the strategies are ordered, we can
test each in turn with an increasing amount of mutation, until
the right strategy is used and true N generated, at which point
Best-k-Concise-Cover returns relevant functions as opposed to ∅.

Algorithm 2 summarizes this process. Note that in Generate-N-
by-Mutation, we generate a large number of negative examples for
each positive example to improve robustness.

Example 6. Suppose we would like to detect IPv6 addresses,
and have 4f:45b6:336:d336:e41b:8df4:696:e2 as a positive exam-
ple. We start with S1, which will not touch punctuation “:”, but
randomly replace non-punctuation with [0-9a-f]. This will still
create positive examples. When we treat such examples as N, Best-
k-Concise-Cover(P, N, F) returns no result as N and P cannot be
differentiated.

We then try S2, which mutates any character (including “:”) with
in-alphabet characters (including “:”) . S2 is likely to produce true
negative examples (due to incorrect number of “:”), with which
Best-k-Concise-Cover() will return relevant IPv6 functions, and at
that point we can stop without using S3.

In addition to replacement-based mutations discussed above,
there are orthogonal strategies, such as altering example lengths,
which can also be used in addition to strategies discussed above.

Algorithm 2 Generate N dynamically
INPUT: P, F

1: for Si ∈ [S1, S2, S3] do
2: N← Generate-N-by-Mutation(P, Si)
3: R ← {F |F ∈ F, Best-k-Concise-Cover(P, N, F) , ∅})
4: if R , ∅ then return R ranked by coverage

7 ADDITIONAL APPLICATIONS

7.1 Semantic transformations

Semantic transformations, as illustrated with the example in Fig-
ure 4, are transformations specific to a data types once the type is de-
tected. Automatically recommending contextual and type-specific
transformations is clearly useful.

Our observation is that when functions process data of type T,
they often (1) produce necessary intermediate results, and (2) per-
form additional transformations that are relevant, both of which can
be harvested for semantic transformations. For instance, the func-
tion in Listing 1 produces card-issuer in self.card_brand when
processing credit card numbers.

Given this, once relevant functions are identified for a target type
T, AutoType can suggest candidate transformations by leveraging
intermediate variables in these functions. These transformations
can then be shown in tabular form for each P shown in Figure 6, for
humans to inspect and identify relevant semantic transformations.

We test AutoType on 20 popular types and manually check
candidate transformations so generated. Many transformations are
indeed non-trivial to write and useful to have. We leave the detail
of this step to Appendix B.

7.2 Type detection in tables

Another application of the synthesized type-detection logic is to de-
tect data types for tables in the wild, where type-semantics are often
missing (e.g., column may use very generic headers like “name” or
missing altogether [20]). With type-detection logic, we can automat-
ically infer that tables columns are of type IPv4, date, ISBN, etc., as
shown in Figure 1. Such meta-data will clearly benefit applications
like table search and table understanding.

We testAutoType on type-detection by usingweb-tables [15, 16],
which are known to be a rich source of diverse tables. We synthesize
type-detection logic for 20 popular data types and run them on a
sample of web table columns. Compared to alternatives like Regex-
based and keyword-based methods, synthesized type-detection
functions can significantly improve both precision and recall of
column type detection (Section 9).

8 EXPERIMENTAL EVALUATION

We first evaluate the quality of type-detection code synthesized.

8.1 Experimental setup

Test cases. We identify a benchmark of 112 semantic data types
(listed in Appendix A) that are regarded as useful for a commercial
data preparation system. Some types like date-time have multiple
formats/sub-types (e.g.,“Jan 01, 2017” vs. “2017-01-01”). We create
a separate test case for each sub-type, as well as a test case with
data mixed from different sub-types.

For each test case we use as input around 20 positive examples
(taken randomly from the web), as well as a canonical type name.

Computing environment.We implement a prototype of Au-
toType in Python 2.7 that searches over public open-source reposi-
tories GitHub and Gist. Experiments were run with Azure virtual
machines with 16 2.6GHz processors.

Methods compared.
• DNF-concise (DNF-S): This is our AutoType approach for-

mulated using Definition 4. We use Algorithm 1, with k = 3 and
θ = 0.3.
• DNF-complete (DNF-C): This is a variant of our approach

DNF-S, but uses the formulation in Definition 3 without requiring
k-conciseness.
• Return-Only (RET): This is an additional variant of DNF-S

that treats functions as black boxes and uses only return values (no
branches). This allows us to quantify the importance of features
derived from program internal logic flows.
• Keyword match (KW): We implement a TF-IDF-style [30]

keyword-search method that treats each function as a “document”,
and ranks functions using the search keyword as query. This seem-
ingly naive approach is actually very close to what humans would
do manually, because they would likely use a search engine to
retrieve top-ranked functions for inspection.
• Logistic-regression (LR): Since the positive/negative exam-

ples are effectively labeled data, and branches/returns are used as
features, we using a conventional machine-learning model, logistic-
regression, to rank functions based on regression scores.

Evaluation metric. We evaluate the ranked list of synthesized
code using standard IR metrics: precision@K, and normalized dis-
counted cumulative gain (NDCG) [25].

Precision@K is normally defined as #-relevant-above-K
K , the number

of relevant items above position K divided by K.
One approach to define relevance is to have a human judge

inspect the source code of F , and as long as F intends to process type
T, we label F as relevant. However, we find that this often overstates
the utility of F , for some code on GitHub is not implemented as
well as others (e.g., a function that claims to process IPv4 may only
check if the input consists of numbers separated by “.” without
validating if there are four segments, each below 256).

So in addition to having a human judge to read source code and
give a true/false intention score I (F) for each F , we use a hold-
out set of 10 positive examples of T (separate from the 20 used for
training) denoted as Ptest , which should all pass if F is good; as well
as 1000 truly negative examples sampled from web tables denoted
as Ntest (inspected by humans), for which F should all return false.
In reality F is often imperfect, and we define a quality score of F
as Q(F) = 0.5 |pass-in-Ptest |

|Ptest |
+ 0.5 |pass-in-Ntest |

|Ntest |
(essentially treating

Ptest and Ntest as unit-tests).
With these, the final relevance is computed as rel(F) = I (F)Q(F).

Note that if F is not even intended for T (our human judge labels
I (F) as 0), then the overall relevance is 0 regardless of Q(F).

Using rel(F), we can compute precision@K as usual.

Similarly, we computeNDCGp =
DCGp
IDCGp

, whereDCGp =
∑p
i=1 r eli

log2 (i+1)
,

in which reli is the relevance of F at position i (and IDCG is com-
puted similarly). Note that NDCG gives a normalized score in [0, 1]
relative to ideal ranking.

We also report relative recall of each method using the pooling
methodology from IR [29]. Like evaluating search engines, we “pool”
top-k relevant results from all methods, and treat their union as a
proxy of ground truth. The relative recall of a method is defined as
#-relevant-top-k
#-total-relevant . In our experiment we use k = 7.

8.2 Synthesis quality comparison

8.2.1 Ranking quality. Figure 8(a) and Figure 8(b) show results
for precision@K evaluation, and NDCG, respectively. Table 8(c)
shows the result of relative recall (from top-7). DNF-S scores the
best across all ranking methods, with top-1 precision reaching 90%.
This shows the effectiveness of the k-concise DNF formulation.

k=1 k=2 k=3 k=4 k=5 k=6 k=7

40%

60%

80%

100%

DNF-S KW RET LR DNF-C

(a) Precision@K comparison

p=1 p=2 p=3 p=4 p=5 p=6 p=7

0.4

0.6

0.8

1.0

DNF-S KW RET LR DNF-C

(b) NDCG comparison (c) Recall comparison

Figure 8: Ranking quality evaluations

DNF-C computes complex DNF with full path information that
are often less understandable for humans. Overall its quality is
comparable toDNF-S, except that in a few cases the DNFs generated
are too specific to “generalize” well.

The quality of RET is considerably lower than DNF-S, because
it does not use program internal path information, and will miss
certain relevant functions (e.g., function in Listing 1). The quality
gap is thus more pronounced as k grows.

The quality of LR is reasonable (since it uses identical features
as DNF-S), but still inferior to DNF-S. We believe this is because
DNF-based methods use problem-specific properties (e.g, union of
conjunctions of literals is suitable to describe program executions)
to quickly converge to good representations with limited examples.
In comparison, while ML models are highly generic and expressive,
the generality comes at a cost of requiring more training examples,
which likely leads to the performance gap. Furthermore, the explain-
ability and understand-ability of DNF-based approaches over ML
models (e.g., fractional weights over a large number of features) is
also an important consideration.

KW uses keyword-matches only and is substantially worse. This
shows the importance of internal program states over keywords.

8.2.2 Coverage analysis. Overall, AutoType is able to find func-
tions for 84 out of 112 types tested. We manually inspect and label

0

10

20

30

40

#	
of
	re

le
va
nt
	fu

nc
tio

ns

Figure 9: Distribution of correct functions returned

up to 33 functions returned for each type. The distribution of rele-
vant functions is shown in Figure 9. We find 7.4 functions for each
type on average.

After inspecting functions discovered, we find that most are
not initially written for data validation. Instead, many of them are
written to parse strings into program-internal representations, or
to convert values of one data type to another, etc.

The large number of functions returned for each type shows the
creativity of developers and the variety ways in which code can
be re-purposed for validation. For instance, to validate IPv4, some
synthesized functions use complex regex, some use the inet service
from UNIX, and others invoke the WHOIS web service (which not
only validates addresses but also obtains registration information
such as IP owners).

Another example is person-name. Although this type cannot be
precisely defined and validated programmatically (it is difficult to
exhausively compile all first/last names), AutoType finds interest-
ing functions that can be re-purposed for type-detection, including
ones that look up names using facebook/instagram to retrieve pro-
files; and ones that predict genders based on names . .

Note that in many cases, it is hard to program type-detection
code from scratch. For example, chemical-formulas follow complex
rules, addresses require lookup of reference data for validation, etc.
AutoType provides an easy alternative to search and reuse.

For the 28 types that AutoType could not synthesize type-
detection logic, we find two main reasons why they are not covered.
First, for 24 relatively niche data types (e.g., Library of Congress
Classification), we could not find relevant code in Python2 after ex-
tensive manual search. It is possible that such Python code may not
exist on GitHub. We find that for 12 types (e.g., National Provider

Identifier, ISWC), validation functions exist but are written in
other languages (e.g., Python3 or Java).

Second, for the remaining 4 types (SQL query, TAF, ISNI, CIR),
relevant functions exist but AutoType is not able to use them,
because certain complicated invocations (e.g., a = foo1(); b =

foo2(a); c = foo3(b, s) where s is the example string) are not
currently handled by AutoType.

8.2.3 Sensitivity to seed examples. We first evaluate how the
number of positive examples affects quality. We choose 20 popular
types (listed in Appendix I) and evaluate their precision-at-K with
10 to 30 examples, shown in Figure 10(a). We can see that there
is not much quality gain from 20 to 30 examples, while using 10
examples results in a small drop of quality (8%). This shows that
although more examples are generally better, AutoType also does
not require a large number of examples.

We then intentionally add “noise” (i.e., incorrect positive exam-
ples) into the input. On the same 20 types, we increase the ratio of
incorrect examples from 0% to 30%. Figure 10(b) shows 10% of errors
has virtually no effect on result quality, underlining the robustness

k=1 k=2 k=3 k=4

40%

60%

80%

100%

10 examples 20 examples 30 examples

(a) Varying the number of provided positive examples.
k=1 k=2 k=3 k=4

40%

60%

80%

100%

no error 10%error 20%error 30%error

(b) Adding noise into positive examples.
k=1 k=2 k=3 k=4

40%

60%

80%

100%

orig only_random_neg no_neg

(c) Not using/using only random negative examples.

Figure 10: Sensitivity to user-provided positive examples and systematically-generated negative examples.

of the AutoType formulation. Injecting additional noise does affect
result quality as expected.

8.2.4 Effectiveness of negative example generation. We test the
effectiveness of our hierarchical generation of negative examples
by comparing to 1) using random strings as negative examples, 2)
using no negative examples at all (where functions are ranked by
how many positive examples share the same path). Figure 10(c)
shows that our strategy significantly outperforms both baselines.

Additional experiments, such as sensitivity to different input
search keywords, can be found in Appendix J.

8.3 Comparison with related systems

To the best of our knowledge, there are no existing systems de-
signed directly for type detection, so we discuss a comparison with
two related data transformation systems that use the Program-by-
Example (PBE) paradigm.

Transform-Data-by-Example (TDE)
8
[24]. TDE is intended

to automate data transformation by reusing relevant code to syn-
thesize new programs consistent with given input-output examples.
While not intended for type detection, we force a comparison using
positive/negative examples as input, and True/False as output. Note
that a small output domain like this is known to be problematic for
PBE systems. As expected, out of 20 popular types tested, TDE is
able to find functions for 4 types, presumably because the output
alone is not informative enough to guide the search. After chang-
ing output to related transformations (e.g., a different date-time
format), TDE finds relevant code (though not precisely for type
detection) for half of the cases.

DataXFormer [33]. DataXFormer is also a PBE system that
uses search engines to find relevant web tables and services. Since
the online system is no longer available9, we perform the following
manual analysis to estimate its coverage upper bound. We search
112 types on Google (using queries like “type-name parser” “type-
name validation”), out of which 76 types have related web services.
Since not all web services can be automatically found, parsed, and
invoked by DataXFormer this is its recall upper bound.

We inspect web services returned for a sample of 20 types, by
observing how they behave when valid vs. invalid data are entered.
In 65% cases human readable messages like “invalid”, “not correct”,
“not valid” etc. are returned, suggesting that the system may be
able to automatically leverage such services when corresponding
keywords are used as output-examples. For remaining services
there are no clear indication of data validity.

Overall, we find adapting PBE systems to type detection non-
trivial, and the black-boxes (e.g., services) returned are not ideal for

8https://www.microsoft.com/en-us/research/project/transform-data-by-example/
9http://www.dataxformer.org, last tested in 2018-03.

understanding and reuse. AutoType on the other hand, produces
white-box code snippets for developers to inspect at high precision
and recall.

9 TYPE-DETECTION IN TABLES

Additionally, we apply synthesized type-detection logic on a large
set of table columns to evaluate its effectiveness.

9.1 Experiment setup

Data set. We use a large corpus of web tables extracted from Bing
index [16], and randomly sample 60K table columns for the exper-
iment of column type detection. We again pick 20 popular data
types as the target for detection.

Methods compared.

• DNF-concise (DNF-S): We use the top-1 function synthe-
sized by AutoType. A column is predicted to be of type T if over
80% of its values are accepted by the type-detection function (to
account for dirty values such as meta-data mixed in columns).
• Keyword match (KW):We choose a number of search key-

words for each type (e.g., “url” and “website” for type url). Columns
with these search keywords as headers are returned as results.
• Regular expression validation (REGEX):We also test reg-

ular expressions that can sometimes be used to detect data types.
Specifically, we automatically generate regex from positive exam-
ples P used by AutoType, using techniques described in Potter’s
Wheel [35]. Like in DNF-S, if over 80% of values in a column C is
consistent with the regex of type T, we predict C to be of type T.

Evaluation metric. We manually verify columns detected as
of type T from each method. For many columns, we are confident
about their types by looking at values: e.g., “459 Euclid Rd, Utica

NY” is an address, “(502) 107-2133” is a phone-number, etc. Certain
types require algorithmic verification (e.g., ISBN, credit card) and
are verified using ground-truth algorithms. Remaining cases are
verified based on column header.

After verifying correctness of columns returned, we compute
the precision of each type-detection method. Since it is hard to
manually inspect all 60K columns to compute recall, for each type
we take the union of correct columns returned by all three methods
as the ground truth to compute a relative recall.

9.2 Type-detection quality

25%

50%

75%

100%

IS
BN

IS
IN

IS
SN

em
ail

cr
ed

itc
ar

d ur
l

da
te

tim
e

EAN

zip
co

de

co
un

try

cu
rre

nc
y

IP
v4

ph
on

e

ad
dr

es
s

UPC

F
−

sc
or

e DNF.S

REGEX

KW

Figure 11: F-score on column-type detection

https://www.microsoft.com/en-us/research/project/transform-data-by-example/
http://www.dataxformer.org

datetime address country phone currency email zipcode IPv4 url ISBN UPC EAN ISIN ISSN creditcard
DNF-S 2958 (0.88) 157 (0.80) 132 (0.87) 68 (0.69) 26 (1.00) 37 (1.00) 22 (0.81) 8 (0.80) 15 (1.00) 12 (1.00) 2 (0.12) 4 (0.80) 1 (1.00) 1 (1.00) 1 (1.00)
KW 779 (0.65) 333 (0.63) 38 (0.37) 54 (0.62) 19 (0.42) 19 (0.83) 17 (0.59) 11 (0.19) 3 (0.50) 3 (0.75) 1 (0.14) 0 (-) 1 (1.00) 1 (1.00) 0 (-)

REGEX 0 (-) 0 (-) 46 (0.07) 17 (1.00) 17 (0.85) 4 (1.00) 22 (0.14) 8 (0.73) 3 (1.00) 2 (0.13) 1 (0.50) 3 (0.20) 1 (1.00) 1 (0.09) 1 (0.10)
Union-all 3069 358 155 82 37 37 23 11 16 12 3 4 1 1 1
Table 2: Recall of each method, reported as the number of true-positive columns, and corresponding precision in parenthesis.

Valid columns are found for 15 types out of the 20 tested. Fig-
ure 11 shows the F-score of three methods, and Table 2 presents
the detailed result for each type. DNF-S has the best F-score in 13
cases. It detects types for 3444 columns in total, with an average
precision of 85%.

Keyword-only match based on column headers results in many
false-positives. In addition, column headers are often missing or
non-descriptive, leading to many false-negatives.

REGEX is not accurate for complex types requiring algorith-
mic verification (e.g., ISBN, ISSN) or reference lookup (e.g., zipcode
and country). It also fails to generate a regex from examples con-
taining mixed format (mixed date time and address) due to data
heterogeneity. In addition, regex often fail to generalize when the
input data cover a subset of possible examples in a target type.
For example, input examples provided for ISBN only contain digits
(e.g., “9784063641561”), while real ISBN data can also be formatted
as “978-4-06-364156-1”. Regex trained from given input is not able
to recognize ISBN variations, while the function returned by Auto-
Type can handle input in a more robust manner (e.g., removing “-”)
before computing checksum.

Now we discuss results of DNF-S. Among all false-positive
columns detected, 57% can be attributable to certain implicit assump-
tions in the code we use. For example, the UPC validation function
computes checksum without verifying data length, thus returning
ISBN columns as the two share the same checksum algorithm. Such
code can be easily modified and enhanced with minimum efforts.
The remaining 43% cases is due to data ambiguity. Such columns
are able to pass a perfectly-written type-detection function, but
still not of the target type for column headers indicate otherwise.
For example, a column whose header is “version number”, with
data like “7.74.0.0” is detected as IPv4; or a column with header
“temperature range” and values like “4-11” is detected as date, etc.

Reasons behind false-negatives detection are more complicated.
Firstly, 12% columns have composite values with sub-strings that
can be detected as a target type. For example, “524 Lake, Salem,

OR, (843) 389-9216” is composed of both address and phone number,
“ISBN 9784063641677” contains a sub-string that is ISBN, etc. Most
functions are only able to process clean input and not extrane-
ous information. Techniques like [18] can be employed as a pre-
processing step to segment input values in columns before invoking
type-detection logic. Other reasons include code quality (17%), and
data quality in columns (16%). The remaining cases are in mailing

address, where the top-1 validation code returned by AutoType
and employed here uses a address-parsing service that would not
handle partial addresses like “100 Main Street”.

10 RELATEDWORK

Despite its wide applicability, type detection is largely treated as
a manual and ad-hoc process (e.g., with regex-like rules), and not
systematically studied to the best of our knowledge.

Recent Program-by-Example (PBE) systems, such as Transform-
Data-by-Example (TDE) [24] and DataXFormer [33], also leverage

existing source code and web services. Conceptually they can be
used to find relevant code, by using positive/negative examples as
input-examples of PBE, and “true/false” or “valid/invalid” as output-
examples of PBE. Our experiment suggests that PBE systems are not
best suited for synthesizing type-detection logic, because the output
domain is small (binary) and non-descriptive, which is known to
be difficult for PBE.

There is a long and fruitful line of research on search source code
using natural language queries (e.g., [28, 38]), which are conceptu-
ally similar to the search engines and GitHub search API we used.
We find the keyword search paradigm to be ineffectively when used
directly for the specific task of identifying relevant type-detection
logic, as keywords are often ambiguous as compared to examples.

We note that the general idea of leveraging code analysis and
execution paths has been applied in other contexts in the program-
ming language community. For instance, in statistical debugging
and fault localization [17, 43], variable values and code paths are
utilized to find predictors that can differentiate between successful
runs and faulty runs (e.g., those that cause crashes and exceptions).
Predictors can then be given to developers to localize bugs.

Another related area of research in programming language is
test case generation for test coverage [14]. The idea is to use the set
of branches that need to be taken to reach a particular code region,
to induce constraints on input values that need to be satisfied,
which can then be solved to reverse-engineer desired input data to
generate coverage tests.

11 CONCLUSIONS AND FUTUREWORK

In this work we take the initial step towards synthesizing type-
detection functions for rich semantic data types. There are a few
promising directions for future work. One direction of interest is
to better explain top-returned functions such that users can verify
more easily. Another dimension is to explore rich applications that
semantic types can enable, in the context of information extraction
and table search for example. We hope that our research will serve
as a springboard for future work, improving and employing our
techniques for a rich variety of applications.

REFERENCES

[1] Btrace - a tracing tool for java. https://github.com/btraceio/btrace.
[2] Codeplex. https://www.codeplex.com/.
[3] Enterprise version of the proprietary github. https://enterprise.github.com/home.
[4] GitHubGist. https://gist.github.com/.
[5] GS1 check digit. https://www.gs1.org/how-calculate-check-digit-manually.
[6] Javascript debugger statement. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Statements/debugger.
[7] Luhn algorithm. https://en.wikipedia.org/wiki/Luhn_algorithm.
[8] Python built-in ast parser. https://docs.python.org/2/library/ast.html.
[9] Ruby debugging. http://guides.rubyonrails.org/debugging_rails_applications.

html.
[10] Trifacta built-in data types. https://docs.trifacta.com/display/PE/Supported+

Data+Types.
[11] A. Arulselvan. A note on the set union knapsack problem. Discrete Applied

Mathematics, 169:214–218, 2014.
[12] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A

nucleus for a web of open data. The semantic web, pages 722–735, 2007.
[13] P. A. Bernstein. Applying model management to classical meta data problems.

In CIDR, 2003.

https://github.com/btraceio/btrace
https://www.codeplex.com/
https://enterprise.github.com/home
https://gist.github.com/
https://www.gs1.org/how-calculate-check-digit-manually
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/debugger
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/debugger
https://en.wikipedia.org/wiki/Luhn_algorithm
https://docs.python.org/2/library/ast.html
http://guides.rubyonrails.org/debugging_rails_applications.html
http://guides.rubyonrails.org/debugging_rails_applications.html
https://docs.trifacta.com/display/PE/Supported+Data+Types
https://docs.trifacta.com/display/PE/Supported+Data+Types

[14] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Tillmann, and
W. Visser. Symbolic execution for software testing in practice: preliminary
assessment. In Proceedings of the 33rd International Conference on Software
Engineering, pages 1066–1071. ACM, 2011.

[15] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables: exploring
the power of tables on the web. Proceedings of VLDB, (1), 2008.

[16] K. Chakrabarti, S. Chaudhuri, Z. Chen, K. Ganjam, Y. He, and W. Redmond. Data
services leveraging bing’s data assets. IEEE Data Eng. Bull., 39(3):15–28, 2016.

[17] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani. Holmes: Effective
statistical debugging via efficient path profiling. In Software Engineering, 2009.
ICSE 2009. IEEE 31st International Conference on, pages 34–44. IEEE, 2009.

[18] X. Chu, Y. He, K. Chakrabarti, and K. Ganjam. Tegra: Table extraction by global
record alignment. In Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pages 1713–1728. ACM, 2015.

[19] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. Katara:
A data cleaning system powered by knowledge bases and crowdsourcing. In
Proceedings of SIGMOD, 2015.

[20] E. Cortez, P. A. Bernstein, Y. He, and L. Novik. Annotating database schemas to
help enterprise search. Proceedings of VLDB, (12), 2015.

[21] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap: discovering
complex semantic matches between database schemas. In Proceedings of SIGMOD,
2004.

[22] M. Hazewinkel, editor. Encyclopedia of Mathematics. Springer Science+Business
Media B.V. / Kluwer Academic Publishers, 2001.

[23] Y. He, K. Chakrabarti, T. Cheng, and T. Tylenda. Automatic discovery of at-
tribute synonyms using query logs and table corpora. In Proceedings of WWW.
International World Wide Web Conferences Steering Committee, 2016.

[24] Y. He, K. Ganjam, K. Lee, Y. Wang, V. Narasayya, S. Chaudhuri, X. Chu, and
Y. Zheng. Transform-Data-by-Example (TDE): Extensible Data Transformation
in Excel. In SIGMOD, 2018.

[25] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[26] P. G. Kolaitis. Schema mappings, data exchange, and metadata management. In
Proceedings of PODS, 2005.

[27] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In Acm sigplan notices, 2005.

[28] F. Lv, H. Zhang, J.-g. Lou, S.Wang, D. Zhang, and J. Zhao. Codehow: Effective code
search based on api understanding and extended boolean model (e). In Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on,
pages 260–270. IEEE, 2015.

[29] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[30] C. D. Manning, P. Raghavan, and H. Schütze. Scoring, term weighting and the
vector space model. Introduction to information retrieval, 100:2–4, 2008.

[31] J. L. McCarthy. Metadata management for large statistical databases. In Proceed-
ings of VLDB, 1982.

[32] T. M. Mitchell. Machine learning., 1997.
[33] J. Morcos, Z. Abedjan, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stonebraker.

Dataxformer: An interactive data transformation tool. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, pages 883–888,
2015.

[34] F. Naumann, C.-T. Ho, X. Tian, L. M. Haas, and N.Megiddo. Attribute classification
using feature analysis. In Proceedings of ICDE, 2002.

[35] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning
system. In Proceedings of VLDB, 2001.

[36] D. Ritze, O. Lehmberg, and C. Bizer. Matching html tables to dbpedia. In Proceed-
ings of WIMS, page 10. ACM, 2015.

[37] A. Sen. Metadata management: past, present and future. Decision Support Systems,
(1), 2004.

[38] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz. Sando: an extensible local
code search framework. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, page 15. ACM, 2012.

[39] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.
SIGMOD Rec., 2005.

[40] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In Proceedings of WWW, 2007.

[41] A. Talaika, J. Biega, A. Amarilli, and F. M. Suchanek. Ibex: harvesting entities
from the web using unique identifiers. In Proceedings of WebDB, 2015.

[42] Y. Wang and Y. He. Synthesizing mapping relationships using table corpus. In
Proceedings of SIGMOD, 2017.

[43] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical debug-
ging: simultaneous identification of multiple bugs. In Proceedings of the 23rd
international conference on Machine learning, pages 1105–1112. ACM, 2006.

APPENDIX

A FULL LIST OF DATA TYPES TESTED

We roughtly cluster semantic types tested based on their domains.
Type names below in italic are the ones for whichAutoType cannot
find relevant functions for type-detection.

Science (Biology, chemistry, etc): Simplified Molecular-Input
Line-Entry (SMILE), International Chemical Identifier (InChI), CAS
registration number, FASTA sequence, FASTQ gene sequence, chem-
ical formula, Uniprot, Ensembl gene ID, Life Science Identifier (LSID),
IUPAC number, EVMPD, Anatomical Therapeutic Chemical, SNPID
number, International Code of Zoological Nomenclature

Health: drug name, DEA number, ICD9, ICD10, HL7 message,
HCPCS code, FDA drug code, Active Ingredient Group number

Financial & commerce: Stock Exchange Daily Official List
(SEDOL), UPC barcode, CUSIP number, Stock ticker, ABA routing
number, EAN barcode, ASIN book number, IBAN number, bitcoin
address, EDIFACT message, FIX message, GTIN number, credit card
number, currency, SWIFT message, NATO stock number

Technology & communication: IPv4 address, IPv6 address,
URL, IMEI number, MAC address, MD5, MSISDN, Notice To Airmen,
AIS message, NMEA 0183 International Standard Text Code (ISTC)

Transportation:Vehicle IdentificationNumber (VIN), UICwagon
number, International Maritime Organization number (IMO)

Geo location: Long/lat, US zipcode, UK postal code, Canada
postal code, MGRS coordinate, Global Location Number (GLN),
UTM, airport code, us state abbreviation, country code, geojson,
TAF message, International Geo Sample Number (IGSN)

Publication: ISBN, ISIN, ISSN, Bibcode, ISAN, ISWC, DOI, ISRC,
ISMN, ORCID, ONIX publishing protocol, Library of Congress Clas-
sification (LCC), ISO 690 citation, APA citation, National Bibliography
Number (NBN), Electronic Textbook Track Number (ETTN)

Personal Information: phone number, email address, person
name, mailing address, Legal Entity Identifier (LEI), US Social Secu-
rity Number (SSN), Chinese Resident ID, Employer Identification
Number (EIN), NHS number, PubChem ID, Personal Identifiable
Information (PII), National Provider Identifier (NPI), FEI identifier

Other: book name, HEX color format, RGB color format, CMYK
color format, HSL color format, UNIX time, http status code, roman
number, HTML, JSON, XML, date time, SQL statement, Reuters
instrument code, OID number, Global Unique Identifier, International
Standard Name Identifier (ISNI)

B SEMANTIC TRANSFORMATIONS

As mentioned in Section 7.1, AutoType collects intermediate vari-
ables when running relevant functions to search for candidate trans-
formations. Specifically, AutoType dumps out all atomic variables
(e.g., int, float, string), and decomposes composite ones (e.g.,
class objects, list, dict) to dump their constituent atomic values.

Across a set of relevant functions returned byAutoType, such an
approach often produces a rich variety of possible transformations
for T;AutoType additionally filter variables that are of low entropy
(e.g., producing the same value across P) when necessary.

We useAutoType to retrieve data transformations for 20 popular
types. We manually check these transformations produced from top
10 functions for each type, shown in Table 3. There are 7 meaningful
transformations for each data type on average.

type: transformations type: transformations

email: domain, IPv4,... us zipcode: long/lat, city, state, country,...
url: scheme, domain, host,... VIN: manufacturer, serial, year, region,...

phone: country date time: year, month, day, hour,...
DOI: bookname person name: first/last name, facebook profile,...
ISBN: DOI, EAN, language,... MAC address: IPv6, EUI-64-int format,...
IPv4: country/city, DNS zone,... address: country, city, long/lat, zipcode,...
IPv6: start ip, end ip,... credit card: card brand, card length
IBAN: country, countrycode stock ticker: company, latest/highest price,...
country: full name, code,... chemical formula: average mass, atoms,...
UPC: product, manufacturer hexcolor: rgb, cmyk, colorname,...

Table 3: Examples of semantic data transformations.

As can be seen from Table 3, many interesting transformations
exist. For example, the vehicle type, manufacturer and serial num-
ber information can be extracted from VIN numbers; molecular
mass can be computed from chemical formula; country name from
phone numbers, etc. Interestingly, there also exist transformations
that convert one data type into other types, for instance, from UPC
to EAN code, HSL color format to RGB format, UTM coordinate to
longitude and latitude, etc., all of which require non-trivial trans-
formation logic that are hard to program from scratch. This again
demonstrates the advantage of the AutoType approach that reuses
existing code.

C MORE APPLICATIONS OF DATA TYPES

Data type is a key type of of metadata. In addition to the scenarios
discussed in the introduction, it has been used as an important
ingredient in many other problems, including schemamapping [34],
outlier detection [10], and information extraction [41]. We will
review some additional applications below.

Schema mapping. Authors in [21, 34] observe that table column
types (e.g., date-time) can be used as an important signal to produce
accurate schema mappings, for columns of compatible types are
more likely to be matches. Since type detection is not a focus of
these schema mapping work, manually-defined regex are typically
used to detect a small number of data types.

Outlier Detection. Given a relational table, it is intuitive that if
most values in a column (e.g., 95% of them) can be recognized as
values of some data type, it is reasonable to believe that the remain-
ing values are potential errors/outliers. This is exactly the approach
taken by commercial systems such as Trifacta [10]. However, as
we discuss in the Appendix, these commercial systems typically
uses predefined regex-like patterns to detect data types, which can
often lead to false-positives (e.g., \d{16} for credit cards).

Information Extraction.While most applications of type detection
have been in the context of tabular relational tables, type detec-
tion logic also applies to unstructured text data for the purpose of
information extraction (IE). For instance, authors in [41] develop
hand-crafted logic to extract unique identifiers such as ISBN, GTIN
and DOI from web documents. Because these identifiers require
strict (and different) checksum/validation algorithms, the detection
is likely to be high precision. The AutoType system proposed in
this work can be easily used for IE scenarios, and in fact subsumes
the types recognized in [41]. Using automatically-discovered type
detection logic provides an interesting alternative to complement
the mainstream text-pattern based extraction, which we believe
can greatly extend the reach of existing IE systems.

D CODE ANALYSIS

D.1 Invoking functions

Beside various ways of invoking existing functions, AutoType also
tries to run code snippets that do not live in functions. Since each
python file can be executed standalone as a script, once AutoType
detects python code outside of functions in a file, it runs the file
directly. Before running the file, AutoType also tries to feed input
example by replacing system argument or user input, as described
in Section 4.2. We add an additional feeding-input method for such
script files based on the observation that data processed by these
files are often hard-coded, as the example in Listing 3 shows. Each
assignment of a constant value (e.g., line 1 in Listing 3) can be
replaced with an input parameter as one new “function”. If a modi-
fied file runs successfully without exception, it will be saved as a
candidate function.

1 card_number='4111111111111111 '

2 for c in card_number:

3 ... #code to validate a card number

Listing 3: code snippet with hard-coded input string

This approach helps AutoType find many useful functions, espe-
cially for code from GitHub Gist which hosts many small snippets.

AutoType also considers multi-parameter functions if the input
string can be split, for instance, long/lat which can be split into
two parts, rgb color into three, etc. For these types, AutoType tries
functions that take the same number of argument as the number
input components.

D.2 Byte-Code Injection

AutoType instruments python bytecode to obtain the status of ev-
ery branch and return. To do so, AutoType first reads bytecode and
finds out all branch and return instructions (e.g., POP_JUMP_IF_TRUE,
RETURN_VALUE, etc). Immediately before every such instruction, Au-
toType adds bytecode that saves stack status (as python interpretor
runs instructions on a stack), dumps the stack top, and then reumes
the stack status. Since these actions are performed just before the
branch or return, the stack top is the value that a branch depends
on, or the return value. Besides stack top, the bytecode AutoType
injects also dumps the filename and line number of the correspond-
ing branch/return (used as identifier). When running on a concrete
input, the instrumented code dumps every branch/return values
along its execution, which AutoTypewill process afterwards. Since
all bytecode in the repository are instrumented, when a function
calls another in the same repository, the tracing is naturally inter-
procedure. Note that the library functions are not instrumented due
to the lack of source code, and AutoType only analyzes branches
and returns from the repository where the source code is available.

D.3 Other engineering challenges

There are additional engineering challenges in implementing Au-
toType, some of which we discuss below.

Storing repositories: Some repositories on GitHub are rather large,
which are expensive to clone and analyze. We consider only reposi-
tories smaller than 2G and with less than 500 python files to make
end-to-end latency acceptable.

Long running functions: Some open-source functions can takes
a long time to execute (due to bad design, unexpected input, etc.).
AutoType uses a separate thread to monitor each function run and
terminates a function when it takes over 30 seconds.

System-level sand-boxing: Some open-source code perform system-
levelmodifications (e.g., create/delete files, issue system calls, change
system settings, etc). Restricting function execution in sandboxes
is an important consideration to restrict unexpected or sometimes
malicious system modifications.

E SECURITY, PRIVACY AND LICENSES

There are a few practical considerations in using open-source soft-
ware (OSS) code. Licensing terms is often a big constraint, for code
with restrictive licenses such as GPL can prevent it from being
used in commercial systems. While some GitHub projects describe
license terms in standard manners (e.g. in “License.txt”), many do
not have such information and would require manual inspections.

Code security and data privacy is clearly also important. While
we can perform limited sand-boxing for isolation at execution,
ultimately rigorous security reviews are necessary (both manual
and automatic ones are crucial).

F PROOF OF THEOREM 1

Proof. We prove the hardness of this problem using a reduction
from set-union-knapsack (SUKP) [11]. Recall that in SUKP, we
have a universe of elements U = {e1, e2, . . . , en }. Given a set of
items S = {S1, S2, . . . , Sm }, with Si ⊆ U. Each item Si has a
non-negative profit P(Si), and each item ei has a cost C(ei). The
problem is to select a subset of items T ⊆ S to maximize the total
profit P(T) =

∑
Si ∈T P(Si), subject to the constraint that the cost

calculated based on the union of elements is no greater than some
fixed budget B, or C(T) =

∑
e ∈∪Si ∈T (Si)

C(e) ≤ B. SUKP is known
to be NP-hard and inapproximable [11].

We show a reduction from SUKP. For any given problem in
SUKP, we construct a problem in Best-k-Concise-Cover with k = 1
as follows. For each element e1, we construct Ni which is C(ei)
number of negative examples with unit weight. For each item Si ,
we construct a new single-literal clause L(Si) that is associated
with P(Si) number of new positive examples and all the negative
examples in

⋃
ej ∈Si Nj . Furthermore, set θ =

∑
ei ∈U C(ei)

B .
This process ensures that we can translate any SUKP problem

instance to Best-1-Concise-Cover problem. Assume that we could
solve Best-1-Concise-Cover, then we would be able to solve SUKP
known to be NP-hard, creating a contradiction. Also notice that
the reduction is approximation-preserving, with the same objective
function and constraints. Thus Best-k-Concise-Cover is NP-hard and
cannot be approximated within a factor of 2(logn)

δ
, for some δ ,

unless 3SAT ∈ DTIME(2n
3
4 +ϵ
), as shown in [11]. �

G ALGORITHM FOR SYNTHESIZING

VALIDATION FUNCTION

Instead of directly using the concise DNF, we extend it to use more
literals to validate future data more precisely: for any literal ci
in DNF, generate DNF-E by replacing ci with ci1 ∧ ci2 ∧ ... ∧ cik
where ci ∈ Gi (the literal group mentioned in Algorithm 1) and

Algorithm 3 Pseudo-code for synthesized bool F’(s)
INPUT: data value s to validate

1: DNF-E = DNF
2: for literal ci ∈ DNF-E and ci ∈ Gi do

3: replace ci with ci1 ∧ ci2 ∧ . . ., where Gi = {ci1 , ci2 , . . .}

4: run F (s)
5: T (s) ← collect trace from F (s) and create features
6: if ∧T (s) → DNF-E then return True
7: else return False

Gi = {ci1 , ..., cik }. Intuitively, a literal in DNF represents a group,
which is usually a sub-path that many input positive examples take.
Extending this literal to a conjunction of full sub-path restricts a
future data to pass the validation only when it takes exactly the
same sub-path, instead of hitting any literal on the sub-path.

After getting the extended DNF, DNF-E, AutoType runs a new
input s on F , records the trace and featurizes into T (s). Then it
checks whether the conjunction of all literals in T (s) is consistent
with DNF-E (i.e, ∧T (s) → DNF-E). If yes, AutoType returns True,
otherwise False. The pseudo-code is shown in Algorithm 3.

Example 7. Taking the DNF generated in Example 4, and as-
suming literal groups are as follow: G1 = {b6 ==True}, G2 =
{b6 ==False, b9 ==True}, G3 = {b16 ==True},.... AutoType gener-
ates DNF-E as (b6 == True ∧ b16 == True) ∨ ((b6 == False ∧ b9 ==
True) ∧ b16 == True).

When a new valid card number d comes in, assuming it is a
Visa card, T (d) = T (e+1). Apparently ∧T (d) → DNF-E, and the
validation function returns True. For a non-valid card numberd ′, the
function either throws exception, has b16 untaken (fails checksum
validation), or has bothb6 andb9 untaken (without valid card brand),
so T (d ′)9 DNF-E and the validation will return False.

H PROOF OF PROPOSITION 1

Proof. For a given string s , the fact that S1(s) ⊆ S2(s) ⊆ S3(s)
holds follows from the definition of the three strategies. Specifically,
we note that strategy S1 can replace only non-punctuation characters,
whereas S2 replaces any character , which is a super-set. Further-
more note that the S1 uses in-alphabet non-punctuation character to
replace selected characters whereas S2 uses in-alphabet characters,
which is again a super-set. This ensures that the space of possible
mutations S2(s) for any s is a super-set of S1(s).

Similarly, we can show that S3(s) is a super-set of S1(s), because
S3 replaces selected characters with random character , which is a
super-set of in-alphabet characters used by S2.

These together prove that S1(s) ⊆ S2(s) ⊆ S3(s). �

I EXPERIMENT DETAILS

Three different keywords used for sensitivity analysis. Ta-
ble 4 shows the alternative keywords we used in Figure 12.

Popular types (20) used in sensitivity and type detection

experiments: datetime, address, country code, phone number, cur-
rency, email address, zipcode, IPv4 address, url address, ISBN, UPC
barcode, EAN code, ISIN, ISSN, creditcard, IPv6 address, IBAN num-
ber, VIN number, stock symbol, airport code.

type keyword1 keyword2 keyword3
ISBN ISBN international standard book number ISBN13
IPv4 IPv4 IPv4 address ip address v4

SWIFT SWIFT message Society for Worldwide Interbank SWIFTFinancial Telecommunication
zipcode US zipcode zipcode US postal code
SEDOL SEDOL stock exchange daily official list SEDOL number

ISIN ISIN ISIN number international securities
identification number

VIN VIN Vehicle Identification Number VIN number
RGB RGB color RGB RGB color code
FASTA FASTA sequence FASTA gene sequence FASTA
DOI DOI identifier digital number identifier DOI number

Table 4: Alternative input keywords tested

These types are used in Section 8.2.3 and 8.2.4 (for sensitivity
analysis), Section 8.3 (for comparison with TDE and DataXFormer),
and Section 9 (for column type detection).

J SENSITIVITY TO INPUT KEYWORDS

ISBN
00%

50%

100%

IPv4 SWIFT zipcode SEDOL

ISIN
00%

50%

100%

VIN RGB FASTA DOI

Figure 12: Evaluation with different keyword for 10 types.

Evaluated with precision@K (where K = {1, 2, 3, 4}).

In order to understand the sensitivity of AutoType to different
input keywords, we sample 10 data types for which we can come up
with at least 3 different keywords to describe them (skipping data
types like “credit card” with only one or two reasonable type names).
All input keywords can be found in Table 4 in the Appendix I.

Figure 12 shows the resulting quality. For 6 out of 10 data types
tested, quality results are insensitive to input keywords, presumably
because these alternative ways of describing data types are well-
established and widely-used in source code and comments (e.g.,
“ISBN” and “international standard book number” and “ISBN13”).
In three remaining cases, result quality degrade substantially for
one input keyword; and in one case quality degradation happens
for two input keywords.

We find two main reasons for the quality degradation: (1) Am-
biguity. For example “SWIFT” is a data type used in the financial
industry for message exchanges, but there is a popular program-
ming language by the same name. As such, a search of “SWIFT”
via GitHub or Bing search API retrieves results dominated by code
in the swift language, leading to quality degradation. A search
of “SWIFT message” disambiguates the intent and performs much
better. (2) Non-standard keyword description. Some keywords we
come up with are not so standard. For example, for “DOI” we tested
“digital object identifier”, “DOI identifier”, and “DOI number”. It
appears that “DOI identifier” is the more standard name (I in the
name stands for identifier), while “DOI number” is not, and that in
turn leads to sub-optimal search results.

This experiments suggest that our approach can indeed be sen-
sitive to input keywords. However this is not entirely surprising,

for even commercial search engines can balk at “bad” queries (e.g.
“SWIFT”) and would require users to iteratively refine their queries.
Suggest alternative keywords automatically (leveraging synonym
systems such as [23]) is a good direction for future work.

K SENSITIVITY ANALYSIS OF LR

k=1 k=2 k=3 k=4

40%

60%

80%

100%

DNF-S #pos=20 LR #pos=10 LR #pos=20 LR #pos=30

Figure 13: Varying the #positive examples under LRmethod

We also compared DNF-S with LR as described in Section 8.1
with different number of positive examples, varied from 10 to 30.
Figure 13 shows the result. With a small number of examples, the
LR method shows very little changes (less than 4% variance), and
underperforms DNF-S under all settings.

Note that in this LR based ranking method, we did not add any
regularization terms (e.g., limiting the number of features it uses).
We would expect the LR method works better with regularization,
since overfitting might be a big issue with a small number of exam-
ples. However, it is hard to find a good regularization that works
well for all functions, where the number of features varies greatly
with different functions. Since we do not require large amount
of examples provided by users, we believe using DNF is a better
approach than LR.

L EFFICIENCY ANALYSIS

Since AutoType intends to help technical users to search and reuse
type-detection code, which is largely an offline process, optimizing
efficiency is not prioritizedwhenwe buildAutoType. Asmentioned
in Appendix D.3, AutoType searchs up to 40 repositories from two
search engines and runs each function up to 30 seconds. Besides,
AutoType terminates after running 60 minutes for each type.

0

10

20

30

40

50

60

Type

AutoType Running	Time	in	Minute

Figure 14: Distribution of running time.

Figure 14 shows the distribution of execution time. For 25 such
types the process finishes relatively fast (within 10 minutes), while
for 32 types it takes over 60-minutes. The longer-running ones often
correspond to popular types like zipcode and ISBN, which often
have a large amount of relevant code repositories that AutoType
needs to churn through.

	Abstract
	1 Introduction
	2 Problem Definition
	3 System Overview
	4 Code Search and Analysis
	4.1 Code search using keywords
	4.2 Code analysis for candidate functions

	5 Function Synthesis and Ranking
	5.1 Profile execution traces
	5.2 Rank functions by DNF
	5.3 Synthesize validation function from DNF
	5.4 Manual Verification of Functions

	6 Generate negative data
	7 Additional Applications
	7.1 Semantic transformations
	7.2 Type detection in tables

	8 Experimental Evaluation
	8.1 Experimental setup
	8.2 Synthesis quality comparison
	8.3 Comparison with related systems

	9 Type-Detection in Tables
	9.1 Experiment setup
	9.2 Type-detection quality

	10 Related Work
	11 Conclusions and Future Work
	References
	A Full list of data types tested
	B Semantic transformations
	C More Applications of Data Types
	D Code Analysis
	D.1 Invoking functions
	D.2 Byte-Code Injection
	D.3 Other engineering challenges

	E Security, privacy and licenses
	F Proof of Theorem 1
	G Algorithm for Synthesizing Validation Function
	H Proof of Proposition 1
	I Experiment Details
	J Sensitivity to input keywords
	K sensitivity analysis of LR
	L Efficiency analysis

