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Abstract—There is a growing interest in processing real-time
queries over out-of-order streams in this big data era. This
paper presents a comprehensive solution to meet this requirement.
Our solution is based on Impatience sort, an online sorting
technique that is based on an old technique called Patience sort.
Impatience sort is tailored for incrementally sorting streaming
datasets that present themselves as almost sorted, usually due to
network delays and machine failures. With several optimizations,
our solution can adapt to both input streams and query logic.
Further, we develop a new Impatience framework that leverages
Impatience sort to reduce the latency and memory usage of query
execution, and supports a range of user latency requirements,
without compromising on query completeness and throughput,
while leveraging existing efficient in-order streaming engines
and operators. We evaluate our proposed solution in Trill, a
high-performance streaming engine, and demonstrate that our
techniques significantly improve sorting performance and reduce
memory usage – in some cases, by over an order of magnitude.

I. INTRODUCTION
We are witnessing a growing demand for real-time analysis

of logs that are produced in today’s distributed data processing
systems and applications. Stream processing engines (SPEs)
are used to analyze such streams of logs and produce in-
cremental results in real time. An inherent characteristic of
today’s logs is that they are out-of-order, i.e., events may not be
collected for processing in strict timestamp order. As a result,
we are witnessing an increasing interest in processing real-time
queries over such out-of-order streams [1]–[4].

For example, suppose a user wants to develop an on-
line dashboard that displays accurate aggregate statistics as
close to real time as possible. Events are collected from
many distributed servers, and are transmitted to an SPE that
computes these statistics. However, due to network delays,
intermittent machine failures, and race conditions, events may
be delivered to the SPE in a non-deterministic order. A
fundamental challenge in SPEs is to handle these out-of-order
streams without sacrificing performance significantly, in terms
of latency, throughput, accuracy, and memory usage.

The most widely-used solution in today’s SPEs is a sort-
based method called “buffer-and-sort”. With this mechanism,
an SPE tolerates a specified amount of disorder, buffering an
incoming out-of-order stream for a specified amount of time.
Then, the engine sorts the buffered data, and feeds the sorted
data to subsequent operators in the execution workflow. As a
result, all operators besides the sorting operator in the SPE are
free from handling out-of-order streams, and always process
in-order streams. The buffering time, called reorder latency,
is a key parameter as it introduces a lower bound on latency.
Despite its simplicity, this mechanism raises several concerns
in latency, completeness, memory usage, and throughput.
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Fig. 1: Buffer-and-sort: Latency vs. completeness tradeoff.

A. Challenges
Latency and Completeness. A fundamental pitfall of the

buffer-and-sort mechanism is that users are forced to make a
tradeoff between completeness and latency by setting reorder
latency. Note that events that arrive after the specified reorder
latency have to be either discarded or adjusted (on timestamps),
thus reducing the accuracy of query results on the input
data. For example, as illustrated in Figure 1, if the dashboard
application specifies a lower latency, e.g., 1 millisecond, the
engine executes queries in a timely manner, but risks losing
events which arrive more than 1 millisecond late. In contrast,
if the dashboard application specifies a higher latency, e.g.,
1 hour, the engine is more tolerant of late arriving data,
but receives aggregate statistics with an unacceptable latency.
Many find that in practice, such a tradeoff between latency and
completeness is not acceptable in many scenarios.

In order to address this challenge, previous work has pro-
posed a different execution strategy based on speculation [4],
where operators produce output before receiving all the data,
and on receiving late events, are responsible for retracting
incorrect outputs and adding the correct revised outputs. Thus,
an SPE with speculation is able to deliver early inaccurate
results without losing late arriving data. However, introducing
speculation into each operator makes operator logic highly
complex, requiring considerable effort to implement each
operator correctly. For example, a simple disordered aggregate
operator in StreamInsight [5] consisted of more than 3000
lines of high-level language code. Even worse, such operator
complexity results in significant inefficiencies (often by orders-
of-magnitude [6]) compared to their in-order counterparts.
More recently, Dataflow [1], a model that supports out-of-
order processing, was developed at Google. Here, users can
add late events to prior windows and output based on triggers.
However, this proposal focuses on the lower-level APIs for
users to implement their own disorder handling and operator
logic, and does not describe or advocate a particular solution,
where the issues addressed in this paper would surface.

Memory Usage. The streaming engine has to buffer all
the data in input streams during the specified reorder period,



leading to high memory usage. To address this problem,
previous work [2] proposed to offer all operators the capability
to process out-of-order events. Instead of buffering original
events, these out-of-order operators only keep track of states
associated with a given query (e.g., aggregate results for the
dashboard application) and thus reduce memory consumption
in many scenarios. However, the latency issue remains and,
similar to speculation, this method suffers from design effort
and code complexity. Consequently, this solution is rarely
implemented in commercial SPEs.

Throughput. Finally, existing sorting algorithms fall short
in incrementally sorting out-of-order events in SPEs. To sup-
port incremental sorting, traditional SPEs often use a priority
queue to sort out-of-order events [5]. However, the new gener-
ation of SPEs like Trill [6] adopt techniques such as columnar
batching to increase throughput by orders of magnitude com-
pared to traditional SPEs. As a result, an inefficient sorting
operator quickly becomes the bottleneck of the engine and
dominates query execution time.

B. Our Solution
In this paper, we propose an end-to-end sort-based solution

to overcome all the pitfalls described above. As a sort-based
solution, it also relies on a sorting operator to handle out-of-
order events, keeping all other operators free from handling
out-of-order streams directly. In addition, unlike existing sort-
based methods, our solution brings the benefits of out-of-order
operators [2] and speculation [4] into the sort-based method,
allowing us to use high-performance in-order operators un-
modified. More specifically, the proposed solution focuses on
three key aspects, shown as follows.

How to sort streams efficiently? We first adapt a long-
forgotten sorting technique called Patience sort [7]–[9] to
an online sorting algorithm. This sorting algorithm, called
Impatience sort, is tailored to fit the demand for incrementally
sorting out-of-order streams in SPEs. Impatience sort takes
advantage of existing order in input streams, and is especially
efficient for the common out-of-order patterns appearing in
logs produced by distributed systems. In addition, unlike its
offline counterpart (i.e., Patience sort) that has to be performed
after receiving all data, Impatience sort incrementally sorts
events and outputs sorted partial results based on progress
indicators (i.e., punctuations) in SPEs. This sorting algorithm
is a key building block in our solution.

How to produce good streaming query plans with sorting
operators? We next present a sort-as-needed execution strategy
that sorts data to the extent that is necessary for a given query,
and avoids an unnecessarily complete sorting of the input data
stream. More specifically, as order-insensitive operators can be
performed earlier than the sorting operator without violating
their semantics, we defer the sorting operator in an execution
workflow until the input data has been reduced by other
operators. Interestingly, we observe that the early execution of
order-insensitive operators usually result in better performance
of the subsequent sorting operator, by reducing the disorder,
the number of events, or the size of events in the input stream.
To leverage these opportunities, we developed programming
APIs to allow users to exploit this execution strategy.

How to cope more flexibly with the latency-completeness
tradeoff? We propose a programming framework called the
Impatience framework, that is inspired by the basic idea
behind Impatience sort. Impatience framework enables users to

specify a set of different reorder latencies, rather than a single
reorder latency value. Based on the specified reorder latencies,
we partition an input out-of-order stream into multiple in-
order streams. Taking the online dashboard application as
an example, the application can subscribe to multiple output
streams associated with specified reorder latencies, e.g., {1ms,
1sec, 1min}, and thus illustrates early but inaccurate aggregate
statistics as close to real time as possible, but also updates
the refined and more accurate results 1 second and 1 minute
later. More interestingly, users can optionally provide query
logic functions that are embedded into this framework. For
instance, the dashboard application can perform partial aggre-
gations on each partition, and then quickly combine the partial
aggregations on early events and late events. Thus, instead of
buffering original events as in the buffer-and-sort method, the
framework enables the engine to reduce early arriving events
to aggregate results, resulting in low memory usage. Note that
the latency-completeness tradeoff is a fundamental one: what
the Impatience framework provides is (1) a way to expose this
tradeoff as a user specification; and (2) a design to meet this
specification at low memory usage and high throughput. To
summarize, the use of our Impatience framework reduces both
latency and memory usage of query execution, while meeting
the desired completeness goals at high throughput.

We prototyped our solution in Trill [6], a high-performance
query processor for streaming analytics. We conducted an
evaluation of the proposed techniques using both synthetic and
real workloads. Our evaluation shows that the combination of
Impatience sort and sorted-as-needed execution significantly
improves the sorting performance, and in some cases produces
an order of magnitude in performance improvement. The use
of our Impatience framework enables low-latency query results
while preserving late events. In addition, it also reduces the
memory usage by up to 31.5×, while sustaining comparable
throughput to the method with a single reorder latency.

To summarize, we make the following contributions in this
paper: 1) we demonstrate that Patience sort is a promising
starting point for incrementally sorting out-of-order streams,
and adapt it for SPEs; 2) we study the impact of query plans on
the performance of the sorting operator in a streaming setting,
and propose an approach to leverage this observation; 3) we
introduce the Impatience framework, based on the realization
that Impatience queues can be exposed to the rest of the query
processing pipeline, to cope more flexibly with the latency-
completeness tradeoff, without scarifying memory usage or
throughput; and 4) by putting it all together, we introduce a
complete solution to enable out-of-order processing in an SPE,
without modifying each operator.

II. WORKLOAD ANALYSIS
Disordered streams are increasingly common in today’s

real-time stream engines. In order to better understand the
nature of disorder in such out-of-order streams, we conduct
empirical analysis on real-world workloads in this section.

There are two different notions of time for each event in a
stream, shown as follows:
• Event time: the logical time at which the event occurs

(also referred as application time in literature).
• Processing time: the time at which the event is ingested

into a streaming engine. According to this definition,
an incoming stream is always ordered with respect to
processing time.
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Fig. 2: The relationship between event time and processing time in the CloudLog and AndroidLog datasets.

In an ideal world, an event can be processed in a streaming
engine as quickly as the event occurs. However, from a
practical standpoint, there is always a delay between event time
and processing time, resulting in an event-time out-of-order
stream for several reasons. First, network latency of sources is
different and is dynamically changing over time. Second, data
can be significantly delayed due to failure or disconnection of
sources. Lastly, there might be no guarantee of ordering over
the transmission channel.

Though out-of-order events are the norm rather than the
exception in stream processing, it is also clear that events
tend to be nearly sorted in practice. The intuitive notion of
“nearly sorted” generally means that a stream is very close
to being sorted, but it loosely refers to several related but
distinct types of patterns. For example, a stream consists of
two concatenated sorted streams and a stream produced by
interleaving two sorted streams are both, in some sense, nearly
sorted. In order to distinguish disorder in many different ways
and quantify the sortedness in a stream, we introduce four
common measures of disorder [10] as follows:
• Inversions: the number of inversions in the stream. An

inversion is a pair of positions where the events on these
positions are out-of-order (in event time). The number of
inversions is likely the best-known measure of sortedness.
• Distance: the maximum distance between the positions

associated with an inversion.
• Runs: the number of increasing runs (ordered by event

time) in the stream.
• Interleaved: the minimum number of sorted runs that can

be interleaved to produce the stream.
In the remaining of this section, we present our analysis

on disorder in two example datasets. We believe that these two
datasets represent two common types of log streams.
• CloudLog dataset: this dataset is a log of a large-scale

cloud application deployed at Microsoft. The events are
generated at multiple distributed application servers, and
are then sent to a central server immediately, which aggre-
gates these events to produce a log stream.
• AndroidLog dataset: this dataset is collected in the device

analyzer project [11] at University of Cambridge. An
application on each user’s smartphone is used to record
phone activities as events, and periodically upload these
events to a server when the phone is attached to a charger.
Due to this uploading strategy, events in this dataset are
often delivered to the server hours or even days later.
Figure 2 plots the relationship between event time and

processing time (here we simply use the sequence number as
the processing time), for both datasets. We also list statistics
on the four disorder metrics in Table I.

TABLE I: Statistics on disorder in the two datasets.
Measure of CloudLog dataset AndroidLog dataset

disorder (20M events) (Region1:20M events)
Inversions 53,541,688,892 73,004,914,227,284
Distance 13,635,714 19,990,056

Runs 7,382,495 5,560
Interleaved 387 227

For the CloudLog dataset, we see a nearly increasing curve
with minor spikes in Figure 2(a). This curve has a steeper
slope in the right side of the figure, as there is a sharp reduce
in event frequency at a certain point of time (note that in x-
axis we show the sequence number, not logical time). Though
the curve looks relatively smooth at this plotting scale, there
are actually numerous minor spikes along the curve, each of
which corresponds a group of late events. This is confirmed
by statistical results shown in Table I: there are as much as 7.3
million natural runs in 20 million events, meaning that each
run consists of only 2.7 events on average. Hence it is clear
that there are a significant number of out-of-order events in this
dataset, though a majority of them are not very far from their
correct positions. In some sense, this dataset is well-ordered
at a coarse granularity, but is chaotic at a fine granularity.

In addition to minor spikes, some unusual and more
pronounced pikes occurs when a system failure happens. In
Figure 2(b), we zoom in the Region 1 in Figure 2(a) to show
the patterns of late-arriving events caused by a system failure.
In the worst case, as shown in Table I, the most delayed events
in this dataset (in Region 2 of Figure 2(a)) need to be moved
over 13.6 million events to reach their sorted positions.

For the AndroidLog dataset, there is a nearly straight line
from the lower left corner to the upper right corner, with
numerous spikes of various lengths, as shown in Figure 2(c).
Each spike represents a sequence of events from a same phone
that are uploaded to the server in a batch. Hence the length
of a spike is proportional to the time period between two
consecutive uploads from the same phone. Though the number
of inversions in this dataset is several orders of magnitude
more than that in the CloudLog dataset, it is still very close
to being sorted, because it consists of only 5,560 natural runs.
In contrast to the CloudLog dataset, the AndroidLog dataset
is well-ordered at a fine granularity, but is chaotic at a coarse
granularity.

III. IMPATIENCE SORT
In this section, we focus on the first of the three key

questions in this paper: How to sort out-of-order streams
efficiently? To answer this question, we present Impatience
sort, a sorting algorithm based on Patience sort, that is tailored
to meet the increasing demand on incrementally sorting out-
of-order events in stream processing engines.



A. Problem Definition and Requirements
Problem Definition. A sorting operator in a Stream Pro-

cessing Engine (SPE) takes as input a continuous data stream
that consists of data events and punctuations. A punctuation
is a special control message embedded in the stream with a
timestamp T and indicates that there are no more events whose
timestamp is less than or equal to T . Once a sorting operator
receives a punctuation with a timestamp T , it must flush out
all buffered events whose timestamps are less than or equal to
T in an ascending timestamp order.

2 6 5 1 2* 4 3 7 4* 8 ∞*
As an example, we show a data stream above that con-

sists of eight events and three punctuations (marked with
asterisks). In this example, we use timestamps to represent
events/punctuations and ignore other fields. When a sorting
operator receives the first punctuation 2, it outputs a run [1, 2].
For the second punctuation 4, it generates [3, 4]. And finally,
it pushes out [5, 6, 7, 8] when the last punctuation arrives.

In practice, SPEs insert punctuations based on user-
specified settings when events are ingested into the engine.
The timestamp in a punctuation is set by subtracting the
reorder latency from the high-watermark timestamp when the
punctuation is produced and emitted. This technique also
works in an Internet-of-Things setting such as AndroidLog,
where devices may get periodically disconnected, as it provides
an upper bound on overall disorder relative to the device with
the most recent update in the system. The reorder latency
Thus, a higher reorder latency often means that the incremental
sorting operator sorts only a small portion of the buffered data,
on receiving a punctuation.

Performance Requirements. We identify two key require-
ments for an incremental sorting algorithm to efficiently sort
out-of-order events in SPEs:
• Adaptive to sortedness. The sorting operator needs to take

the advantage of existing order in the input stream, espe-
cially for common out-of-order patterns in logs generated
in distributed data processing systems (see Section II).
• Efficient incremental sorting. The sorting operator should

be able to incrementally sort and output a subset of the
input based on progress indicators, i.e., punctuations, in an
efficient way. The operator needs to tolerate a wide variety
of punctuation-related settings, such as high punctuation
frequency or high order latency.
Existing sorting algorithms fall short of at least one of

the two performance requirements. For instance, Heapsort, a
sorting method used in today’s stream processing engines [5],
naturally supports incremental sorting, but is not adaptive to
the sortedness of the input data. In contrast, adaptive sorting
algorithms [10] leverage the sortedness of the input data, but
are unable to sort data in an incremental way. Quicksort, the
most well-known sorting algorithm, meets neither of the two
requirements.

B. Background on Patience sort
Patience sort [7], [8] is a comparison-based sorting algo-

rithm inspired by the British card game of Patience (named
Solitaire in America). The algorithm sorts an array of elements
in two phases shown as follows:

1) Partition phase: we partition the array into a sequence
of sorted runs, following the steps as follows. Initially,
there is no sorted run. Then, we scan over all elements
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Fig. 3: The steps of Patience sort on a sample array. Shaded
elements are the newly added elements in each step.

in the input array and append each element into the first
sorted run whose last element is less than or equal to the
current element, or if such a run does not exist, create a
new run with the current element.

2) Merge phase: we merge all sorted runs into a single
sorted run, in a similar way as Mergesort.

Figure 3 shows the operation of Patience sort on an 8-
element array [2, 6, 5, 1, 4, 3, 7, 8], in the following steps.
(a) Initially, there is no run. Thus, the first element 2 creates
Run 0. (b) The element 6 is then appended to Run 0 as it is
greater than the last element of Run 0. (c)-(d) The elements 5
and 1 are less than the last elements of all existing runs, and
are added to new runs. (e) The element 4 is added to the first
run whose last element is less than 4 (Run 2). (f) The element
3 creates Run 3. (g)-(h) Run 0 grows to include the elements
7 and 8.

According to the description of the algorithm, the last
elements of all runs, called tails, are always in strictly de-
scending order. As a result, binary search can be used to find
the appropriate run to place a new element. As a result, the
performance of the partition phase is largely determined by
the number of runs.

Patience sort traditionally uses a heap to merge all pro-
duced sorted runs [8]. However, recent work [9] has shown
that using binary merges instead of a heap is more efficient on
modern computer architecture.

C. Why Patience Sort?
We observe that Patience sort is an ideal starting point for

the incremental sorting operator. In this section, we explain
two reasons for this observation, corresponding to the two
performance requirements discussed in Section III-A.

First, Patience sort is naturally adaptive to the sortedness
of the input stream, especially for many common out-of-order
patterns appearing in logs. The number of sorted runs created
in Patience sort, denoted as k, plays a critical role in how
the sorting algorithm leverages the existing order. Intuitively,
Patience sort creates potentially much fewer sorted runs on a
nearly sorted input. Formally, we give three Propositions to
show the upper bound on k using the measures of disorder
described in Section II. In the interest of space, the proofs for
these propositions are omitted in this paper.

Proposition 3.1: If an input array can be generated by
interleaving d sorted runs, the number of sorted runs generated
in Patience sort is less than or equal to d.

Proposition 3.2: The number of sorted runs generated in
Patience sort is less than or equal to the number of distinct
values of timestamps in the input array.
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Fig. 4: The steps of Impatience sort on the example stream.
Dashed lines mark the punctuation timestamps. Shaded ele-
ments are to be merged in each step.

Proposition 3.3: The number of sorted runs generated in
Patience sort is less than or equal to the number of natural
runs in the input array.

Proposition 3.1 shows a promising property for sorting
logs generated in a distributed environment. In these scenarios,
events are collected from a set of distributed sources, each of
which usually produces ordered events with respect to event
time. Delays are introduced when these events are transmitted
and combined due to network delays, intermittent machine
failures, and race conditions. Thus, the number of interleaved
runs in a log is determined by a combination of several
hardware factors such as the number of distributed sources,
network routers, and failed nodes. As a result, a log usually has
a limited number of interleaved runs. For instance, as shown
in Table I, the CloudLog and AndroidLog datasets have 387
and 227 interleaved runs, respectively. In general, Patience sort
often creates a limited number of runs when sorting these logs.

Proposition 3.2 provides a tight bound on k when there
are a limited number of distinct timestamps. This proposition
is especially important when a sorting operator is used for
evaluating a time-window query on a disordered stream (see
Section IV-A2 for more details). Proposition 3.3 is a corol-
lary of Proposition 3.1, and explicitly shows the relationship
between k and the number of natural runs in the input stream.

The second reason that we chose Patience sort is related
to its merge-based nature, which implies a potential solution
for incremental sorting without fundamentally changing the
algorithm. A key challenge to support incremental sorting is
to find the subset of the buffered data that needs to be sorted
on receiving a punctuation, in a way that avoids accesses on all
the buffered data. Interestingly, this problem can be naturally
addressed using Patience sort, because all the buffered data in
Patience sort is stored in the form of a set of sorted runs.

D. Basic Algorithm
Impatience sort is a variant of Patience sort that supports

incremental sorting (this explains why the variant is called
“Impatience” sort). More specifically, on receiving the i-th
punctuation with timestamp Ti, the algorithm sorts all events
whose timestamps are between Ti−1 and Ti.

Impatience sort also has two phases. The partition phase
of Impatience sort remains the same as that of Patience sort.
In the merge phase, when we receive the i-th punctuation with
timestamp Ti, the incremental sorting works as follows. For
each sorted run, we cut off a subsequence from the head of the
sorted run that contains all events whose timestamps are less
than or equal to Ti. The removed subsequence forms a new
sorted run called head run. Since each run has been in sorted
order, this step can be done without accessing all events in the
run. Next, we perform a multiway merge on all head runs and
emit the merged results for the i-th punctuation. Finally, if a
sorted run becomes empty after cutting off its head run, the
sorted run is removed from the set of k sorted runs.
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Fig. 5: The number of sorted runs in Patience and Impatience
sort when sorting the CloudLog dataset.

Figure 4 demonstrates the steps of Impatience sort on the
example stream shown in Section III-A. Each step corresponds
to sort a subset of events (marked shaded) for a punctuation.
For the first punctuation with the timestamp 2, we remove
events 1 and 2 from the sorted runs and merge the two events
into a single sorted run as the output for the first punctuation.
Run 2 is empty after this step, and is thus removed. Similarly,
on receiving the second punctuation, we merge and output the
events 3 and 4. Finally, for the last punctuation with an infinite
timestamp, a merge is performed on all the buffered events.

Compared to the operation of Patience sort on the same
stream (without punctuations) shown in Figure 3, Impatience
sort maintains fewer sorted runs in certain steps. For instance,
during the second and third punctuations, the number of runs
in Impatience sort remains at 2 while Patience sort manages
4 runs. In some sense, Impatience sort is able to gradually
clean up sorted runs created by severely delayed events. As
the cost of binary search in the partition phase is determined
by the number of sorted runs, fewer runs usually result in
higher performance.

To demonstrate this effect in more details, we plot the
number of sorted runs in Patience and Impatience sort when
sorting the CloudLog dataset, in Figure 5. In this experiment,
Impatience sort performs incremental sorting on every 10,000
events, while Patience sort sorts the input after receiving all
events. Patience sort shows a monotonic increasing curve,
as the number of runs never decreases during the partition
phase. Events with burst delays, likely caused by server
failures (shown in Figure 2(b)), sharply increase the number of
runs, and even worse have an unredeemable effect on sorting
subsequent events. In contrast, Impatience sort periodically
cleans out the sorted runs created by events with burst delays
and thus gradually reduces the number of sorted runs. In a short
period after receiving these severely late events, Impatience
sort brings its internal structure back to a “healthy” status.

E. Optimizations
In addition to the basic algorithm of Impatience sort,

several key optimizations play a vital role in achieving better
sorting performance in a streaming environment.

1) Huffman Merge: Previous work on Patience sort has
shown that the run size distribution on nearly sorted data is
highly skewed [9]. When merging the k sorted runs two-
at-a-time, it is often more efficient to merge small runs
before merging large ones. This observation remains true for
Impatience sort, where we merge head runs instead of original
sorted runs.

Given a set of head runs of different lengths, there exists
an optimal way to merge all head runs into a single sorted
run, in terms of the number of accessed events during this
process. This problem can be reduced to the Huffman coding
problem [12] in the following manner. We use a binary tree



to represent the merge process: each leaf node corresponds
to a head run; each internal node represents a binary merge
between its left and right child nodes, that are either a head
run or a sorted run produced by other binary merges. For a
head run at the i-th level of the binary tree, all events in this
head run need to be accessed i times to produce the final
sorted run. As a result, by defining the size of each head
run as the weight assigned to the corresponding leaf node,
the problem is essentially identical to the Huffman coding
problem: to construct an optimal binary tree to minimize the
average weighted depth of all leaf nodes.

Following the Huffman coding algorithm [12], the Huffman
merge algorithm proceeds as follows. Initially, we put all head
runs into a set. Then, we continue to merge the two smallest
runs in the set and add the merged run back into the set, until
there is only one run left in the set.

2) Speculative Run Selection: In the partition phase, Impa-
tience sort performs binary search on the tails array, in order
to find an appropriate run to place a new event. Despite its
simplicity, binary search is not the most efficient search method
in many situations. To address this concern, we introduce
speculative run selection that leverages common characteristics
of out-of-order streams to avoid relatively expensive binary
search.

Before performing binary search, we first examine if a new
event could be directly inserted to the sorted run to which the
last event is added. If a new event falls in between the tail
of the last-added run and the tail of its immediate previous
run, it can be directly inserted into the last-added run, without
violating the key property that the tails of all sorted runs must
be in decreasing order. It is clear to see that this optimization
is particularly beneficial for streams that contain consecutive
sorted subsequences (e.g., the AndroidLog dataset).

IV. QUERY PLANS
In this section, we shift our focus to the question of how

to produce good streaming query plans with sorting operators,
using the Impatience sort described in Section III as a sorting
operator in a SPE. We believe that an efficient solution for
handling out-of-order events must go beyond the scope of a
sorting operator. Thus, we present a “sort-as-needed” execution
strategy to leverage this opportunity in this section.

A. Sort-as-needed Execution
Many SPEs, e.g., [6], [13], perform sorting on incoming

out-of-order events as soon as they are ingested into the engine,
and stream them to the internal of the engine in event time
order. With this mechanism, we have to sort all events in
the input stream, regardless of the query logic. In despite of
its simplicity of implementation, this method falls short of
tailoring the execution workflow for a given query.

To overcome these limitations, we present an execution
strategy that sorts data “only as needed” for a given query.
More specifically, we defer the sorting operator in an execution
workflow until the input data has been tailored by other opera-
tors. Streaming operators can be classified into two categories:
order-sensitive operators (e.g., join and aggregation operators),
and order-insensitive operators (e.g., selection and projection
operators). Order-insensitive operators can be performed ear-
lier than the sorting operator, without violating their semantics.
Interestingly, we observe that the early execution of order-
insensitive operators usually results in better performance of

the deferred sorting operator, by reducing the number of
events, the size of events, or the disorder in the input stream.
We discuss three such operators in more details below.

1) Selection and projection operators: Both selection and
projection operators are order-insensitive operators. They can
process events in an arbitrary order without violating their
semantics or sacrificing performance. More importantly, a
sorting operator often benefits from the early execution of the
two types of operators: a selection operator can reduce the
number of events that are needed to be sorted; a projection
operator can decrease the size of each event by removing
unnecessary fields for a given query. Consequently, it is always
beneficial to execute selection and projection operators earlier.

2) Window operator: Time-based window operators are
also stateless, order-insensitive operators. In Trill, in addition
to event time, each event contains another timestamp, called
other time, to indicate the extent of the time interval. A window
operator is performed by adjusting both event time and other
time, and thus controlling the time interval over which an
event contributes to query computation. Subsequent order-
sensitive operators are then logically executed against events
whose (adjusted) time intervals are overlapped with a given
timestamp.

As an example, consider a hopping window (i.e., sliding
window) query that computes over an one-minute window
for every second. To execute this query, the hopping window
operator sets event time to eventTime - eventTime %
1000, and other time to eventTime - eventTime %
1000 + 60000 (suppose that event time is in milliseconds),
and then streams all events with the adjusted timestamps to
downstream operators.

As illustrated by this example, the window operator sets
event time of all events in a time interval of 1000 to an
identical value, eliminating disorder within each time interval.
In general, a time-based window operator reduces disorder
in event time, resulting in a stream that is closer to being
completely sorted. As a result, it is always beneficial to
perform early window operators before a sorting operator. Note
that unlike existing systems, where the window is a property
of existing stateful operators, Trill uses a separate Window
operator that transforms timestamps in the data; this allows us
to uniformly apply the push-down optimization to windowing
as well. Taking Impatience sort as an example sorting operator,
it usually creates fewer runs on the stream produced by the
window operator (see Proposition 3.2), resulting in better
performance of the partition phase. Furthermore, the window
operator likely increases the lengths of natural runs in the
stream. Thus, the speculative run selection optimization of
Impatience sort (see Section III-E2) is able to leverage this
fact to further speedup the partition phase.

B. Programming Interfaces
Trill provides a functional programming API [14], which is

a variant of LINQ [15] with temporal operators such as window
operators. Each stream is represented as an instance of the
immutable Streamable abstraction. Users can execute a query
over Streamable by chaining a sequence of operators, each of
which produces a new Streamable instance that is then fed into
the next operator. As an example, we show the code for a query
that computes the number of events in every second, with a
5% sample of users. Note that sorting is implicitly executed
when (out-of-order) data is ingested into Trill.



Streamable<> s = File.ToStreamable(...)

.Where(e => e.UserId % 100 < 5).TumblingWindow(1s);

.Count();

To support sort-as-needed execution in Trill, we need to
enable users to manipulate out-of-order streams with order-
insensitive operators, and prohibit order-sensitive operations
over them. To achieve this goal, we expose a Disordered-
Streamable abstraction to users, which represents a disordered
stream. A DisorderedStreamable instance supports only order-
insensitive operators, such as selection, projection, and window
operators. The DisorderedStreamable abstraction provides a
ToStreamable() method to explicitly convert the Disordered-
Streamable to a Streamable by performing a sorting operator
over the disordered stream.

For the example query, we show the sample code of
the sort-as-needed execution below. Unlike the example code
shown above, data is ingested into Trill as an instance of
DisorderedStreamable, followed by a selection operator and
a tumbling window operator over this DisorderedStreamable.
A sorting operator is then performed on the DisorderedStream-
able to produce a Streamable, that is required to execute an
aggregation operator such as Count().
DisorderedStreamable<> ds = File.ToDisorderedStreamable()

.Where(e => e.UserId % 100 < 5).TumblingWindow(1s);

Streamable<> s = ds.ToStreamable().Count();

V. IMPATIENCE FRAMEWORK
The combination of Impatience sort and sort-as-needed

execution provides a high-throughput “buffer-and-sort” solu-
tion to process out-of-order streams. However, a fundamental
challenge of the buffer-and-sort mechanism is that users are
forced to make a tradeoff between latency and completeness.
This tradeoff is largely controlled by reorder latency. Even
though it is practically feasible to make a reasonable tradeoff
in some applications, many find that such a tradeoff is not
acceptable in many scenarios, where an user wants to capture
the best of both worlds.

To overcome this dilemma, we propose a programming
framework called the Impatience framework, that is inspired
by the basic idea behind Impatience sort. This framework can
be integrated into existing buffer-and-sort SPEs to provide
explicit control over the latency-completeness tradeoff, without
changing the implementation of operators in these SPEs.

A. Basic Framework
Impatience framework allows users to specify multiple

reorder latencies instead of a single reorder latency value. In
practice, a latency specification often includes a sequence of
logarithmically increasing latency values, e.g., {1 sec, 1 min, 1
hour}. Given a reorder latency setting, Impatience framework
incrementally provides multiple output streams, corresponding
to the specified reorder latencies respectively, for a given query.

The execution of Impatience framework is inspired by the
basic idea behind Impatience sort (c.f. Section III). Recall
that Impatience sort partitions an out-of-order stream into
a sequence of in-order streams and merges these in-order
streams eventually. Following this idea, Impatience framework
partitions an input stream into multiple ordered streams based
on the time delays of events, and then merges them to produce
multiple output streams that are eventually consumed by down-
stream operators. Each output stream includes all events that
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Fig. 6: Workflow of Impatience framework with three reorder
latencies {1 sec, 1 min, 1 hour}.

arrive within the corresponding reorder latency, and therefore
contains previous output streams (we assume that the specified
reorder latencies are in increasing order).

Figure 6(a) demonstrates the workflow of the basic Impa-
tience framework on a set of example reorder latencies {1 sec,
1 min, 1 hour}. The partition operator partitions the input out-
of-order events into three separate streams based on the amount
of time delays. All events that arrive less than one second late
are buffered by up to one second, and then are incrementally
sorted to produce the first partitioned in-order stream. This
stream is consumed by the subsequent streaming operators
in the execution workflow. Events that arrives between one
second and one minute late are sorted every one minute, and
are streamed through the second path. These events are then
combined with the ordered events coming from the first path
using an union operator, which merges and synchronizes two
sorted streams into one sorted stream (and thus is a blocking
operator). As a result, the second output stream contains all
events that arrive less than one minute late, in sorted order.
Consumers of the second output stream receive these events
with a latency of one minute. Similarly, the third output stream
contains additional late arriving events and has a latency of
one hour. As can be observed in the example, downstream
operators in the execution workflow consume early events as
quickly as needed, while receiving more late arriving events
with a higher latency.

B. Advanced Framework
Although the basic framework can offer low-latency early

results, it falls short in other two aspects: throughput and mem-
ory usage. First, a majority of events are duplicated in multiple
output streams, and are therefore evaluated redundantly by
subsequent operators. This redundancy wastes computation
resources and limits system throughput. Second, the (blocking)
union operator merges events from two streams with a variety
of latency, and therefore may buffer events from the upper
stream to synchronize with the lower stream, leading to high
memory usage. For instance, in Figure 6(a), the union operator
on the third stream needs to buffer all events produced from
the second stream, for up to one hour.

To overcome these limitations, we propose an advanced
framework that embeds user-defined query logic into the
execution workflow, in a way similar to the MapReduce
model [16]. With the advanced framework, users can optionally
provide a pair of query logic functions: the first function, called
Partial Input Query (PIQ) function, partially evaluates query



logic on a subset of the input stream, i.e., a partitioned in-order
stream, and produces an intermediate result stream; the second
function, called merge function, combines these intermediate
result streams and generates a final result stream.

Consider a tumbling window (fixed-sized non-overlapping
window) counting query as an example. To evaluate this query
with the advanced framework, a user needs to provide a PIQ
function that counts events in each tumbling window on a
partitioned stream, and a merge function that adds the partial
results together for every tumbling window.

Figure 6(b) illustrates the workflow of the advanced frame-
work with the example reorder latencies. In addition to sort and
union operators that have appeared in the basic framework, we
embed user-defined PIQ and merge operators in this frame-
work. A PIQ operator is applied on each partitioned stream,
while a merge operator is added immediately following each
union operator. We note that if we use a pass-through operator
as both PIQ and merge functions, the advanced framework is
reduced to the basic framework.

The embedded query logic in this framework plays a
critical role in improving throughput and reducing memory
usage. Since PIQ operators are executed on a set of non-
overlapping subsets of the input stream, each event in the
input stream is evaluated by PIQ operators exactly once.
Thus, we avoid redundant computation on the input events,
and therefore sustain high throughput. Furthermore, unlike
the basic framework that buffers original events in the union
operators, the advanced framework executes PIO operators
first, and then buffers intermediate results generated by PIQ
operators in the union operators. Analytic queries generally
involve a large volume of input data, but often report aggregate
analysis results, which are usually far smaller than the input
data. In these scenarios, an intermediate result stream is much
smaller than the original input stream. As a result, the advanced
framework usually reduces memory usage.

Taking the tumbling window counting query (described
above) as an example again, each PIQ operator produces one
event for each tumbling window, that represents an aggregate
result on a large number of original events within the window.
Thus, in the advanced framework, each union operator only
needs to buffer one event per window, whereas in the basic
framework it has to buffer a large number of original events.

Previous work on processing disordered streams [2] relies
on out-of-order operators to reduce memory usage, which
essentially keep track of query states (e.g., aggregate results
of all windows) instead of the raw input data. Interestingly,
the intermediate results produced by PIQ operators in Im-
patience framework could be viewed as a form of query
states, which are temporarily buffered in the union operators
to synchronize with another intermediate result stream (as
shown in Figure 6(b)). In that sense, the framework reduces
the memory usage in a similar way as the out-of-order operator
technique [2].

However, unlike the out-of-order operator technique [2]
that needs to carefully adapt each in-order streaming operator
to an out-of-order counterpart, our solution copes with the
latency-completeness trade-off by simply connecting a net-
work of in-order operators (besides sorting operators). This
mechanism keeps all operators besides sorting operators free
from handling out-of-order events, allowing us to use our high-
performance in-order operators unmodified. As a result, this
framework reduces the design effort and code complexity of

operators in a streaming engine, and is especially attractive for
users who need to implement user-defined operators in addition
to the standard operators in a streaming engine.

C. Programming Interfaces
We provide API in Trill to enable users to execute stream-

ing queries using the Impatience framework. More specifically,
we create a Streamables abstraction to represent a sequence
of streams produced by the framework. In this section, we
illustrate the usage of the framework using examples.

The first example query is to compute an one-second
windowed count of clicks for each ad, with two reorder
latencies {1 sec, 1 min}. The sample code is shown as follows:
DisorderedStreamable<> ds = File.ToDisorderedStreamable()

.Select(e => e.AdId).TumblingWindow(1s);

var piq = str => str.GroupApply(e => e.AdId,

s => s.Aggregate(w => w.Count()));

var merge = str => str.Add(e => e);

long[] rl = {1s, 1m};
Streamables<> ss = ds.ToStreamables(rl, piq, merge);

ss.Streamable(0).Subscribe(e => Console.Write(e));

ss.Streamable(1).Subscribe(e => Console.Write(e));

This query first runs a projection operator and a window
operator on DisorderedStreamable to leverage the sort-as-
needed execution: these operators are pushed down to reduce
the disorder in the stream that is fed into Impatience framework
(see Section IV-B). Then, we create a PIG lambda expression
that computes partial aggregate results on each partitioned
stream, and a merge lambda expression that combines partial
aggregate results. Note that both PIG and merge functions
are specified as normal Trill operators. Given the two lambda
expressions, we create an instance of Streamables by calling
the ToStreamables method on the DisorderedStreamable. Thus,
a DAG of operators with the advanced framework is automat-
ically created as shown in Figure 6. Listeners can subscribe to
the produced streams in this DAG. Here, the example listener
simply prints out the results. In practice, users can write custom
code to manipulate these results, e.g., illustrating these results
in an online dashboard.

The second example query is to find users who click ad X
followed by clicking ad Y within a one-minute window. Unlike
the first example query, it is not straightforward to write a pair
of PIQ and merge functions for this query logic. In this case,
we can simply use the basic framework by not specifying PIQ
and merge lambda expressions:
DisorderedStreamable<> ds = File.ToDisorderedStreamable()

.Where(e => e.AdId == X||e.AdId == Y).Window(1m);

Streamables<> ss = ds.ToStreamables({5m, 1h});
ss.Streamable(0).PatternMatch(...)

.Subscribe(e => Console.Write(e));

ss.Streamable(1).PatternMatch(...)

.Subscribe(e => Console.Write(e));

In this query, we first run a selection operator on the con-
structed DisorderedStreamable to retain events that are related
to X or Y. After that, we sort the filtered DisorderedStreamable
and create a Streamables using the basic framework. Pattern
matching operators are executed on each Streamable in the
Streamables. However, as the first output stream is a subset
of the second stream, the execution of this query involves
redundant computation.

It is also feasible to write a more sophisticated program
to reduce the redundant computation for this use case, by
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Fig. 7: Throughput comparison of offline sorting algorithms on real and synthetic datasets.

providing custom PIQ and merge functions. For instance, the
user can provide a pair of PIQ and merge functions that
combine multiple events into one event, if these events are
related to same user and ad, and are overlapped in their validity
time intervals. Thus, the subsequent pattern matching operators
are performed on smaller streams. Here, we omit the optimized
code in interest of space.

VI. EVALUATION
A. Experimental Settings

We ran our experiments on a workstation with a 3.5GHz
Intel Xeon E5-1620 v3 processor, and 16GB of DDR3 main
memory. The machine runs 64-bit Windows 10 operating
system. In all the results below, we ran experiments using
a single thread. We implemented our solution in Trill [6], a
high-performance streaming query processor.

We used both synthetic and real-world datasets in our
evaluation. Each event has four 32-bit integer payload fields.
The details of these datasets are shown as follows.
• Real datasets. We used the CloudLog and AndroidLog

datasets presented in Section II. For each dataset, we ran
experiments on 20 million events, as the CloudLog dataset
contains 20 million events. We also experimented with a
larger number of events on the Android dataset, and saw
similar performance.
• Synthetic dataset. We also built a data generator to produce

synthetic datasets that model out-of-order logs. The gener-
ator takes two parameters: percentage of disorder (p) and
amount of disorder (d). It starts with a sorted dataset with
increasing timestamps, and makes p% of events delayed by
moving their timestamps backward, based on the absolute
value of a sample from a normal distribution with mean 0
and standard deviation d.

B. Sorting Performance
We first evaluated and compared Impatience sort to Pa-

tience sort, Quicksort, Timsort, and Heapsort on both offline
and online data.
• Patience sort. Patience sort is the sorting algorithm on

which Impatience sort is based, but does not originally
support incremental sorting.
• Quicksort. Quicksort is a popular sorting algorithm, and

is often known as the best practical choice for sorting,
because it is remarkably efficient on average cases. Note
that although Quicksort is not originally proposed for
nearly sorted data, we observed that Quicksort is also
adaptive with respect to the existing order of input data.
This observation is in line with previous work [17].
• Timsort. Timsort is designed to take advantage of the

partial ordering that already exist in real-world data. This
algorithm finds subsets of the data that are already ordered,

and uses that knowledge to sort the remaining elements
more effciently. Timsort has been Python’s standard sorting
algorithm since version 2.3.

• Heapsort. Although it is well known that Heapsort is
generally slower than Quicksort, it naturally and efficiently
supports incremental sorting on streaming data.

Although Patience sort, Quicksort and Timsort are adaptive
to the existing order of the input data, they are not designed
for incremental sorting. In the evaluation below on online
data (Section VI-B2), we adapt each sorting algorithm to an
incremental sorting method using a general solution. In order
to enable an arbitrary sorting algorithm to support punctu-
ations, we maintain a sorted buffer and an unsorted buffer.
Newly ingested out-of-order events are added into the unsorted
buffer. On receiving a punctuation, we first sort all events in
the unsorted buffer using the specified sorting algorithm, and
merge these events into the sorted buffer. The unsorted buffer
is drained after the merge phase. Finally, we perform a binary
search to find the position of the punctuation timestamp in
the sorted buffer, and outputs all events whose timestamps are
less than the punctuation timestamp. With this method, each
event is sorted only once (in the unsorted buffer), but could be
written multiple times in a series of subsequent merge phases.

1) Experiments on offline data: We begin with evaluating
the performance of sorting algorithms on offline data, i.e., we
do not insert punctuations into the input stream, and thus sort
the input after receiving all out-of-order events.

Figure 7(a) shows the throughput of the four sorting
algorithms on the CloudLog and AndroidLog datasets. Im-
patience sort outperforms all competitors, and is 36.2% and
24.6% faster than the best competitor on the CloudLog and
AndroidLog datasets, respectively. This is largely because the
base algorithm of Impatience sort (Patience sort) efficiently
leverages the partial ordering that already exists in these logs.
As we shown in Section II, even though both real datasets
represent two different types of log workloads, the number
of sorted runs produced in Impatience sort are relatively low
on both datasets, leading to high performance on both the
partition and merge phases. Quicksort and Timsort generally
have comparable performance on both real datasets. Not sur-
prisingly, Heapsort is the worst, as maintaining a large heap
incurs many CPU cache misses and significantly hinders the
sorting performance.

Figure 7(b) and 7(c) plot the throughput of the four sorting
algorithms on the synthetic dataset, with varying the amount
of disorder (standard deviation) and the percentage of disorder.
Impatience sort, Quicksort, and Timsort have similar perfor-
mance when the standard deviation is large or the percentage
of disorder is high. However, when we reduce the amount or
percentage of disorder, Impatience sort quickly improves its
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(b) CloudLog dataset
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(c) AndroidLog dataset

Fig. 8: Throughput comparison of online sorting algorithms on real and synthetic datasets.
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Fig. 9: Speedup of sort-as-needed execution on real and synthetic datasets.

performance, and achieves larger speedup over Quicksort and
Timsort. When the percentage of disorder is remarkably low,
e.g., 1%, the sorting performance of both Impatience sort and
Timsort is largely dominated by the sequential scan over the
input data. As a result, the throughput of Timsort is close to
that of Impatience sort in this scenario. In contrast to these
algorithms, Heapsort is not adaptive to the existing order in
the input data and shows a nearly flat line in both figures.

In Figure 7, we also show the performance of Impatience
sort without the Huffman Merge (HM) optimization (labeled
as “Impt w/o HM”) and without both the Huffman Merge and
the Speculative Run Selection (SRS) optimizations (labeled
as “Impt w/o HM&SRS”) that we described in Section III-E.
“Impt w/o HM&SRS” is identical to the Patience sort on
offline data. As can be seen from the figure, HM and SRS
improve the performance of Impatience sort by up to 30% and
15%, respectively. SRS is especially effective on the Android
dataset where SRS can leverage many long natural runs to
avoid binary searches.

2) Experiments on online data: We next evaluate Impa-
tience sort on online data, where the sorting operator has
to incrementally perform sorting on the input stream based
on the progress information provided by punctuations. In
experiments below, we inserted punctuations into datasets
based on the specified punctuation frequency. When a sorting
operator receives a punctuation, it has to immediately sort and
emit all events that are prior to the timestamp specified in the
punctuation.

Figure 8 plots the throughput of the five sorting algo-
rithms on the synthetic dataset (p = 30%, d = 64), the
CloudLog dataset, and the AndroidLog dataset, with varying
the punctuation frequency from 10 to 1,000,000. The value
of punctuation frequency represents the number of events
between two continuous punctuations. We tuned the reorder
latency for each dataset independently, to ensure that the
sorting operator can tolerate a majority of late events and only
drop events that arrive noticeably late.

As can be seen from Figure 8(a), Impatience sort is 1.3X-
2.1X faster than the best competitor across all punctuation fre-

quency, on the synthetic dataset. Patience sort, Quicksort and
Timsort achieve reasonable throughput, and are always faster
than Heapsort on this dataset. This is mainly because they
only needs to buffer around 1000 events and their throughput
is not significantly hurt by the merge phase on the sorted and
unsorted buffer.

However, Impatience sort yields far higher speedup factors
on real datasets, where the sorting operator has to buffer
a large number of events to tolerate severely late events.
Figure 8(b) and Figure 8(c) illustrate that Impatience sort
achieves 1.3X-4.4X and 1.3X-7.9X performance improvement
over the fastest competitor on the CloudLog and AndroidLog
datasets, respectively. On receiving a punctuation, Patience
sort, Quicksort and Timsort have to read and write all the
buffered data during the merge phase, and therefore result in
significantly lower throughput. In contrast, as Impatience sort
internally maintains a set of sorted runs, it can quickly find
all required events without accessing all the buffered data.
Consequently, the sorting performance is only related to the
punctuation frequency, largely regardless of the number of
buffered events. For Heapsort, although it is also insensitive
to frequent punctuations, its throughput is nevertheless signifi-
cantly lower than that of Impatience sort in most of the cases.

C. Impact of Other Operators
In order to understand the effect of sort-as-needed execu-

tion, we evaluate the impact of order-insensitive operators on
the sorting performance of Impatience sort. In the evaluation
below, we compare the throughput of Impatience sort with and
without early execution of selection, projection, and tumbling
window operators.

Figure 9(a) plots the performance improvement on Impa-
tience sort caused by early execution of a selection operator,
with varying the selectivity of the selection operator. In this
case, sort-as-needed execution achieves up to 7X speedup
on the sorting performance. In Trill, a selection operator is
performed by simply marking corresponding bits in a bitmap
for unmatched events. Thus, Impatience sort still needs to
access all bits in the bitmap, and might bring other fields (e.g.,
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Fig. 10: Throughput and memory usage comparison with and without Impatience framework.

timestamps and payloads) of filtered events into the processor
due to locality issues. As a result, the sort-as-needed execution
does not achieve an ideal speedup of 1/s in Trill, when the
selectivity is s.

As shown in Figure 9(b), a projection operator improves
the sorting performance by up to 1.5X. This speedup factor
is lower than the ideal speedup of 4X, when we project only
one payload field from the four payload fields. The reason for
this behavior is because in addition to the payload fields, each
event in Trill also contains two 64-bit timestamps, a 32-bit
key, and a 64-bit hash value. These metadata fields reduce the
impact of the projection operator on event size.

Interestingly, a window operator also improves the through-
put of Impatience sort by up to 2.4X, as shown in Figure 9(c).
In Trill, a window operator aligns event timestamps to window
boundaries, and thus reduces the disorder in the input data.
Compared to the synthetic and CloudLog datasets, the perfor-
mance improvement is decreased on the AndroidLog dataset.
This is because the AndroidLog dataset contains long runs
of ordered events (see Table I), which means that there is a
limited opportunity to improve sorting performance by further
reducing the disorder in the input data.

D. Evaluation of Impatience Framework
Finally, we compare the throughput of query execution with

and without Impatience framework, in terms of completeness,
latency, throughput, and memory usage. The tag “Impatience
(advanced)” refers to the execution with a set of three reorder
latencies using the advanced Impatience framework (Sec-
tion V-B). The tag “MinLatency” and “MaxLatency” refer to
the execution with the minimum and maximum latency values
used in the Impatience method. The tag “Impatience (basic)”
refers to the method that uses the basic Impatience framework
(Section V-A) and repeatedly runs the same query multiple
times with different reorder latencies.

Table II summarizes the latency and completeness of
the four methods tested in this evaluation. The MinLatency
and MaxLatency methods make a different trade-off between
latency and completeness: the MinLatency method delivers
low-latency results but loses 1.9% and 79.5% of events on the
CloudLog and AndroidLog datasets, respectively; the MaxLa-
tency method delivers high-latency but more accurate results.
On the other hand, both the advanced and basic Impatience
methods capture the best of both worlds: both methods deliver
early query results while preserving late data.

Figure 10 compares the throughput and memory usage of
the four methods with four queries on the two real datasets.
The four test queries are shown as follows: Q1 is a simple
tumbling window counting query; Q2 is to compute the
number of events in 100 distinct groups, on tumbling windows;

TABLE II: Latency and completeness of various methods.
CloudLog AndroidLog

Latency Comple- Latency Comple-
teness teness

Impatience (advanced) {1s, 1m, 1h} 100% {10m, 1h, 1d} 92.2%
MinLatency {1s} 98.1% {10m} 20.5%
MaxLatency {1h} 100% {1d} 92.2%

Impatience (basic) {1s}+{1m} 100% {10m}+{1h} 92.2%+{1h} +{1d}

Q3 is similar to Q2, but with 1000 groups; Q4 computes the top
5 results for 100 groups. All tested queries were implemented
using unmodified Trill operators with the advanced Impatience
framework. In this experiment below, we set the punctuation
frequency to 10,000.

As can be observed in Figure 10(a) and Figure 10(b), the
advanced framework is 2.8X, 2.7X, 2.3X, and 2.8X faster
than the basic framework and saves the memory usage by
29.8X, 29.2X, 29.2X, and 31.5X for the queries Q1-Q4, re-
spectively. Compared to the MaxLatency method, the advanced
framework can deliver low-latency early results and save the
memory consumption by 27X-29X, at the expense of 4-22%
overhead in throughput. Although the MinLatency method
produces less accurate query results, Impatience framework is
only 4-22% slower than the MinLatency method in throughput.
To summarize, the advanced Impatience framework offers
query execution with low latency, high completeness, high
throughput, as well as low memory usage.

On the AndroidLog dataset, as shown in Figure 10(c) and
Figure 10(d), the advanced Impatience framework achieves
1.9X-2.2X throughput improvement over the basic framework
and is slightly (1%-7%) slower than the MaxLatency method.
In addition, the advanced framework uses 1.9X less memory
than the MaxLatency and the basic framework methods on
this dataset. The reduction in the memory usage is less than
that on the CloudLog dataset, because a majority of events are
significantly delayed on this dataset. Note that the MinLatency
method is especially fast and efficient in memory usage on this
dataset. However, this is because with the reorder latency of 10
minutes, the sort operator only processes 20.5% of the input
data and produces far less accurate results on this dataset.

VII. RELATED WORK
Disorder in Streams. The first generation of streaming

systems assumed that events arrive in timestamp order at
the SPE [18]. One initial solution to handle disorder was k-
slack [13], [19], where the stream is assumed to be disordered
by at most k tuples or time units, with reordering performed
before stream processing. Such an approach can lead to
potentially uncontrolled latency.



Later systems provided low latency by processing events
out-of-order and issuing compensations on the receipt of late-
arriving events. Examples of such proposals include revision
tuples [20] and lifetime modifications [5]. Execution strategy
based on speculation is proposed to support retracting incorrect
outputs on receiving late arriving data [4]. NiagaraST [2]
proposes operators that manage out-of-order state, but produce
output only on punctuation. While this strategy helps with
memory, it does not provide the low latency that we desire.
Handing out-of-order natively inside an operator has been ex-
plored in the context of more complex operators such as pattern
detection as well [21]–[23]. Generally, however, adding native
support for disorder in operators can be complex, resulting in
low performance. With systems such as Trill [6] significantly
raising the bar for throughput compared to the first generation
of streaming systems (by two to four orders-of-magnitude),
modifying operators to natively handle disorder often results in
significant inefficiencies. Even worse, there can be a non-trivial
amount of revision traffic (e.g., in the form of compensating
events that correct an early result) due to late-arriving events,
which is exacerbated by query composition. The overall result
is unacceptable throughput with such solutions.

In contrast, we allow users to specify a reorder latency,
and further accept a set of reorder latencies to provide explicit
control over the latency-completeness tradeoff, while allowing
us to use our high-performance operators unmodified. Further,
we leverage punctuation [24] to bound disorder in the stream,
and use impatience sort to reorder data based on the specified
latency to retain high performance at data ingestion as well.

Big Data Systems. Big data systems such as Storm [25]
and Spark Streaming [26] do not provide support for late-
arriving events; users have to implement logic to handle such
events. Google Dataflow [1] is a streaming model that supports
out-of-order processing, where an event can trigger prior
windows based on a triggering mechanism. Apache Flink [27]
uses watermarks to reorder events before processing them. In
all these systems, the user is responsible for providing logic to
handle late events — the proposals in this paper can be applied
in such settings at the user layer.

Sorting and Query Optimization. There is a large body
of work in designing adaptive sorting algorithms (see [10] for
a summary of adaptive sorting algorithms). These algorithms
take advantage of existing order in the input data, but are
unable to sort data in an incremental way, and thus fall short of
one performance requirement for a streaming sorting operator.
BSort, an incremental sorting algorithm used in the Aurora
streaming engine [28], is essentially a variant of insertion sort,
and therefore is not efficient in sorting a large number of
events.

Sorting operator has also been well studied for relational
query optimization, e.g., [29], [30]. We adapted these tech-
niques to a streaming setting where events are streamed into
a non-blocking sorting operator, and are incrementally sorted
based on their timestamps. Unlike relational query optimiza-
tion, we developed programming interfaces to provide users the
flexibility to appropriately place a sorting operator in an exe-
cution plan, as users often have comprehensive understanding
of these long-running streaming queries. In addition to classic
relational operators like selection and projection operators, we
also observed that this technique is very attractive for some
streaming-specific operators such as window operators.

VIII. CONCLUSIONS
This paper proposes a technique for processing real-time

queries over out-of-order streams in high-performance stream-
ing engines. This solution relies on Impatience sort, an adaptive
sorting algorithm tailored for streaming data, to handle out-of-
order events, keeping all other operators free from processing
disordered streams. To overcome the pitfalls associated with
the traditional sort-based methods, the solution combines the
sorting algorithm with Impatience framework, a new method
that reduces latency and memory usage of query execution
while preserving high completeness and high throughput. We
have empirically demonstrated the performance and usability
aspects of the proposed solution in a streaming engine, and
show that our methods significantly improve the sorting per-
formance and reduce memory usage, and in some cases by
over an order of magnitude.
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[28] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tat-

bul, and S. B. Zdonik, “Aurora: a new model and architecture for data stream management,”
VLDB J., vol. 12, no. 2, pp. 120–139, 2003.

[29] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass, “Bringing order to query optimization,”
SIGMOD Record, vol. 31, no. 2, pp. 5–14, 2002.

[30] A. Lerner and D. E. Shasha, “Aquery: Query language for ordered data, optimization techniques,
and experiments,” in VLDB, 2003, pp. 345–356.


