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Gland Instance Segmentation Using Deep
Multichannel Neural Networks

Yan Xu , Yang Li, Yipei Wang, Mingyuan Liu, Yubo Fan, Maode Lai, and Eric I-Chao Chang

Abstract—Objective: A new image instance segmenta-
tion method is proposed to segment individual glands
(instances) in colon histology images. This process is
challenging since the glands not only need to be segmented
from a complex background, they must also be individually
identified. Methods: We leverage the idea of image-to-image
prediction in recent deep learning by designing an algorithm
that automatically exploits and fuses complex multichan-
nel information—regional, location, and boundary cues—in
gland histology images. Our proposed algorithm, a deep
multichannel framework, alleviates heavy feature design
due to the use of convolutional neural networks and is able
to meet multifarious requirements by altering channels. Re-
sults: Compared with methods reported in the 2015 MICCAI
Gland Segmentation Challenge and other currently preva-
lent instance segmentation methods, we observe state-of-
the-art results based on the evaluation metrics. Conclusion:
The proposed deep multichannel algorithm is an effective
method for gland instance segmentation. Significance: The
generalization ability of our model not only enable the algo-
rithm to solve gland instance segmentation problems, but
the channel is also alternative that can be replaced for a
specific task.

Index Terms—Convolutional neural network, instance
segmentation, histology image, multichannel, segmenta-
tion.

I. INTRODUCTION

EXISTING in most organ systems as important struc-
tures, glands secrete proteins and carbohydrates. However,
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Fig. 1. Gland Haematoxylin and Eosin (H&E) stained slides and ground
truth labels. Images in the first row exemplify different glandular struc-
tures. Characteristics such as heterogeneousness and anisochromasia
can be observed in this figure. The second row shows the ground truth.
To achieve better visual effects, each color represents an individual glan-
dular structure.

adenocarcinomas, the most prevalent type of cancer, arises from
the glandular epithelium [1]. The morphology of glands deter-
mines whether they are benign or malignant and the level of
severity [2]. Segmenting glands from the background tissue is
important for analyzing and diagnosing histological images.

In gland labeling/segmentation, each pixel is assigned one la-
bel to represent whether the pixel belongs to the foreground
(gland) or the background. However, which gland the fore-
ground pixel belongs to is still not determined. In order to
analyze the morphology of glands, they need to be recognized
individually. Each pixel needs to be classified and it must be de-
termined which gland the pixel belongs to, which is to assign a
gland ID to each foreground pixel. We call this task as gland in-
stance segmentation (as shown in Fig. 1). In this paper, we aim
to solve the gland instance segmentation problem. We formulate
this problem as two subproblems - gland labeling/segmentation
[3], [4] and instance recognition.

The intrinsic properties of gland histopathological image pose
plenty of challenges in instance segmentation [5]. First of all,
heterogeneous shapes make it difficult to use mathematical
shape models to achieve segmentation. As Fig. 1 shows, the
cytoplasm being filled with mucinogen granule causes the nu-
cleus to be extruded into a flat shape whereas the nucleus appears
as a round or oval body after secreting. Second, variability of
intra- and extra- cellular matrices often leads to anisochromasia.
Therefore, the background portion of histopathological images
contains more noise like intensity gradients, compared to natural
images. Several problems arise in our exploration of analyzing
gland images: 1) some objects are very close together making
only the tiny gaps between them visible when zooming in on
a particular image area; or 2) one entity borders another mak-
ing their edges adhesive to each other. We call this an problem
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Fig. 2. This illustrates a brief structure of the proposed algorithm. The
foreground segmentation channel distinguishes gland pixels from the
background. The edge detection channel outputs the result of boundary
detection. The object detection channel detects glands and their regions
in the images. A convolution neural network concatenates features gen-
erated by different channels and produces segmented instances. The
white areas in subimage “region, edge and boxes” represent the results
of the recognized glands, edges and detected bounding boxes.

of ‘coalescence’. If these problems are omitted during instance
recognition process, even if there is only one pixel coalesc-
ing with another, the algorithm will consider two instances as
one.

Gland labeling/segmentation, as one subproblem of gland in-
stance segmentation, is a well-studied field where various meth-
ods have been explored, such as morphology-based methods
[6]–[9] and graph-based methods [10], [11]. However, glands
must be recognized individually to enable the following mor-
phology analysis. Gland segmentation is insufficient due to its
inability to recognize each gland in histopathological images.
MICCAI 2015 Gland Segmentation Challenge Contest [12] has
drawn attention to gland instance segmentation. The precise
gland instance segmentation in histopathological images is es-
sential for morphology assessment, which is proven to be not
only a valuable tool for clinical diagnosis but also a prerequisite
for cancer grading [13].

Although gland instance segmentation is a relatively new sub-
ject, instance segmentation in nature images has attracted much
interest from researchers. Ever since SDS [14] raised this prob-
lem and proposed a basic framework to solve it, other methods

have been proposed thereafter, such as hypercolumn [15] and
MNC [16], which merely optimize and accelerate the feature ex-
traction process. All of these algorithms fall into a routine that
detects objects first and then segments object instances inside
the detected bounding boxes.

In medical image analysis, traditional methods are more
prevalent for segmenting gland instances instead of learning-
based methods. Traditional methods depend heavily on hand-
craft features and prior knowledge. In natural images, instance
segmentation algorithms are mostly the pipeline of object de-
tection and masking [14]–[16]. The objects in natural images
are regular-shaped, and relatively easy to segment by first cre-
ating bounding boxes for each one. However, most glands are
irregular in shape, which increases the difficulty of detecting
the whole gland structure. Thus the traditional instance seg-
mentation methods for natural images are not suitable for gland
instance segmentation.

In a broad sense, gland instance segmentation can be viewed
as gland labeling process with commutative labels. Thus gland
labeling can offer useful cues for gland instance segmentation.
The latest advantages in deep learning technologies have led
to explosive growth in machine learning and computer vision
for building systems that have shown significant improvements
in a huge range of applications such as image classification
[17], [18] and object detection [19]. The fully convolutional
neural networks (FCN) [20] permit end-to-end training and
testing for image labeling; holistically-nested edge detector
(HED) [21] detector learns hierarchically embedded multiscale
edge fields to account for the low-, mid-, and high- level in-
formation for contours and object boundaries; Faster R-CNN
[22] predicts object locations and compensates for the pos-
sible failure of edge prediction. We solve the gland instance
segmentation problem by multitask learning. One task is to
segment the gland images, and another task is to identify the
gland instances. In the gland segmentation subtask, a fully
convolutional neural network (FCN) [20] model is employed
to exploit the advantage of end-to-end training and image-
to-image prediction. In the gland instance recognition sub-
task, a holistically-nested edge detector (HED) and a Faster
R-CNN object detector are applied to define the instance
boundaries.

We make use of multichannel learning to extract region,
boundary and location cues and solve the instance segmentation
problem in gland histology images (as shown in Fig. 2). Our
algorithm is evaluated on the dataset provided by the MICCAI
2015 Gland Segmentation Challenge Contest [12] and achieves
state-of-the-art performance among all participants and other
popular methods of instance segmentation. We conduct a se-
ries of ablation experiments and prove the superiority of the
proposed algorithm.

This paper is arranged as follows. We formulate the instance
segmentation problem in Section II. Section III is a review of
related previous works. In Section IV, we describe the complete
methodology of the proposed algorithm of gland instance seg-
mentation. Section V is a detailed evaluation of our method.
Section VI summarizes our conclusion.
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Fig. 3. This illustrates two subproblems of gland instance segmentation. Gland instance segmentation can be formulated into foreground label-
ing/segmentation and gland instance recognition two subproblems. As demonstrated in images of the second column, a small amount of prediction
errors have little influence on the final cost function for the foreground labeling/segmentation subproblem; however, for the gland instance recognition
subproblem, even a few pixels predicted incorrectly can highly increase the cost, which is shown in images of the third column. The bar chart shows
the cost of two subproblems.

II. PROBLEM

We formulate the instance segmentation problem by two sub-
problems, labeling/segmentation and instance recognition.

We denote D = {(Xn, Yn , Zn ), n = 1, 2, . . . , N} as the in-
put training dataset, where N is the image amount. We
subsequently drop the subscript n for notational simplicity,
since we consider each image independently. X = {xj , j =
1, 2, . . . , |X|} denotes the raw input image, Y = {yj , j =
1, 2, . . . , |X|}, yj ∈ {0, 1} denotes the corresponding segmen-
tation label and Z = {Rk , k = 0, 1, 2, . . . ,K} denotes the in-
stance label, in which Rk = {(p, q)} denotes the coordinates set
of pixels inside of region Rk . When k equals 0, it denotes the
background area and it denotes the corresponding instance when
k takes other values. K is the total instance number. Regions in
the image satisfy the following relations:

Rk ∩ Rt = ∅,∀k �= t, (1)

∪Rk = Ω. (2)

Ω denotes the whole image region. Note that instance labels
only count gland instances thus they are commutative. Our ob-
jective is to segment glands while ensuring that all instances
are differentiated. Note that the labeling/segmentation subprob-
lem is a binary classification problem. Ŷ represents the label-
ing/segmentation result, the cost function is:

Dist(Y, Ŷ ) =
1
|Y |

|Y |∑

j=1

δ(yj �= ŷj ). (3)

ŷj = arg maxyP (y|X) (4)

In the instance recognition subproblem, Ẑ denotes the in-
stance prediction. The cost function is:

Dist(Z, Ẑ) = 1 − 1
K

K ′∑

k ′=0

L(R̂k ′ , Z), (5)

where

L(R̂k ′ , Z) =

⎧
⎨

⎩
1, ∃k �= 0, R̂k ′ ∩Rk

R̂k ′ ∪Rk
� thre

0, otherwise
(6)

R̂k ′ ∈ Ẑ denotes the instance segmentation prediction region
and Rk ∈ Z denotes the instance label region. K ′ represents
the total predicted region count. thre is the threshold which is
set to 0.5 in this algorithm. When the overlap ratio of the gland
instance in a certain prediction region and labels is higher than
the threshold, this region is considered an instance prediction by
the algorithm. Fig. 3 shows the two gland instance segmentation
subproblems.

Since the cost function of instance recognition is nondifferen-
tiable, it cannot be trained with SGD. We hereby approximate
instance recognition by edge detection and object detection.
We generate edge labels E and object labels O through Y
and Z to train edge detector and object detector, in which
E = {ej , j = 1, 2, . . . , |X|}, ej ∈ {0, 1} and ej equals 0 when
all four nearest pixels (over, below, right and left) belong to the
same instance. O denotes the smallest bounding box for each
gland instance.

III. RELATED WORK

This section is a retrospective introduction about instance
segmentation and gland instance segmentation.



2904 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 12, DECEMBER 2017

A. Instance Segmentation

Instance segmentation, a task distinguishing contour, loca-
tion, class and the number of objects in an image, is attracting
more and more attention from researchers in image process-
ing and computer vision. As a complex problem can hardly be
solved using traditional algorithms, a growing number of deep
learning approaches have emerged to solve it. For example, SDS
[14] uses a framework that resembles R-CNN [23] to extract fea-
tures from both the bounding box of the region and the region
foreground, and then classifies region proposals and refines the
segmentation inside bounding boxes based on those extracted
features. Hypercolumn [15] defines pixel features as a vector of
activations of all CNN units above that pixel, and then classifies
region proposals and refines region segmentation based on those
feature vectors. MNC [16] integrates three networks designed
for detection, segmentation and classification respectively in a
cascaded structure. Unlike SDS and Hypercolumn, MNC is ca-
pable of training in an end-to-end fashion, since MNC takes
advantage of the Region Proposal Network (RPN) to generate
region proposals. Similar to SDS and hypercolumn, MNC per-
forms segmentation inside the proposal box as well. In contrast
to the above methods, our method performs segmentation and
instance recognition in a parallel manner.

B. Gland Instance Segmentation

Gland morphology and structure can vary significantly, which
poses a big challenge in gland instance segmentation. Re-
searchers have come up with several methods to solve this prob-
lem [12], [24]–[26]. Previous works focus on detecting gland
structure like nuclei and lumen. Sirinukunwattana et al. [27]
model every gland as a polygon in which the vertices are lo-
cated at the nucleus. Cheikh et al. [28] propose a mathematical
morphology method to characterize the spatial distribution of
nuclei in histological images. Nguyen et al. [29] use texture and
structural features to classify the basic components of glands,
and then segment gland instance based on prior knowledge of
gland structure. These methods perform well in benign images
but are comparatively unsatisfactory when used on malignant
images, which has been the impetus for creating methods based
on deep learning [27]. Li et al. [30] train a window-based binary
classifier to segment glands using both CNN features and hand-
crafted features. Kainz et al. [26] train two separated networks to
recognize glands and gland-separating structures respectively.
In MICCAI 2015 gland segmentation challenge contest, some
teams achieved impressive performance. DCAN [24] is a mul-
titask learning framework that combines a down-sampling path
and an up-sampling path together. From the hierarchical layer,
the framework is separated into two branches to generate con-
tour information and segment objects. Team ExB [12] proposes
a multipath convolutional neural network segmentation algo-
rithm. Each path consists of different convolutional layers and
is designed to capture different features. All paths are fused
by two fully connected layers to integrate information. Team
Freburg [12] utilizes an off-the-shelf deep convolutional neu-
ral network U-net [31], and then performs post-processing of

hole-filling and removes objects less than 100 pixels wide from
the final results.

C. Previous Work

An earlier conference version of our approach was presented
in Xu et al. [32]. Here we further illustrate that: (1) we explore
another channel - object detection - in this paper, due to the edge
detection and the object detection channels complementing each
other; (2) ablation experiments are carried out to corroborate the
effectiveness of the proposed algorithm; (3) based on the rota-
tion invariance of histological images, a new data augmentation
strategy is proposed that has proven to be effective; (4) this al-
gorithm achieves state-of-the-art results on the dataset provided
by the 2015 MICCAI Gland Segmentation Challenge Contest.

IV. METHOD

There are two possible failures for gland instance segmenta-
tion. Since the gland-separating tissues are relatively few and
similar to glands in coloration, it is very difficult for segmen-
tation to rule out those pixels completely. Although it has little
effect on segmentation, it is detrimental to the instance recog-
nition process. Only one pixel that connects two glands can
mislead the algorithm into recognizing that they belong to the
same gland. Another possible scenario is that algorithms de-
signed to recognize instances separately may cause prediction
areas to be smaller than the ground truth. In this case, the objects
number and position may be accurate, but the segmentation per-
formance is substandard. Those two scenarios are illustrated in
Fig. 4.

We propose a new multichannel algorithm to achieve gland
segmentation and gland instance recognition simultaneously.
Our algorithm consists of three channels and each of them is
designed to undertake different responsibilities. In the proposed
algorithm, we generate one kind of label of the input image
for each channel. Fig. 2 presents the flow chart of the proposed
algorithm. One channel is designed to segment foreground pix-
els from background pixels. The other two channels are used
to recognize instances. Aiming to determine which gland each
foreground pixel belongs to, we utilize both object detection
and edge detection to define spatial limits of every gland. The
reason for choosing these two channels is based on the fact that
information on contour and location contributes respectively and
complimentarily to instance recognition and the joint effort will
perform much better together than each one alone. Specifically,
edge detection performs a little better than object detection in
instance recognition, but edge detection fails to complete the
task because of the aforementioned coalescence phenomenon
of glands, which affects not only segmentation but edge detec-
tion as well. Gland detection may perform well for benign and
well-shaped glands, but hardly detect the entire glands accu-
rately for malignant ones. However, edge detection and object
detection can compensate for each other’s weaknesses and iden-
tify instances better. By integrating the information generated
from different channels, our multichannel framework is capable
of instance segmentation. A detailed depiction of our algorithm
is presented in Fig 5.
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Fig. 4. Two possible failures of gland instance segmentation. In the
instance results and the ground truth images, different color regions
represent different gland instances. Case 1 and Case 2 are two possible
scenarios in which the algorithm fails to segment gland instances. In
Case 1, glands are separated from the background but instances are
not recognized. In Case 2, instances are labeled yet under the condition
of many gland pixels being neglected.

A. Foreground Segmentation Channel

The foreground segmentation channel distinguishes glands
from the background.

The well-suited solutions to image labeling/segmentation in
which each pixel is assigned a label from a pre-specified set are
FCN family models [20], [21]. FCN replaces the fully-connected
layer with a convolutional layer and upsamples the feature map
to the same size as the original images through deconvolution
thus an end-to-end training and prediction is guaranteed. Com-
pared to the previous prevalent method, sliding window [33],
[34] in image segmentation, FCN is faster and simpler. Usu-
ally, an FCN model can be regarded as the combination of a
feature extractor and a pixel-wise predictor. A pixel-wise pre-
dictor predicts probability masks of segmented images. The
feature extractor is able to abstract high-level features by down-
sampling and convolution. Though useful high-level features are
extracted, details of images sink in the process of max-pooling
and strided convolution. Consequently, when objects are adja-
cent to each other, FCN may consider them as one. Applying
FCN to segment images is a logical choice but instance seg-
mentation is beyond the ability of FCN. It requires an algorithm

to differentiate instances of the same class even when they are
extremely close to each other. Even so, probability masks pro-
duced by FCN still offer valuable support in solving instance
segmentation problems.

To compensate for the resolution reduction of feature maps
due to downsampling, FCN introduces skip architecture to com-
bine deep semantic information and shallow appearance infor-
mation. Nevertheless, Yu et al. [35] propose the dilated convo-
lution that empowers the network with a wider receptive field
without downsampling. Less downsampling means less space-
invariance brought by downsampling which is beneficial to in-
creasing segmentation precision.

Our foreground segmentation channel is a modified version
of the FCN-32s [20] of which the strides of pool4 and pool5 are
1 and subsequent convolution layers enlarge the receptive field
with a dilated convolution.

Given an input image X and the parameter of the FCN net-
work is denoted as ws , thus the output of FCN is

Ps (Y ∗ = k | X;ws) = μk (hs (X,ws)) , (7)

where μ(·) is the softmax function. μk (·) is the output of the
kth category and hs(·) outputs the feature map of the hidden
layer. In this case, there are two categories (foreground/glands
and background), k = 2. Y ∗ is the segmentation prediction.

We train the foreground segmentation channel using softmax
cross entropy loss.

B. Edge Detection Channel

The edge detection channel detects boundaries between
glands.

To receive precise and clear boundaries, edges are crucial as
proven by DCAN [24]. The effectiveness of edges in our algo-
rithm can be shown in two ways. First, the edge compensates for
the information loss caused by max-pooling and strided convo-
lution in FCN. As a result, contours become more precise and
the morphology becomes more similar to the ground truth. Sec-
ond, even if the location and the probability mask are confirmed,
it is unavoidable that predicted pixel regions of adjacent objects
are still connected. Edge, however, is able to differentiate be-
tween them. As expected, the synergy of regions, locations and
edges achieves state-of-the-art results. The edge channel in our
model is based on a Holistically-nested Edge Detector (HED)
[21]. It is a CNN-based solution towards edge detection. It learns
hierarchically embedded multiscale edge fields to account for
the low-, mid-, and high- level information of contours and ob-
ject boundaries. In edge detection, pixels of labels are much
less than pixels of backgrounds. The imbalance may decrease
the convergence rate or even cause the network being unable
to convergence. To solve the problem, deep supervision [36] is
deployed. In total, there are five side supervisions which are
established before each down-sampling layer.

We denote we as the parameter of HED, thus the mth predic-
tion of deep supervision is

P (m )
e (E(m )∗ = 1 | X;we) = σ(h(m )

e (X,we)). (8)



2906 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 12, DECEMBER 2017

Fig. 5. This illustrates the structure of this algorithm. For all the channels in this algorithm, FCN for the foreground segmentation channel, Faster
R-CNN [22] for the object detection channel and HED the for edge detection channel, are all based on the VGG16 model, we present this classical
five pooling structure in detail by “Conv Net” at the left side of the figure and represent it as a rectangular block named “Conv Net”. Especially in
foreground segmentation and object detection channels, arrows pointing from “Conv Net” denote the output of the “Conv Net”, whereas in the edge
detection channel they represent the output of deep supervisions. In the foreground segmentation channel, strides of the last two pooling layers of
“Conv Net” are set as 1; dilated convolution is applied to convolution layers leading to the higher resolution of feature maps (as annotated in brackets
in blue). In edge detection channel and object detection channel, the stride of pool4 and pool5 is 2. The ‘×2’ in brackets means that there are two
convolutional layers.

σ(·) denotes the sigmoid function - the output layer of HED.
h

(m )
e represents the output of the hidden layer relative to mth

deep supervision and E(m )∗ denotes the mth side output pre-
diction. The weighted sum of M outputs of deep supervision is
the final result of this channel which is denoted as E∗, and the
weighted coefficient is α.

Pe(E∗ = 1|X;we, α) = σ

(
M∑

m=1

α(m ) , h(m )
e (X,we)

)
(9)

This process is delivered through the convolutional layer. The
back propagation enables the network to learn relative levels of
importance of edge predictions under different scales.

We train the edge detection channel using sigmoid cross en-
tropy loss.

C. Object Detection Channel

The object detection channel detects glands and their loca-
tions in the image.

Object detection is helpful in counting and identifying the
range of objects. According to some previous works on in-
stance segmentation, such as MNC [16], confirmation of the
bounding-box is usually the first step in instance segmentation.
After that, segmentation and other options are carried out within
bounding boxes. Though this method is widely recognized, the
loss of context information caused by the limited receptive field
of bounding-box may exacerbate segmentation results. Conse-
quently, we integrate location information into the fusion net-
work instead of segmenting instances within bounding boxes.
To obtain location information, Faster R-CNN, a state-of-the-

art object detection model, is conceived. Convolutional layers
are applied to extract feature maps from images. After that, the
Region Proposal Network (RPN) takes an arbitrary-sized fea-
ture map as input and produces a set of bounding-boxes with
the probability of objects. Region proposals will be converted
into regions of interest and classified to form the final object
detection result.

Filling is done in order to transform the bounding box predic-
tion into a new formation that represents the number of bound-
ing boxes that every pixel belongs to. The value of each pixel
in regions covered by the bounding boxes equals the number of
bounding boxes it belongs to. For example, if a pixel is in the
overlapping area of three bounding boxes, the value of that pixel
will be three. wd is denoted as the parameter of Faster R-CNN
and φ represents the filling operation. The output of this channel
is

Pd (X,wd) = φ (hd (X,wd)) . (10)

hd (·) is the predicted coordinate of the bounding box.
We train the object detection channel using the same loss as

in Faster R-CNN [22]: the sum of a classification loss and a
regression loss.

D. Fusing Multichannel

Merely receiving the information of these three channels is
not the ultimate purpose of our algorithm. As a result, a fu-
sion algorithm is of great importance to maximize synergies of
the three kinds of information - region, location and boundary
cues. It is hard for an algorithm which is not learning-based to
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recognize the patterns of all this information. Naturally, a CNN
based solution is the best choice.

After obtaining outputs of these three channels, a shallow
seven-layer convolutional neural network is used to combine
information and yield the final result. To reduce information
loss and ensure a sufficiently large reception field, we again re-
place downsampling with dilated convolution. The architecture
of fusion network is designed by cross validation. We gradually
increase the number layers and filters until the performance no
longer improves.

We denote wf as the parameter of this network and hf as the
hidden layer. Thus the output of the network is

P (Y ∗
I = k | Ps, Pd, Pe ;wf ) = μk (hf (Ps, Pd, Pe , wf )) .

(11)
As mentioned above, in this case, there are two categories, k =
2. Y ∗

I is the instance segmentation prediction.
We train the fusion network using softmax cross entropy loss.

V. EXPERIMENT

A. Dataset

Our method is evaluated on the dataset provided by the MIC-
CAI 2015 Gland Segmentation Challenge Contest [12]. The
dataset consists of 165 labeled colorectal cancer histological
images scanned by Zeiss MIRAX MIDI. The image resolu-
tion is approximately 0.62 vm per pixel. Original images are in
different sizes, while most of them are 775 × 522. 85 images
belong to the training set and 80 are part of test sets (test set A
contains 60 images and test set B contains 20 images). There
are 37 benign sections and 48 malignant ones in the training set,
33 benign sections and 27 malignant ones in testing set A and 4
benign sections and 16 malignant ones in testing set B.

B. Data Augmentation and Preprocessing

We first preprocess data by performing per channel zero
mean. The next step is to generate edge labels from re-
gion labels and perform dilation on edge labels afterwards. A
bounding box for a gland is the smallest rectangle that can
encircle the gland. Bounding box ground truth (xk

min , xk
max ,

yk
min , yk

max ) can be generated from segmentation label, in
which, xk

min = min(Px |P ∈ Rk ), xk
max = max(Px |P ∈ Rk ),

yk
min = min(yx |P ∈ Rk ), and yk

max = max(Py |P ∈ Rk ). Rk

is the kth region of the instance ground truth and P denotes a
pixel point in Rk . Px and Py represent the X-coordinate and
Y-coordinate of P . Whether a pixel is an edge or not is de-
cided by its four nearest pixels (over, below, right and left) in
the region label. If all four pixels in the region label belong to
the foreground or in the background, this pixel does not belong
to any edge. To enhance performance and combat overfitting,
copious amounts of training data are needed. Given the circum-
stance of the absence of a large dataset, data augmentation is
essential before training. Two strategies for data augmentation
have been carried out and the improvement of results is strong
enough evidence to prove the efficiency of data augmentation.
In Strategy I, horizontal flipping and rotation operation (0◦, 90◦,
180◦, 270◦) are used in training images. Besides operations in

Strategy I, Strategy II also includes elastic transformation, such
as pin cushion transformation and barrel transformation. Defor-
mation of original images is beneficial to increasing robustness
and the promotion of the final result. Since the fully-connected
layer is replaced by convolutional layer, FCN takes arbitrary size
images as testing inputs. After data augmentation, a 400 × 400
region is randomly cropped from the original image as input.

C. Hyperparameter

CAFFE [37] is used in our experiments. Experiments are
carried out on K40 GPU and the CUDA edition is 7.0.
The weight decay is 0.002, the momentum is 0.9. While training
the foreground labeling/segmentation channel of the network,
the learning rate is 103 and the parameters are initialized by pre-
trained FCN32s model [20], while the edge detection channel
is trained under the learning rate of 109 and the Xavier initial-
ization is performed. object detection channel is trained under
the learning rate of 10−3 and initialized by pretrained Faster R-
CNN model. Fusion is learned under the learning rate of 10−3

and initialized by Xavier initialization.

D. Evaluation

The evaluation method is the same as the competition re-
quires. Three indicators are used to evaluate the performance on
test A and test B. Indicators assess detection results, segmen-
tation performance and shape similarity respectively. The final
score is the summation of six rankings and the smaller the bet-
ter. Since image amounts of test A and test B have a significant
difference in quantity, we not only calculate the rank sum as the
host of MICCAI 2015 Gland Segmentation Challenge Contest
demands, but we also list the weighted rank sum. We calculate
the weighted average of three evaluation criteria on test set A
and test set B. Since the images in test A account for 3/4 of the
test set and images in test B account for 1/4, the weighted rank
sum is calculated as:

WeightedRS = 3/4
∑

testARank + 1/4
∑

testBRank.

(12)
The evaluation program is given by the MICCAI 2015 Gland
Segmentation Challenge Contest [12]. The first criterion is the
F1 score, which reflects gland detection accuracy. The seg-
mented glandular object of True Positive (TP) is the object that
shares more than 50% of areas with the ground truth. Otherwise,
the segmented area will be determined as a False Positive (FP).
Objects of ground truth without corresponding prediction are
considered as False Negatives (FN).

F1 Score =
2 · Precision · Recall
Precision + Recall

(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)
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TABLE I
PERFORMANCE IN COMPARISON TO OTHER METHODS

Method F1 Score ObjectDice ObjectHausdorff RS1 WRS2

Part A Part B Part A Part B Part A Part B

Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank

FCN [20] 0.788 11 0.764 4 0.813 11 0.796 4 95.054 11 146.2478 4 45 27.75
dilated FCN [38] 0.854 9 0.798 2 0.879 6 0.825 2 62.216 9 118.734 2 30 19.5
Ours 0.893 3 0.843 1 0.908 1 0.833 1 44.129 1 116.821 1 8 4.5
CUMedVision2 [24] 0.912 1 0.716 6 0.897 2 0.781 8 45.418 2 160.347 9 28 9.5
ExB3 [12] 0.896 2 0.719 5 0.886 3 0.765 9 57.350 6 159.873 8 33 13.75
ExB2 [12] 0.892 4 0.686 9 0.884 4 0.754 10 54.785 3 187.442 11 41 15.75
ExB1 [12] 0.891 5 0.703 7 0.882 5 0.786 5 57.413 7 145.575 3 32 16.5
Frerburg2 [31] 0.870 6 0.695 8 0.876 7 0.786 6 57.093 4 148.463 6 37 17.75
Frerburg1 [31] 0.834 10 0.605 11 0.875 8 0.783 7 57.194 5 146.607 5 46 23
CUMedVision1 [24] 0.868 7 0.769 3 0.867 10 0.800 3 74.596 10 153.646 7 40 23.5
CVIP Dundee 0.863 8 0.633 10 0.870 9 0.715 11 58.339 8 209.048 13 59 27.25
LIB 0.777 12 0.306 14 0.781 12 0.617 13 112.706 13 190.447 12 76 37.5
CVML 0.652 13 0.541 12 0.644 14 0.654 12 155.433 14 176.244 10 75 39.25
vision4GlaS 0.635 14 0.527 13 0.737 13 0.610 14 107.491 12 210.105 14 80 39.5

1RS is the abbreviation for rank sum.
2WRS is the abbreviation for weighted rank sum.

Dice is the second criterion for evaluating segmentation per-
formance. The dice index of the whole image is

D(G,S) =
2(| G ∩ S |)
| G | + | S | , (16)

of which G represents the ground truth and S is the segmented
result. Unfortunately, it is not able to differentiate instances of
the same class. Further, we denote G as a set of all ground truth
objects and S as a set of all segmented objects. Si denotes the
ith segmented object in an image and Gi denotes a ground truth
object that maximally overlaps Si in the image. G̃i denotes the
ith ground truth object in and image and S̃i denotes a segmented
object that maximally overlaps in the image. As a result, an
object-level dice score is employed to evaluate segmentation
results. The definition is as follows:

Dob ject(G,S) = 1/2

[
nS∑

i=1

wiD(Gi, Si) +
nG∑

i=1

w̃iD(G̃i , S̃i)

]
,

(17)

wi =
| Si |∑nS

j=1 | Sj | , (18)

w̃i =
| G̃i |∑nG

j=1 | G̃j | . (19)

nS and nG are the numbers of instances in the segmented results
and the ground truth.

Shape similarity reflects the performance on morphology
likelihood which plays a significant role in gland instance seg-
mentation. Hausdorff distance is exploited to evaluate shape
similarity. To assess glands respectively, the index of Hausdorff
distance deforms from the original formation:

H(G,S) = max
{

sup inf
xεG yεS

‖x − y‖ , sup inf
yεS xεG

‖x − y‖
}

, (20)

to the object-level formation:

Hob ject(S,G) = 1/2

[
ns∑

i=1

wiH(Gi, Si) +
nG∑

i=1

w̃iH(G̃i , S̃i)

]
,

(21)
where

wi =
|Si |∑nS

j=1 |Sj | , (22)

w̃i =
|G̃i |∑nG

j=1 |G̃j |
. (23)

Similar to the object-level dice, index nS and nG represent
instances of segmented objects and the ground truth.

E. Result and Discussion

Table I lists results of our proposed algorithm, FCN, dilated
FCN and other participants on datasets provided by the MICCAI
2015 Gland Segmentation Challenge Contest.

In the table, RS and WRS denote rank sum and weighted rank
sum respectively. We rearrange the scores and ranks in this table.
Our method outranks FCN, dilated FCN and other participants
based on both rank sum and weighted rank sum.

Compared to FCN and dilated FCN, our algorithm obtains
better scores which is convincing evidence that our work is
more effective in solving instance segmentation problems in
histological images. Though dilated FCN performs better than
FCN as the dilated convolution process has less pooling and
covers larger receptive fields, our algorithm combines region,
location and edge information to achieve higher scores in the
dataset. The reason our algorithm ranks higher is because most
adjacent glandular structures have been separated, which is more
beneficial to meet the evaluation index of instance segmentation,
whereas in FCN and dilated FCN they are not. Comparison
results are illustrated in Fig. 6.
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Fig. 6. From left to right: original image, ground truth, results of FCN [20], FCN with dilated convolution and the proposed algorithm. Compared to
FCN and dilated FCN, most adjacent glandular structures are separated (as shown inside the red solid boxes) which indicates that our algorithm
accomplishes instance segmentation. Besides, our algorithm is able to correctly judge the small isolated area as non-gland area (as shown inside
the red dotted boxes). However, a few glands that are broken apart escape the detection of our model (as shown inside the black boxes). The bad
performance in the last row is due to the fact that in most samples the white area is recognized as cytoplasm whereas in this sample, the white area
is the background.

Ranks of test A are generally higher than test B due to the
inconsistency of data distribution. In test A, most images are
normal ones whereas test B contains a majority of cancerous
images which are more complicated in shape and larger in size.
Hence, a larger receptive field is required in order to detect can-
cerous glands. However, before we exploit dilated convolution,
the downsampling layer not only gives the network a larger re-
ceptive field but also makes the resolution of the feature map
decrease, thus it deteriorates the segmentation results. Dilated
convolution empowers the convolutional neural network with
a larger receptive field with fewer downsampling layers. Our
multichannel algorithm enhances performance based on the di-
lated FCN by adding two channels - edge detection and object
detection.

Since the differences between background and foreground in
histopathological images are small (3th row of Fig. 6), FCN and
dilated FCN sometimes predict the background pixel as gland,

raising the false positive rate. The multichannel algorithm abates
the false positive by adding pixel context while predicting object
location.

Compared to CUMedVision1 [24], CUMedVision2 [24] adds
edge information which improves the results of test A but those
of test B deteriorate. Our method improves results of test A and
test B after combining edge and location context.

However, white regions in gland histopathological images
are of two kinds: 1) cytoplasm; and 2) no cell or tissue (back-
ground). The difference between these two is that cytoplasm
usually appears surrounded by nuclei or other stained tissue.
In the image of the last row in Fig. 6, glands encircle some
white regions with no existence of cell or tissue causing the
algorithm to mistake them for cytoplasm. As for images of
the 4th and 5th row in Fig. 6, glands are split when cutting
images, which is the reason that cytoplasm is mistaken for
background.
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Fig. 7. From left to right: original image, ground truth, results of SDS [14], Hypercolumn [15], MNC [16] and the proposed algorithm. Different color
regions represent different gland instances. SDS, Hypercolumn and MNC all perform masking inside bounding boxes produced by object detection,
which causes the coarse boundary of gland instances and even neglects some glands. In the second column, one gland instance is missed by
manual labeling but our algorithm successfully detects its location and segments it with relatively complete shape, yet SDS, Hypercolumn and MNC
fail to detect this gland (as shown inside of the red boxes).

TABLE II
COMPARISON WITH INSTANCE SEGMENTATION METHODS

Method F1 Score ObjectDice ObjectHausdorff

Part A Part B Part A Part B Part A Part B

HyperColumn [15] 0.852 0.691 0.742 0.653 119.441 190.384
MNC [16] 0.856 0.701 0.793 0.705 85.208 190.323
SDS [14] 0.545 0.322 0.647 0.495 116.833 229.853
BOX->dilated FCN [38]+EDGE3 0.807 0.700 0.790 0.696 114.230 197.360
OURS 0.893 0.843 0.908 0.833 44.129 116.821

Comparison with instance segmentation methods Cur-
rently, methods suitable for instance segmentation of natural
scene images predict instances based on detection or proposal,
such as SDS [14], Hypercolumn [15] and MNC [16]. One prob-
lem with this logic is its dependence on the precision of detection
or proposal. If the object or a certain pixel of an object escapes
the detection, it will evade the subsequent segmentation as well.
Besides, the segmentation being restricted to a certain bound-
ing box will have little access to context information hence it
impacts the result. Under the condition of bounding boxes over-
lapping one another, which instance the pixel in the overlapping
region belongs to cannot be determined. The overlapping area
falls into the category of the nearest gland in our experiment.
The experiment results are presented in Fig. 7.

To further demonstrate the defect of the cascade architecture,
we design a baseline experiment. We first perform gland detec-
tion and then segment gland instances inside bounding boxes.
There is a shallow network (same as the fusion network) com-
bining foreground segmentation and edge detection information

to generate the final result. Configurations of all experiments are
set the same as our method. Results are shown in Table II and
less effective than the proposed algorithm.

F. Ablation Experiment

1) Data Augmentation Strategy: Data augmentation
contributes to performance enhancement and overfitting elimi-
nation. We observe through experiments that adequate transfor-
mation of gland images is beneficial to training. This is because
glands naturally form in various shapes and cancerous glands
are more different in morphology. Here we evaluate the effect on
results of the foreground segmentation channel using Strategy I
and Strategy II (as shown in Table III).

2) Plausibility of Channels: In convolutional neural
networks, the main purpose of downsampling is to enlarge the
receptive field, but this comes at a cost of decreased resolu-
tion and information loss of original data. Feature maps with
low resolution increase the difficulty of upsample layer train-
ing. The representational ability of feature maps is reduced after
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TABLE III
DATA AUGMENTATION STRATEGY COMPARISON

Strategy Method F1 Score ObjectDice ObjectHausdorff

Part A Part B Part A Part B Part A Part B

Strategy I FCN [20] 0.709 0.708 0.748 0.779 129.941 159.639
dilated FCN [38] 0.820 0.749 0.843 0.811 79.768 131.639

Strategy II FCN [20] 0.788 0.764 0.813 0.796 95.054 146.248
dilated FCN [38] 0.854 0.798 0.879 0.825 62.216 118.734

TABLE IV
PLAUSIBILITY OF CHANNELS

Method F1 Score ObjectDice ObjectHausdorff

Part A Part B Part A Part B Part A Part B

MC: FCN + EDGE1 + BOX 0.863 0.784 0.884 0.833 57.519 108.825
MC: FCN + EDGE3 + BOX 0.886 0.795 0.901 0.840 49.578 100.681
MC: dilated FCN + EDGE3 + BOX 0.890 0.816 0.905 0.841 47.081 107.413
DMC: FCN + EDGE3 + BOX 0.893 0.803 0.903 0.846 47.510 97.440
DMC: dilated FCN + EDGE3 + BOX 0.893 0.843 0.908 0.833 44.129 116.821
DMC: dilated FCN + EDGE1 + BOX 0.876 0.824 0.894 0.826 50.028 123.881
DMC: dilated FCN + BOX 0.876 0.815 0.893 0.808 50.823 132.816
DMC: dilated FCN + EDGE3 0.874 0.816 0.904 0.832 46.307 109.174

We denote DMC as the fusion network with dilated convolution [38] and MC as the fusion
network without dilated convolution. EDGE1 represents that edge label are not dilated
whereas EDGE3 represents that edge label are dilated by a disk filter with radius of 3. BOX
indicates that the method includes object detection [22]. FCN [20] and dilated FCN [38]
indicates that the method includes foreground segmentation.

upsampling and further leads to inferior segmentation results.
Another drawback of downsampling is the space invariance
it introduces whereas segmentation is space sensitive. The in-
consistence between downsampling and image segmentation is
obvious. Dilated convolution empowers the convolutional neu-
ral network with larger receptive field with less downsampling
layers.

The comparison between segmentation performances of FCN
with and without dilated convolution shows its effectiveness in
enhancing segmentation precision. The foreground segmenta-
tion channel with dilated convolution improves the performance
of the multichannel algorithm. So does the fusion stage with
dilated convolution.

Pixels belonging to the edge occupy an extremely small pro-
portion of the whole image. The imbalance between edge and
non-edge poses a significant barrier to network training that the
network may not convergent. Edge dilation can alleviate the
imbalance and improve edge detection precision.

To prove that these three channels truly improve instance seg-
mentation performance, we conduct the following two baseline
experiments: a) we launch a foreground segmentation channel
and an edge detection channel; b) we launch a foreground seg-
mentation channel and an object detection channel. The results
favor the three-channel algorithm. Results from the experiments
mentioned above are presented in Table IV.

VI. CONCLUSION

We propose a new algorithm called deep multichannel neu-
ral networks. The proposed algorithm exploits features of edge,

region and location in a multichannel manner to generate in-
stance segmentation. We observe state-of-the-art results on the
dataset from the MICCAI 2015 Gland Segmentation Challenge.
A series of baseline experiments are conducted to prove the
superiority of this method.

In future work, this algorithm can be expanded to instance
segmentation of other medical images.
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