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a b s t r a c t

In this paper, we propose an innovative end-to-end subtitle detection and recognition system for videos in East
Asian languages. Our end-to-end system consists of multiple stages. Subtitles are firstly detected by a novel image
operator based on the sequence information of consecutive video frames. Then, an ensemble of Convolutional
Neural Networks (CNNs) trained on synthetic data is adopted for detecting and recognizing East Asian characters.
Finally, a dynamic programming approach leveraging language models is applied to constitute results of the entire
body of text lines. The proposed system achieves average end-to-end accuracies of 98.2% and 98.3% on 40 videos
in Simplified Chinese and 40 videos in Traditional Chinese respectively, which is a significant outperformance of
other existing methods. The near-perfect accuracy of our system dramatically narrows the gap between human
cognitive ability and state-of-the-art algorithms used for such a task.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Detecting and recognizing video subtitle texts in East Asian lan-
guages (e.g. Simplified Chinese, Traditional Chinese, Japanese and
Korean) is a challenging task with many promising applications like
automatic video retrieval and summarization. Different from traditional
printed document OCR, recognizing subtitle texts embedded in videos
is complicated by cluttered backgrounds, diversified fonts, loss of
resolution and low contrast between texts and backgrounds [1].

Given that video subtitles are almost always horizontal, subtitle
detection can be partitioned into two steps: subtitle top/bottom bound-
ary (STBB) detection and subtitle left/right boundary (SLRB) detection.
These four detected boundaries enclose a bounding box that is likely to
contain subtitle texts. Then the texts inside the bounding box are ready
to be recognized.

Despite the similarity between video subtitle detection and scene
text detection, the instinctive sequence information of videos makes
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it necessary to address these two tasks respectively [2]. As illustrated
in Fig. 1, for most videos with single-line subtitles in East Asian
languages, texts at the subtitle region exhibit homogeneous properties
throughout the video, including consistent STBB position, color and
single character width (SCW). Meanwhile, the non-subtitle region varies
unpredictably from frame to frame. With the assistance of this valuable
sequence information, we put forward a suitable image operator that can
facilitate the detection of STBB and SCW. We call this image operator
the Character Width Transform (CWT), as it exploits one of the most
distinctive features of East Asian characters—consistent SCW.

Considering the complexity of backgrounds and the diversity of sub-
title texts, adopting a high-capacity classifier for both text detection and
recognition is imperative. CNNs have most recently proven their mettle
handling image text detection and recognition [3,4]. By virtue of their
special bio-inspired structures (i.e. local receptive fields, weight sharing
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Fig. 1. Illustration of the consistent STBB position throughout the video. The red box denotes the subtitle region, while the green box denotes the non-subtitle region. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and sub-sampling), CNNs are extremely robust to noise, deformation
and geometric transformations [5] and thus are capable of recognizing
characters with diverse fonts and distinguishing texts from cluttered
backgrounds. Besides, the architecture of CNNs enables efficient feature
sharing across different tasks: features extracted from hidden layers
of a CNN character classifier can also be used for text detection [4].
Additionally, the fixed input size of typical CNNs makes them especially
suitable for recognizing East Asian characters whose SCW is consistent.

In view of the straightforward generation pipeline of video subtitles,
it is technically feasible to obtain training data by simulating and
recovering this generation pipeline. To be more specific, when equipped
with a comprehensive dictionary, several fonts and numerous random
backgrounds, machines can produce huge volumes of synthetic data
covering thousands of characters in diverse fonts without strenuous
manual labeling. As a cornucopia of synthetic training data meet the
‘‘data-hungry’’ nature of CNNs, models trained merely on synthetic data
can achieve competitive performance on real-world datasets.

Another observation is that the recognition performance degrades
with the burgeoning number of character categories (as in the case of
East Asian languages). In a similar circumstance, Jaderberg et al. [6]
attempt to alleviate this problem with a sophisticated incremental
learning method. Here we propose a more straightforward solution:
instead of using a single CNN, we independently train multiple (ten
in this paper) CNN models that consolidate a CNN ensemble. These
models are complementary to each other, as the training data is shuffled
respectively for training different models.

In this paper, by seamlessly integrating the above-mentioned corner-
stones, we propose an end-to-end subtitle text detection and recognition
system specifically customized to videos with a large concentration of
subtitles in East Asian languages. Firstly, STBB and SCW are detected
based on a novel image operator with the sequence information of
videos. SCW being determined at an early stage can provide instructive
information to improve the performance of the remaining modules in the
system. Afterwards, SLRB is detected by a SVM text/non-text classifier
(it takes CNN features as input) and a horizontal sliding window (its
width is set to SCW). According to the detected top, bottom, left and
right boundaries, the video subtitle is successfully detected. Finally,
single characters are recognized by the CNN ensemble and the text line
recognition result is determined by a dynamic programming algorithm
leveraging a 3-gram language model. We show that the CNN ensemble
produces a recognition accuracy of 99.4% on a large real-world dataset
including around 177,000 characters in 20,000 frames. This dataset with
ground truth annotations has been made publicly available.1

1 https://drive.google.com/file/d/0B0x5IW_m4AC5M0RuY1JiUWJIcUU/view?usp=
sharing.

Our contribution can be summarized as follows:

∙ We propose an end-to-end subtitle detection and recognition
system for East Asian languages. By achieving 98.2% and 98.3%
end-to-end recognition accuracies for Simplified Chinese and
Traditional Chinese respectively, this system remarkably narrows
the gap to human-level reading performance.2

∙ We define a novel image operator whose outputs enable the ef-
fective detection of STBB and SCW. The sequence information is
integrated throughout the video to increase the reliability of the
proposed image operator. This module achieves a competitive
result on a dataset including 1097 videos.

∙ We leverage a CNN ensemble to perform the classification of
East Asian characters across huge dictionaries. The ensemble
reduces the recognition error rate by approximately 75% in
comparison with a single CNN. CNNs in our system serve both as
text detectors and character recognizers.

The remainder of this paper is organized as follows. Section 2 reviews
related works. Section 3 describes the synthetic data generation scheme,
the CNN ensemble and the end-to-end system. In Section 4, the proposed
system and each module in it are evaluated on a large dataset, and the
experimental results are presented. In Section 5, observations from our
experiments are discussed. A conclusion and discussion of future work
are given in Section 6.

2. Related work

In this section, we focus on reviewing relevant literature on image
text detection and recognition. As for other text detection and recogni-
tion methods, several review papers [1,7–10] can be referred to.

2.1. Image text detection

Generally, text detection methods are based on either connected
components or sliding windows [4]. Connected component based
methods, like Maximally Stable Extremal Regions (MSER) [11–13],
enjoy their computational efficiency and high recall rates, but suffer
from a large number of false detections. Methods based on sliding
windows [3,4,14–17] adopt a multi-scale window to scan through all
locations of an image, then apply a trained classifier with either hand-
engineered features or learned features to distinguish texts from non-
texts. Though this kind of method produces significantly less false

2 Human-level reading performance is 99.6% according to the experiment in Section
4.1.
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detections, the computational cost of scanning every location of the
image is unbearable. Therefore, connected component based methods
and sliding-window based methods are often utilized together for text
detection [6,13,18,19], where the former generate text region proposals
and the latter eliminate false detections. This text detection scheme
is also adopted in this paper, but our text region proposal method is
based on the sequence information of video and thus not comparable to
existing methods designed for scene text detection [20–22]. Hence, we
focus on reviewing methods based on video sequence information and
text region verification works that aim to eliminate false detections.

2.1.1. Methods incorporating video sequence information
Tang et al. [23] analyze the difference of adjacent frames to detect

the subtitle text based on the assumption that in each shot the scene
changes more gradually than the subtitle text. Wang et al. [24] exploit
a multi-frame integration technique within 30 consecutive frames to
reduce the complexity of backgrounds before the text detection process.
Liu et al. [25] compare the distribution of stroke-like edges between
adjacent frames and segment the video into clips in which the same
caption is contained. Then they adopt a temporal ‘‘and’’ operation to
identify caption regions. However, contrary to the proposed method in
this paper, these existing methods rarely exploit temporal information
throughout the video.

2.1.2. Text region verification based on hand-engineered features
Traditional methods harness manually designed low-level features

such as SIFT and histogram of oriented gradients (HOG) to train a clas-
sifier to distinguish texts from non-texts. For instance, Wang et al. [26]
propose a new block partition method and combine the edge orient
histogram feature with the gray scale contrast feature (EOH-GSC) for
text verification. Neumann et al. [19] adopt the SVM classifier with
a set of geometric features for text detection. Wang et al. [15] and
Jaderberg et al. [6] eliminate false text detections by Random Ferns
with HOG features. Minetto et al. [27] propose a HOG-based texture
descriptor (T-HOG) that ameliorates traditional HOG features on the
text/non-text discrimination task. Liang et al. [28] propose a multi-
spectral fusion method for enhancing low resolution text pixels and use
MSER for text detection. Yin et al. [29] adopt a pruning algorithm to
extract MSERs and detect text in natural scene images. Effective as these
handcrafted features are to describe image content information, they
are suboptimal to represent text data due to their heavy dependence on
priori knowledge and heuristic rules.

2.1.3. Text region verification based on feature learning
In contrast to these traditional methods, more advanced methods

take advantage of high-capability feature learning to automatically learn
a more robust representation of text data, hence possessing a powerful
discrimination ability to eliminate false text detections. Yao et al. [30]
use Fully Convolutional Network to localize texts in a holistic manner.
Delakis and Garcia [16] train a CNN to detect texts from raw images
in a sliding window fashion. Wang et al. [3] and Huang et al. [13]
utilize a multi-layer CNN for both text detection and recognition, and
the first layer of the network is trained with an unsupervised learning
algorithm [14]. Ren et al. [17] are the first to tackle Simplified Chinese
scene text detection. They propose an algorithm called convolutional
sparse auto-encoder (CSAE) to pre-train the first layer of CNN on
unlabeled synthetic data for Simplified Chinese scene text detection.

Both the above-mentioned methods and our approach are based
on feature learning, comparing favorably against methods based on
hand-engineered features. We further promote East Asian text detection
performance by training a CNN ensemble in an end-to-end manner on
labeled synthetic data.

2.2. Image text recognition

Similar to Section 2.1 where the importance of features is addressed,
existing image text recognition methods are also classified into those
based on hand-engineered features [15,19,31–34] and those based on
feature learning [3,4,6,14,18,35–42].

2.2.1. Image text recognition based on hand-engineered features
Bissacco et al. [33] propose a scene text recognition system by

combining a neural network trained on HOG features with a powerful
language model. Lee et al. [31] present a new text recognition method
by merging gradient histograms, gradient magnitude and color features.
Khare et al. [43] propose a novel blind deconvolution method for
deblurring the blur image and improving text recognition performance.
Bai et al. [34] use HOG features, artificially generated training data
and a neural network classifier for Simplified Chinese image text recog-
nition. Though state-of-the-art performance was achieved, its 85.44%
recognition accuracy still impedes its practical application.

2.2.2. Image text recognition based on feature learning
Elagouni et al. [42] harness a CNN to perform character recognition

with the aid of a language model, and their system achieves outstanding
performance on 12 videos in French. Jaderberg et al. [4] propose
a novel CNN architecture that facilitates efficient feature sharing for
different tasks like text detection, character classification and bigram
classification. Alsharif and Pineau [18] utilize the Maxout network [44]
together with an HMM with a fixed lexicon to recognize image words.
Jaderberg et al. [6] propose a CNN that directly takes whole word
images as input and classifies them across a dictionary of 90,000 English
words.

Works tackling East Asian image text recognition with CNNs are
relatively rare. Zhong et al. [41] adopt a CNN with a multi-pooling layer
on top of the final convolutional layer to perform multi-font printed
Simplified Chinese character recognition, which renders their method
robust to spatial layout variations and deformations. Bai et al. [39]
propose a CNN architecture for Simplified Chinese and English char-
acter recognition, and the hidden-layers are shared across these two
languages. However, both works [39,41] can only recognize an isolated
character as opposed to a text line. Besides, the work of Bai et al. [39]
can only recognize 500 Simplified Chinese characters, though there are
thousands of characters commonly used [45]. Therefore, to the best of
our knowledge, the system proposed in this paper is the first to leverage
high-capability CNNs to recognize image text lines in Simplified Chinese
(and also other East Asian languages) with a comprehensive alphabet
consisting of 7008 characters.

3. Method

In this section, we will describe the synthetic data generation
pipeline, the CNN ensemble and the end-to-end system in detail. As
illustrated in Fig. 2, the end-to-end system consists of three modules
including STBB and SCW detection, SLRB detection and subtitle recog-
nition.

3.1. Synthetic data generation

As it is easy to simulate the generation pipeline of subtitles, training
data are synthetically generated in a scheme similar to [46,47]. The
labeled synthetic data in Simplified Chinese (SC), Traditional Chinese
(TC) and Japanese (JP) are generated to train CNNs in SC, TC and JP
respectively.

(1) Dictionary construction: three comprehensive dictionaries that
respectively cover 7009 SC characters, 4809 TC characters and 2282
JP characters are constructed. A space character is included in each
dictionary.

(2) Font rendering: 22, 19 and 17 kinds of font for SC, TC and JP are
collected respectively for introducing more variations to the training
data.

(3) Random selection of background and character: 45,441 frames
are randomly extracted from 11 news videos downloaded from the
Internet. Afterwards, small background patches are randomly cropped
from these frames. The size of every background patch is determined
with regard to a random combination of a character and a font. 200,000
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Fig. 2. Overview of the proposed system. The end-to-end system consists of three modules corresponding to three boxes with blue dashed borders in the figure. Given a set of video
frames, the first module detects STBB and SCW. In the second module, SLRB is detected by a SVM text/non-text classifier with features extracted from the hidden layer of the CNN
ensemble. In the third module, a sliding window with width equaling to SCW is employed, and the CNN ensemble recognizes characters in each window region. The final result is given
by a dynamic programming algorithm with a language model.

machine-born white characters with dark shadows are generated by
repeatedly selecting a random combination of a font and a character
from the dictionary.

(4) Random shift and Gaussian blur: every randomly generated
machine-born character is superimposed on a randomly selected back-
ground patch with a random shift of 𝜃 pixels, where 𝜃 is drawn from
a uniform distribution on the interval [−2, 2]. Then every image is
convolved with a Gaussian blur at the scale of 𝜎 pixels, where 𝜎 is
drawn from a uniform distribution on the interval [0.5, 1.6]. The
convolved images are then converted to grayscale images and resized
to 24 × 24. Therefore, 200,000 samples are generated for SC, TC, and
JP respectively.

The procedure of generating training samples for the text/non-
text SVM classifier is almost the same, except that the same number
of background patches without characters are also stored as non-text
training examples. Fig. 3 presents some of the training data.

3.2. Convolutional neural networks ensemble

CNNs have been recently applied to recognize image texts with great
success [3,4,6,18]. The architecture of our CNN model is mainly inspired
by [48], in which a four-layer CNN with local response normalization
achieved an 11% test error rate on the CIFAR-10 dataset [49]. As

delineated by Table 1, the configuration of our net is derived from the
code shared by Krizhevsky [50]. Our CNN takes as input a character
image rescaled to the size of 24 × 24 pixels and returns as output
a vector of 𝑧 values between 0 and 1. The input image is converted
to grayscale image so as to reduce the susceptibility of our model
to variable text colors and alleviate the computational burden. Ten
parallel CNNs as described above form the CNN ensemble. They are
independently trained and their outputs are averaged to get the final
recognition results.

Note that we do not perform the data augmentation as proposed
by [48], in which 24 × 24 patches are randomly cropped from the
original 32 × 32 images in CIFAR-10 [49] to prohibit overfitting. The
reason behind this is twofold. On the one hand, the loss of critical
information, including radicals and strokes in characters, is inevitable
if the original images are randomly cropped. On the other hand, we are
not concerned about overfitting because our synthetic dataset can be
arbitrarily large.

3.2.1. Details of learning
Stochastic gradient descent with a batch size of 128 images is used

to train our models. Parameters like learning rates, weight decay and
momentum are concurrent with the shared code [51]. 195,000 images
are used for training while the remaining 5000 images are used for
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Fig. 3. Examples of the machine-simulated training data. The small patches on the first three lines are non-text training examples, while those on the last three lines are text training
examples.

Table 1
CNN configuration. The input and output sizes are described in 𝑟𝑜𝑤𝑠 × 𝑐𝑜𝑙𝑠 × #𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠. The kernel is specified as 𝑟𝑜𝑤𝑠 × 𝑐𝑜𝑙𝑠 × #𝑓𝑖𝑙𝑡𝑒𝑟𝑠, 𝑠𝑡𝑟𝑖𝑑𝑒. 𝑧
represents number of character categories.

Layer Type Size-in Size-out Kernel

conv1 convolutional 24 × 24 × 1 24 × 24 × 64 5 × 5 × 64,1
pool1 max-pooling 24 × 24 × 64 12 × 12 × 64 3 × 3 × 64,2
rnorm1 local response norm 12 × 12 × 64 12 × 12 × 64
conv2 convolutional 12 × 12 × 64 12 × 12 × 64 5 × 5 × 64,1
rnorm2 local response norm 12 × 12 × 64 12 × 12 × 64
pool2 max-pooling 12 × 12 × 64 6 × 6 × 64 3 × 3 × 64,2
local3 locally-connected 6 × 6 × 64 6 × 6 × 64 3 × 3 × 64,1
local4 locally-connected 6 × 6 × 64 6 × 6 × 32 3 × 3 × 32,1
fc fully-connected 6 × 6 × 32 𝑧
probs softmax 𝑧 𝑧

validation. We train each model for only one epoch on the training set,
which takes approximately two hours on one NVIDIA Tesla K20Xm GPU.

3.2.2. Visualization
In Fig. 4, we visualize the learned CNN ensemble using the technique

as demonstrated [52,53]. It can be observed that the appearance of
different shifts and fonts of a specific category is captured in a single
image, and ten CNN models in the CNN ensemble learn something
slightly different from each other albeit the overall similarity. The
visualization indicates that the CNN ensemble has captured distinctive
features of characters.

3.2.3. Training the text/non-text SVM classifier
We adopt a linear SVM classifier [54] to determine whether there is

a character in a given image patch. The SVM takes the outputs of the
local4 layer of the CNN ensemble as its features. The local4 layer of every
CNN outputs a 6 × 6 × 32 feature map, which is 1152-dimensional after
concatenation. The CNN ensemble consists of 10 CNNs, thus the feature
vector of the SVM is 11,520-dimensional. The parameter 𝐶 of the SVM
controls the trade off between margin maximization and errors of the
SVM on training data. 𝐶 is optimized on the synthetic validation set.

3.3. STBB and SCW detection

In this section, we describe the proposed image operator CWT and
how it is applied with the sequence information to detect STBB and SCW.

3.3.1. Character width transform
One feature that distinguishes East Asian text from other elements of

a video frame is its consistent SCW. SCWs of East Asian characters are
identical as long as their font styles and font sizes are set the same. In
this work, we leverage this fact to define CWT, which recovers regions
that are likely to contain texts.

CWT is a local image operator. At each local region, CWT generates a
histogram that estimates the distribution of SCWs of the subtitle text in
this region. SCW is estimated by detecting pixels that are likely to locate
at the space between characters and calculating the pairwise distances
between these detected pixels. As illustrated in Fig. 5, the randomness at
non-subtitle regions makes the pairwise distances distribute uniformly.
Meanwhile, at subtitle regions, more pairwise distances come from the
space between characters, leading to the emergence of a local peak in
the vicinity of the SCW. Based on the distribution patterns of histograms
constructed at different local regions, we predicate that the STBB and
the SCW can be determined simultaneously.

Detecting pixels at the space between characters requires the bina-
rization of frames extracted from videos (see Fig. 6(b) for illustration).
Firstly, each RGB frame with the size of 𝐻 × 𝑊 is transformed into
LAB color space to avoid the illumination inference [55]. Then, Sauvola
algorithm [56] is adopted to separate text components from background
(binarization) for its robustness to the uneven illumination and noise.
This algorithm performs local thresholding with 𝜇-by-𝜈 neighborhood.
Both 𝜇 and 𝜈 are set to 150 pixels and the threshold is set to 0.34.

CWT is then applied to every local region in a sliding-window
manner. Concretely, a ℎ × 𝑊 sliding window (as shown in Fig. 6(c))
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Fig. 4. Visualization of 5 character classes learned from the Traditional Chinese character classifier. There are 10 visualization results corresponding to 10 CNN models in each line.
These images are generated by numerically optimizing the input image which maximizes the score of a specific character category [52,53].

Fig. 5. Illustration of the distribution patterns of histograms at a subtitle region (window region 2) and non-subtitle regions (window region 1 and 3).

is adopted, where ℎ is a variable less than 𝐻 and determined according
to the resolution of videos. This window scans each frame by moving
vertically from top to bottom at stride 1, and 𝐻 − ℎ+ 1 window regions
can be obtained. Finally we acquire 𝐻 − ℎ + 1 histograms by applying
CWT at every window region.

Let 𝑥𝑘𝑖,𝑗 ∈ {0, 1} denote a pixel in the binarized frame 𝑘 where (𝑖, 𝑗) are
the coordinates. Values of most text pixels are 1 after the binarization.
We take the sliding-window region whose top boundary is at position 𝑖,
and the sum of elements in its each column is:

𝑣𝑘𝑖,𝑗 =
𝑖+ℎ−1
∑

𝑟=𝑖
𝑥𝑘𝑟,𝑗 . (1)

After that, pixels that are likely to locate at the space between characters
are detected by local-minimum points (𝐿𝑀𝑃𝑠). We denote a set of
𝐿𝑀𝑃𝑠 by 𝑘

𝑖 , where 𝑘
𝑖 =

{

𝑥𝑘𝑖,𝑗
|

|

|

|

𝑣𝑘𝑖,𝑗 < min(𝑣𝑘𝑖,𝑗−1, 𝑣
𝑘
𝑖,𝑗+1) or 𝑣

𝑘
𝑖,𝑗 = 0

}

.
As illustrated by Fig. 7, the majority of 𝐿𝑀𝑃𝑠 are interspersed among

backgrounds as well as the space between characters. If more than 30
𝐿𝑀𝑃𝑠 are connected (i.e. ∀𝑗, ∃𝑀 ≥ 30, 𝑥𝑘𝑖,𝑗 , 𝑥

𝑘
𝑖,𝑗+1 … 𝑥𝑘𝑖,𝑗+𝑀−1 ∈ 𝑘

𝑖 ),
they will be removed, which can effectively eliminate 𝐿𝑀𝑃𝑠 from
backgrounds while reserve 𝐿𝑀𝑃𝑠 from the space between characters.
The rationality of this constraint is that more than 30 connected 𝐿𝑀𝑃𝑠
could only come from backgrounds. Then all pairwise distances between
𝐿𝑀𝑃𝑠 are calculated and stored in a set 𝑘

𝑖 :

𝑘
𝑖 =

{

|𝑚 − 𝑛|
|

|

|

|

𝑥𝑘𝑖,𝑚, 𝑥
𝑘
𝑖,𝑛 ∈ 𝑘

𝑖 , 𝑤𝑚𝑖𝑛 < |𝑚 − 𝑛| < 𝑤𝑚𝑎𝑥

}

, (2)

where 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 denote the minimum and the maximum SCW
respectively.

It is noteworthy that since the statistical information derived from
a single frame is too coarse to provide a reliable estimation of SCW,
we cannot construct a histogram directly from 𝑘

𝑖 in the next step. This
is when the sequence information of video comes in handy. As STBB
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(a) Original frame. (b) Binarized frame.

(c) Vertical sliding window.

Fig. 6. (a) is an original RGB frame and (b) is the binarized frame. (c) illustrates
the proposed vertical sliding window. In (c), the red box represents the vertical sliding
window, and the dashed red arrow shows the direction in which the sliding window
moves.

and SCW are consistent throughout the video, we assume that values in
1

𝑖 ,
2
𝑖 …𝑇

𝑖 are drawn from the same underlying distribution, where 𝑇
represents the number of frames in the video. Based on this assumption,
histograms 𝑈𝑖 (�̂�) can be constructed from frames throughout the video:

𝑈𝑖 (�̂�) =
𝑇
∑

𝑘=1

∑

𝑟∈𝑘
𝑖

𝟏�̂� (𝑟) , (3)

where 𝟏�̂� (𝑟) equals 1 if 𝑟 = �̂� and 0 otherwise. In order to alleviate the
computational burden, videos are downsampled to 0.0625 fps without
compromising the STBB detection performance.

3.3.2. Detecting the STBB and SCW
Given histograms 𝑈1, 𝑈2…𝑈𝐻−ℎ+1, the STBB and the SCW can be

determined. Concretely, if the local peaks (see Fig. 5) of several adjacent
histograms 𝑈𝑡, 𝑈𝑡+1…𝑈𝑏 all locate near �̂�0, 𝑡 and 𝑏 will be regarded as
positions of a set of candidate STBB, and �̂�0 will be the corresponding
SCW. Our algorithm is presented in Algorithm 1, of which the output 
contains several candidate sets of STBB and estimated SCW.

Note that elements contained in  are raw candidates, some of
which might come from non-subtitle regions and should be eliminated.
A post processing algorithm are adopted to remove these false-positive
candidates: (1) if two candidates with a similar SCW are overlapped, we
eliminate the one whose subtitle height is smaller. (2) If two candidates

Algorithm 1 STBB and SCW determination
Input: histograms {𝑈1 , 𝑈2 … , 𝑈𝐻−ℎ+1},

maximum SCW 𝑤𝑚𝑎𝑥, minimum SCW 𝑤𝑚𝑖𝑛,
minimum subtitle height 𝑚𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡

Output: candidate STBB and SCW {}

Find local peaks inside histograms:
1: for 𝑖 ← 1 to 𝐻 − ℎ + 1 do
2: for 𝑗 ← 𝑤𝑚𝑖𝑛 to 𝑤𝑚𝑎𝑥 do
3: 𝑞𝑖,𝑗 ← 0
4: if max(𝑈𝑖 (𝑗 − 1) , 𝑈𝑖 (𝑗 + 1)) ≤ 𝑈𝑖 (𝑗) then
5: Estimate the position of local peak by quadratic interpolation as

𝑞𝑖,𝑗 ← 𝑗 + 1
2
× 𝑈𝑖 (𝑗−1)−𝑈𝑖 (𝑗+1)

𝑈𝑖 (𝑗−1)−2×𝑈𝑖 (𝑗)+𝑈𝑖 (𝑗+1)
6: end if
7: end for
8: end for

Detect adjacent histograms with similar local peak positions:
9: 𝑄 ← ∅,  ← ∅

10: for 𝑖 ← 1 to 𝐻 − ℎ + 1 do
11: for 𝑗 ← 𝑤𝑚𝑖𝑛 to 𝑤𝑚𝑎𝑥 do
12: if 𝑞𝑖,𝑗 > 0 then
13: 𝑄 ← 𝑄

⋃

𝑞𝑖,𝑗
14: for 𝑘 ← 𝑖 + 1 to 𝐻 − ℎ + 1 do
15: 𝐶 ←

{

𝑥 | 𝑥 ∈
{

𝑞𝑘,𝑗−1 , 𝑞𝑘,𝑗 , 𝑞𝑘,𝑗+1
}

, 𝑥 > 0
}

16: if 𝐶 = ∅ then
17: break for
18: end if
19: 𝑒 ← argmax𝑥∈𝐶 |𝑥 − median(𝑄)|
20: 𝑄 ← 𝑄

⋃

𝑒
21: end for
22: if 𝑘 − 𝑖 + ⌊ℎ∕2⌋ + 1 ≥ 𝑚𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡 then
23:  ← 

⋃

(𝑖, 𝑘 + ⌊ℎ∕2⌋ + 1, ⌊median(𝑄)⌋)
24: end if
25: end if
26: end for
27: end for

have a similar STBB and the SCW of one of them is approximately two
times larger than the other one, the candidate with the larger SCW
is eliminated. (3) Candidates whose STBB locate at the upper half of
the frame are eliminated due to the fact that most of subtitles are
superimposed on the bottom half of the frame.

This post processing algorithm eliminates almost all false detections,
and a small amount of surviving false-positives will be further removed
by the text/non-text classifier in the step following.

3.4. SLRB detection

Raw subtitle regions 𝑅𝑆 bounded by the detected STBB and the
left/right boundary of original frames are cropped from original frames.
The size of 𝑅𝑆 is ℎ𝑠 × 𝑊 , where ℎ𝑠 represents subtitle height. Then,
SLRB are detected in a sliding-window manner: a ℎ𝑠 × (𝑤 − 1) window,
a ℎ𝑠 × 𝑤 window and a ℎ𝑠 × (𝑤 + 1) window that respectively slide
from left to right across 𝑅𝑆 with stride 1 are adopted, where 𝑤 is the
determined SCW. Then, every window region is classified as either text

Fig. 7. The majority of 𝐿𝑃𝑀𝑠 are interspersed among backgrounds (denoted by red asterisks) and the space between characters (denoted by green asterisks). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. This delineates the subtitle detection procedure. STBB and SCW are detected firstly. Then a sliding window horizontally scans the subtitle region detected in the first step. Every
window region is predicted either as text (T) or non-text (N) by the SVM classifier, which takes CNN features as input. Based on the predictions, Algorithm 2 finally determines SLRB.
For illustration convenience, the stride of the sliding window is enlarged to SCW.

region or non-text region by the SVM classifier described in Section
3.2.3. Supposing that 𝑎𝑖 and 𝑏𝑖 respectively denote the left boundary
position and the right boundary position of the 𝑖th window region pre-
dicted as a text region, and there are 𝑛 window regions predicted as text
regions. Algorithm 2 is designed to merge overlapping window regions
predicted as text regions together and subsequently determine the SLRB.
According to the output 𝐿𝑒𝑓𝑡𝐵𝑜𝑢𝑛𝑑 and 𝑅𝑖𝑔ℎ𝑡𝐵𝑜𝑢𝑛𝑑 of Algorithm 2,
subtitle region 𝑆 is detected by further removing non-subtitle regions on
two sides of 𝑅𝑆. This process is illustrated in Fig. 8. The parameter 𝛽 of
Algorithm 2 is determined according to the resolution of videos. 𝛽 being
too large would cause the real subtitle region to be easily connected
with non-subtitle regions that are incorrectly predicted, while being too
small, an integral sentence might be easily broken into pieces.

3.5. Subtitle recognition

Now that the subtitle region 𝑆 has been successfully detected,
we will describe the proposed subtitle recognition scheme with three
steps including sliding window based segmentation, window region
recognition and dynamic programming determination.

3.5.1. Sliding window based segmentation
In order to recognize each single character in the subtitle, the subtitle

region 𝑆 must be properly segmented (i.e. split the image text line into
patches that each of which contains a single character). This step is
challenging due to touching characters and the inherent structure of
separation from the left and right sides of many East Asian characters.
Unlike other methods where potential segmentation points must be
determined precariously [33,34,37,57], our method obviates this step
since the SCW is known, which is an inborn advantage of our system.
Three sliding windows identical to those in Section 3.4 are adopted
again to slide from left to right across 𝑆 at stride one, and each window
region is fed into the CNN ensemble for recognition.

3.5.2. Window region recognition
Given a window region (𝑎𝑖, 𝑏𝑖), the softmax layer of each CNN

model outputs the probability of each category, and categories whose
probabilities are among the top 20 are reserved. Then, probabilities
of these reserved categories are averaged across 10 CNN models. If
the largest average probability is greater than a threshold (i.e. 0.2),
candidate categories of (𝑎𝑖, 𝑏𝑖) with the top 5 average probabilities will
be recorded before moving to the next window position (𝑎𝑖+1, 𝑏𝑖+1).

Algorithm 2 SLRB determination
Input: 𝑛 predicted text window regions (𝑎1 , 𝑏1), (𝑎2 , 𝑏2)… (𝑎𝑛 , 𝑏𝑛),

parameter 𝛽 controlling the maximum gap between two clauses separated by space,
the determined SCW 𝑤

Output: the left and the right boundarids of subtitle {𝐿𝑒𝑓𝑡𝐵𝑜𝑢𝑛𝑑,𝑅𝑖𝑔ℎ𝑡𝐵𝑜𝑢𝑛𝑑}

1: 𝑖 ← 1, 𝑘 ← 1
2: 𝐿𝑒𝑓𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← ∅, 𝑅𝑖𝑔ℎ𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← ∅

3: while 𝑖 < 𝑛 do
4: 𝑗 ← 𝑖 + 1
5: 𝑟𝑖𝑔ℎ𝑡 ← 𝑏𝑖
6: while 𝑗 <= 𝑛 and 𝑎𝑗 ≤ 𝑟𝑖𝑔ℎ𝑡 do
7: 𝑟𝑖𝑔ℎ𝑡 ← max(𝑟𝑖𝑔ℎ𝑡, 𝑏𝑗 )
8: 𝑗 ← 𝑗 + 1
9: end while

10: if 𝑗 − 𝑖 > 3 then
11: if 𝐿𝑒𝑓𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = ∅ then
12: 𝑅𝑖𝑔ℎ𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[𝑘] ← 𝑟𝑖𝑔ℎ𝑡
13: 𝐿𝑒𝑓𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[𝑘] ← 𝑎𝑖
14: 𝑘 ← 𝑘 + 1
15: else
16: if 𝑎𝑖 ≤ 𝑅𝑖𝑔ℎ𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[𝑘 − 1] + 𝛽 ×𝑤 then
17: 𝑅𝑖𝑔ℎ𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[𝑘 − 1] ← 𝑟𝑖𝑔ℎ𝑡
18: else
19: 𝑅𝑖𝑔ℎ𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[𝑘] ← 𝑟𝑖𝑔ℎ𝑡
20: 𝐿𝑒𝑓𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[𝑘] ← 𝑎𝑖
21: 𝑘 ← 𝑘 + 1
22: end if
23: end if
24: end if
25: 𝑖 ← 𝑗
26: end while

27: 𝑍 ← argmax𝑖 (𝑅𝑖𝑔ℎ𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[𝑖] − 𝐿𝑒𝑓𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[𝑖])
28: 𝐿𝑒𝑓𝑡𝐵𝑜𝑢𝑛𝑑 ← 𝐿𝑒𝑓𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[𝑍]
29: 𝑅𝑖𝑔ℎ𝑡𝐵𝑜𝑢𝑛𝑑 ← 𝑅𝑖𝑔ℎ𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒[𝑍]

Otherwise, the window region (𝑎𝑖, 𝑏𝑖) would probably reside between
two adjacent characters. In this case, it will be abandoned and the next
window region (𝑎𝑖+1, 𝑏𝑖+1) will be examined. Finally, those recorded
5 candidate categories whose probabilities are greater than 0.05 will
be stored with their associated recognition probabilities 𝑅𝑝𝑟𝑜𝑏 and the
window position (𝑎𝑖, 𝑏𝑖).

3.5.3. Dynamic programming determination
The final recognition results are determined by a dynamic program-

ming algorithm. From the leftmost window (𝑎1, 𝑏1) step by step all the
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way to the rightmost window (𝑎𝑛, 𝑏𝑛), this algorithm builds the whole
sentence by repeatedly appending the character in the next window
position (i.e. 𝑤 − 2, 𝑤 − 1 or 𝑤 pixels rightward) to the previously
recognized sentence. In each step from the window (𝑎𝑖, 𝑏𝑖) to the next
window (𝑎𝑗 , 𝑏𝑗), every previously recognized sentence that arrives to (𝑎𝑗 ,
𝑏𝑗) is processed by a character based 3-gram language model. For every
unique 3-gram word group consisting of the newly appended character
and two former characters, a recognition probability 𝑅𝑝𝑟𝑜𝑏 and a 3-gram
language probability 𝐿𝑠𝑐𝑜𝑟𝑒 are recorded, based on which the total score
of the word group is calculated as:

𝑔𝑟𝑜𝑢𝑝𝑠𝑐𝑜𝑟𝑒𝑖,𝑗 = 𝛾 × log(𝐿𝑠𝑐𝑜𝑟𝑒) + (1 − 𝛾) × log(𝑅𝑝𝑟𝑜𝑏), (4)

𝛾 is the proportion of the language score and the recognition score which
is 0.3 in our experiment. Since the sliding window has three widths
(i.e. 𝑤 − 1, 𝑤 and 𝑤 + 1), it is possible to obtain several identical word
groups that arrive at 𝑏𝑗 but with different scores during the building
process. Therefore, a pruning strategy that only reserves the word group
with the highest score is applied to reduce the redundancy and improve
the efficiency. The building process terminates when 𝑏𝑗 approaches the
right boundary of the image, and the total score of the 𝑘th possible
sentence is:

𝑡𝑜𝑡𝑎𝑙𝑠𝑐𝑜𝑟𝑒𝑘 =
∑

𝑘 𝑔𝑟𝑜𝑢𝑝𝑠𝑐𝑜𝑟𝑒
𝑤𝑖𝑛𝑑𝑜𝑤𝑠(𝑘)

, (5)

where ∑

𝑘𝑔𝑟𝑜𝑢𝑝𝑠𝑐𝑜𝑟𝑒 represents the sum of all 𝑔𝑟𝑜𝑢𝑝𝑠𝑐𝑜𝑟𝑒 in the 𝑘th
candidate sentence and 𝑤𝑖𝑛𝑑𝑜𝑤𝑠(𝑘) represents the number of windows
(i.e. characters) in the 𝑘th candidate sentence. The sentence with the
highest total score is selected as the final recognition result.

4. Experiments

We conduct ample experiments to evaluate each component of the
proposed system. The end-to-end performance of our system is also
reported in this section.

4.1. Dataset

As listed in Table 2, an extensive dataset containing 1097 videos
in Simplified Chinese, Traditional Chinese and Japanese is constructed.
These videos exhibit a wide range of diversity in TV program genres,
including talk shows, documentaries, news reports, etc.

STBBs of all videos and SLRBs of videos marked by † are annotated
manually. As our recognition module is almost error-free, the recogni-
tion results of videos marked by † are annotated by a human annotator
‘‘A’’ on the basis of the outputs of the proposed system. The annotations
obtained in this manner are regarded as ground truth. To test the
quality of the ground truth annotations, we randomly select 400 frames
containing 4494 characters from the already annotated frames and
employ another two human annotators ‘‘B’’ and ‘‘C’’ to annotate these
frames independently again. By comparing the annotations from ‘‘B’’
and ‘‘C’’, the final agreement on the result is reached, based on which the
annotations from ‘‘A’’ are examined. The annotations from ‘‘A’’ achieve
99.8% accuracy, indicating that the ground truth annotations are of high
quality.

We also measure the human-level reading performance on these 400
frames. A human annotator ‘‘D’’ is employed to annotate these frames
manually, and the annotations from ‘‘D’’ are examined based on the final
agreement mentioned-above. The human-level reading performance is
estimated by the performance of ‘‘D’’, of which the reading accuracy is
99.6%.

Table 2
Our dataset configuration. All videos are utilized to evaluate the STBB detection module,
while only videos marked by ‘†’ are randomly selected to evaluate the remaining modules
and the end-to-end system.

Language #Videos Resolution

Traditional Chinese 1015 (40†) 480 × 320
Traditional Chinese 40 852 × 480
Simplified Chinese 40 (40†) 852 × 480
Japanese 2 480 × 320

Table 3
Parameter ℎ optimization. STBB detection precision is not presented for the reason that
false-positives are subsequently removed by the text/non-text classifier. Therefore, every
video only has one final subtitle location. Note that the correctness of STBB determination
always entail the correctness of SCW determination, hence only the former is reported.
This step is not compared to any baseline, as there is no previous work tackling the STBB
and SCW determination problem to the best of our knowledge.

Video
resolution

Number of
videos

ℎ Number of videos whose
STBB are correctly detected

Recall

480 × 320 1017

1 972 95.6%
3 980 96.4%
5 951 93.5%
7 934 91.8%

852 × 480 80
3 73 91.3%
5 75 93.8%
7 75 93.8%

4.2. Experiments on STBB and SCW detection

In order to demonstrate the efficacy of our method, all videos in
the dataset are selected for evaluation. In the experiment, the height of
the vertical sliding window ℎ is optimized with regard to videos with
480 × 320 resolution and videos with 852 × 480 resolution respectively.

The CNN ensemble trained on synthetic data with random shift
empowers our system with high robustness even if the STBB are not
precisely detected. For this consideration, our evaluation method is
defined as follows: the STBB of a video are detected correctly if

− 3 ⩽ 𝑇𝑑 − 𝑇𝑔𝑡 ⩽ 2 𝑎𝑛𝑑 − 2 ⩽ 𝐵𝑑 − 𝐵𝑔𝑡 ⩽ 3, (6)

where 𝑇𝑑 , 𝑇𝑔𝑡, 𝐵𝑑 and 𝐵𝑔𝑡 denote positions of detected top boundary,
ground-truth top boundary, detected bottom boundary and ground-truth
bottom boundary respectively.

We perform a series of tests to determine the optimal value of
parameter ℎ (the height of the proposed vertical sliding window in
Section 3.3.1) by 5-fold cross validation on the whole dataset. The input
variables 𝑤𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥 and 𝑚𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡 of Algorithm 1 are also chosen by 5-
fold cross validation and set to 5, 40 and 12 respectively. Table 3 shows
the performance of our STBB detection module with regard to different
ℎ. The variable ℎ actually controls the trade-off between the STBB
detection accuracy and the tolerability to noise. From our experiments,
we observe that when ℎ is too small, the histogram becomes more
susceptible to background noise as well as strokes inside characters that
do not reflect SCW. But ℎ being too large would compromise the STBB
detection accuracy.

4.3. Experiments on SLRB detection

In this section, the performance of our SLRB detection module
is evaluated against two baseline methods based on hand-engineered
features: T-HOG [27] and EOH-GSC [26]. The input parameter 𝛽 of
Algorithm 2 is set to 0.7/2.5 for videos in 480 × 320/852 × 480
resolution respectively.

Our evaluation method is quite similar to the ICDAR’03 detection
protocol [58]. Let 𝑟 denote the ground-truth SLRB, and 𝑟′ denote the
corresponding detected SLRB. The average match 𝑚𝑎𝑣𝑒 between all 𝑟
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Table 4
The statistics of 𝑚𝑎𝑣𝑒. We randomly select 80 videos (40 in Simplified Chinese and 40 in
Traditional Chinese) whose STBBs are correctly determined for evaluation.

Language CNN features EOH-GSC [26] T-HOG [27]

Simplified Chinese 99.4 ± 0.9% 96.1 ± 2.5% 91.7 ± 4.6%
Traditional Chinese 99.5 ± 0.4% 96.8 ± 3.3% 94.0 ± 5.1%

and 𝑟′ in a video is defined as twice the length of intersection divided
by the sum of the lengths:

𝑚𝑎𝑣𝑒
(

𝑟, 𝑟′
)

=
2
∑

𝑟∈𝐸 𝐿
(

𝑟 ∩ 𝑟′
)

∑

𝑟∈𝐸 (𝐿 (𝑟) + 𝐿 (𝑟′))
, (7)

where 𝐿(𝑟) is the distance between a set of left and right boundaries and
𝐸 denotes all the ground-truth SLRBs in a video.

Table 4 lists the statistics of 𝑚𝑎𝑣𝑒 of 80 videos and shows the
superiority of our CNN features over T-HOG [27] and EOH-GSC [26]
features on the text/non-text classification task.

4.4. Experiments on subtitle recognition

This section measures the performance of our character recognition
module. For comparison, we test the same 80 videos in the previous sec-
tion with Grayscale based Chinese Image Text Recognition (gCITR) [34]
as well as another two commercial OCR software: ABBYY FineReader
12 [59] and Microsoft OCR library [60]. gCITR [34] is the previous
state-of-the-art system for Simplified Chinese subtitle recognition, where
85.44% word accuracy is achieved on another dataset. Besides, the
performance of a single CNN is also reported in order to manifest the
efficacy of the CNN ensemble. Two annotators spend one week, eight

hours a day, labeling the ground truth recognition results of these 80
videos.

The performance of our subtitle recognition module is evaluated by
the word accuracy 𝑊𝑎𝑐𝑐 that is defined as:

𝑊𝑎𝑐𝑐 =
𝑁 − 𝐸𝑑𝑖𝑠

𝑁
, (8)

here, 𝑁 is the number of ground-truth words and 𝐸𝑑𝑖𝑠 represents
Levenshtein edit distance [61] to change a recognized sentence into
ground-truth.

Tables 5 and 6 shows the performance of ABBYY [59], gCITR [34],
Microsoft OCR library [60], our single CNN and the CNN ensemble on
the Simplified Chinese and Traditional Chinese text line recognition
task. The performance of the proposed method exceeds other baselines
by a large margin. In order to demonstrate the efficacy of our system
on other languages, we also test it on two videos in Japanese, and an
average 97.4% 𝑊𝑎𝑐𝑐 is achieved.

4.5. End-to-end performance

The same 80 videos in the previous section are selected for evaluating
the end-to-end performance. Table 7 compares the end-to-end perfor-
mance of the proposed system with ABBYY [59], gCITR [34], Microsoft
OCR [60].

5. Discussion

The dataset used for the experiment contains extreme cases like
cluttered backgrounds, illumination changes and loss of resolution that
are encountered in real-world videos. Although the STBB detection

Table 5
Word Accuracy of Simplified Chinese.

TV programs #Videos #Words ABBYY [59] gCITR [34] MS OCR [60] Single CNN CNN ensemble

HXLA 3 4630 52.4% 78.5% 89.9% 97.4% 99.7%
CFZG 3 7711 78.7% 91.8% 89.7% 98.1% 99.7%
ZGSY 3 8982 68.7% 81.6% 85.8% 98.5% 99.9%
DA 2 3936 64.8% 69.1% 89.0% 97.7% 99.7%
JXTZ 2 4682 66.8% 70.3% 88.3% 97.8% 99.6%
FNMS 2 5681 68.3% 87.7% 87.7% 99.2% 99.8%
JF 5 9299 54.3% 75.8% 84.8% 98.2% 99.3%
KJL 2 3372 61.9% 87.8% 61.3% 98.0% 99.8%
KXDG 1 2027 40.6% 76.2% 56.3% 97.5% 98.3%
AQGY 2 4850 56.6% 79.7% 56.9% 94.3% 96.9%
CCTVJS 2 3918 85.2% 71.1% 82.6% 96.2% 99.9%
SDGJ 3 8700 67.0% 83.2% 82.6% 98.4% 99.9%
DSGY 1 1872 68.9% 31.4% 63.4% 97.8% 99.0%
JXX 1 3618 67.8% 80.5% 71.7% 97.7% 99.6%
TTXS 1 2090 39.8% 68.7% 86.3% 96.7% 99.5%
YSRS 3 8914 48.6% 78.6% 80.8% 98.1% 99.7%
YST 2 4712 54.8% 85.7% 85.9% 97.1% 99.3%
BBQN 1 2751 51.9% 76.9% 76.8% 96.1% 99.6%
ZHDWM 1 1319 55.7% 82.2% 52.4% 95.9% 97.4%

Total 40 93064
Average 62.0% 79.4% 80.5% 97.7% 99.4%

Table 6
Word Accuracy of Traditional Chinese. ∗ gCITR [34] is not designed for Traditional Chinese.

TV programs #Videos #Words ABBYY [59] gCITR [34] MS OCR [60] Single CNN CNN ensemble

DXSLM 2 2024 62.8% –∗ 86.8% 98.2% 99.6%
KXLL 10 11819 84.4% –∗ 89.4% 97.1% 99.5%
NDXW 11 30683 38.3% –∗ 47.9% 96.7% 99.4%
QJXTW 2 6245 34.4% –∗ 61.9% 97.9% 99.6%
YXW 3 4361 54.0% –∗ 63.4% 97.5% 99.5%
XWWW 4 10124 41.6% –∗ 59.1% 96.7% 99.5%
XGD 2 5147 35.2% –∗ 62.1% 97.8% 99.4%
XTWJY 2 4264 39.2% –∗ 67.8% 97.8% 99.6%
XYZY 3 7603 93.2% –∗ 85.4% 97.3% 99.4%
YHHS 1 2103 53.9% –∗ 68.4% 97.0% 99.6%

Total 40 84373
Average 50.8% –∗ 62.0% 97.1% 99.4%

140



Y. Xu et al. Signal Processing: Image Communication 60 (2018) 131–143

Fig. 9. Typical mistakes made by the STBB detection module. Red boxes denote the detected STBB.

Fig. 10. Typical mistakes made by the SLRB detection module. Red boxes denote detected subtitle regions.

Fig. 11. Typical recognition mistakes made by the CNN ensemble. Red boxes mark the incorrectly recognized characters. The ground-truth characters are enclosed in parentheses.

module has achieved competitive performance, there is still room
for improvement. We observe that a majority of incorrectly detected
STBBs locate near the ground-truth boundaries (Fig. 9). Actually, more
accurate boundary positions can be obtained if some regression methods
like the one in [6] are adopted. In the SLRB detection module, it is
observed that specific characters are sporadically misclassified as non-
texts. We find the strokes of these characters are all very sparse, which
can be easily confused with edge or texture features at backgrounds (Fig.
10). Confusion and loss of radicals and strokes are two major mistakes
made by the CNN character recognizer (Fig. 11). Character categories
that are misclassified more than three times are examined and the causes
of the errors are scrutinized. We find that 45.5% of the errors are caused
by resemblances between two characters, 33.2% are caused by cluttered
backgrounds, 18.2% are caused by the incorporation of the language
model and 3.2% are caused by large vertical shifts of characters.

6. Conclusion

In this paper, we exploit the distinctive features of East Asian
characters (consistent character width, subtitle top and bottom bound-
ary position, and color) and present an novel end-to-end subtitle text
detection and recognition system specifically designed for videos with
subtitles in East Asian languages. By applying CWT and integrating the
sequence information throughout the video, we are able to detect STBB
and SCW simultaneously. This represents a departure from scene text
detection problem where sophisticated methods are designed to detect
texts in a single image. A CNN ensemble is leveraged to classify East
Asian characters into thousands of categories. Our models are trained

Table 7
End-to-end performance. Notice that three baselines take subtitle region detected by our
system as input rather than raw video frames, as ABBYY [59] and Microsoft OCR [60] may
generate many false detections on raw video frames and gCITR [34] can only perform text
recognition.

ABBYY [59] gCITR [34] MS OCR [60] 𝐏𝐫𝐨𝐩𝐨𝐬𝐞𝐝

Simplified Chinese 60.7% 78.1% 79.3% 98.2%
Traditional Chinese 49.7% – 60.9% 98.3%

purely on synthetic data, which makes it possible for our system to be re-
trained on other languages without requiring human labeling effort. Our
system, as well as each module in it, compares favorably against existing
methods on an extensive dataset. The near-human-level performance of
our system qualifies it for practical application. For example, our system
can provide accurate and reliable text labels for speech recognition
researches, since video subtitles are synchronous with speech in videos.

In future work, this system will be tested on videos in Korean or
other languages with consistent SCW.

Acknowledgments

This work is supported by Microsoft Research under the eHealth
program, the National Natural Science Foundation in China under
Grant 81771910, the National Science and Technology Major Project
of the Ministry of Science and Technology in China under Grant
2017YFC0110903, the Beijing Natural Science Foundation in China
under Grant 4152033, the Technology and Innovation Commission
of Shenzhen in China under Grant shenfagai2016–627, Beijing Young
Talent Project in China, the Fundamental Research Funds for the

141



Y. Xu et al. Signal Processing: Image Communication 60 (2018) 131–143

Central Universities of China under Grant SKLSDE-2017ZX-08 from the
State Key Laboratory of Software Development Environment in Beihang
University in China, the 111 Project in China under Grant B13003.
We would like to thank Jinfeng Bai for conducting the gCITR baseline
experiment.

References

[1] Q. Ye, D. Doermann, Text detection and recognition in imagery: A survey, IEEE
Trans. Pattern Anal. Mach. Intell. (2015) 1480–1500.

[2] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L.G. i Bigorda, S.R. Mestre, J. Mas,
D.F. Mota, J.A. Almazan, L.P. de las Heras, ICDAR 2013 robust reading competition,
in: International Conference on Document Analysis and Recognition, ICDAR, 2013,
pp. 1484–1493.

[3] T. Wang, D.J. Wu, A. Coates, A.Y. Ng, End-to-end text recognition with convolutional
neural networks, in: International Conference on Pattern Recognition, ICPR, 2012.
pp. 3304–3308.

[4] M. Jaderberg, A. Vedaldi, A. Zisserman, Deep features for text spotting, in: European
Conference on Computer Vision, ECCV, 2014, pp. 512–528.

[5] J.C. Rajapakse, L. Wang, Neural Information Processing: Research and Development,
Vol. 152, Springer, 2012.

[6] M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Reading text in the wild with
convolutional neural networks, Int. J. Computer Vis. (2016) 1–20.

[7] K. Jung, K.I. Kim, A.K. Jain, Text information extraction in images and video: a
survey, Pattern Recognit. (2004) 977–997.

[8] N. Sharma, U. Pal, M. Blumenstein, Recent advances in video based document
processing: A Review, in: IAPR Workshop on Document Analysis Systems, 2012,
pp. 63–68.

[9] J. Zhang, R. Kasturi, Extraction of text objects in video documents: Recent progress,
in: IAPR Workshop on Document Analysis Systems, 2008, pp. 5–17.

[10] X.-C. Yin, Z.-Y. Zuo, S. Tian, C.-L. Liu, Text detection, tracking and recognition in
video: a comprehensive survey, IEEE Trans. Image Process. 25 (6) (2016) 2752–
2773.

[11] J. Matas, O. Chum, M. Urban, T. Pajdla, Robust wide-baseline stereo from maximally
stable extremal regions, in: British Machine Vision Conference, BMVC, 2004, pp.
761–767.

[12] C. Shi, C. Wang, B. Xiao, Y. Zhang, S. Gao, Scene text detection using graph model
built upon maximally stable extremal regions, Pattern Recognit. Lett. (2013) 107–
116.

[13] W. Huang, Y. Qiao, X. Tang, Robust scene text detection with convolution neural
network induced mser trees, in: European Conference on Computer Vision, ECCV,
2014, pp. 497–511.

[14] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D.J. Wu, A.Y. Ng,
Text detection and character recognition in scene images with unsupervised feature
learning, in: International Conference on Document Analysis and Recognition,
ICDAR, 2011, pp. 440–445.

[15] W. Kai, B. Babenko, S. Belongie, End-to-end scene text recognition, in: International
Conference on Computer Vision, ICCV, 2011, pp. 1457–1464.

[16] M. Delakis, C. Garcia, Text detection with convolutional neural networks, in:
International Conference on Computer Vision Theory and Applications, VISAPP,
2008, pp. 290–294.

[17] X. Ren, K. Chen, X. Yang, Y. Zhou, A new unsupervised convolutional neural network
model for Chinese scene text detection, in: IEEE China Summit and International
Conference on Signal and Information Processing, ChinaSIP, 2015.

[18] O. Alsharif, J. Pineau, End-to-End text recognition with hybrid HMM maxout models,
in: International Conference on Learning Representations, ICLR, 2013.

[19] L. Neumann, J. Matas, A method for text localization and recognition in real-world
images, in: Asian Conference on Computer Vision, ACCV, 2010, pp. 770–783.

[20] C. Yao, X. Bai, W. Liu, Y. Ma, Z. Tu, Detecting texts of arbitrary orientations in
natural images, in: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, 2012, pp. 1083–1090.

[21] L. Neumann, J. Matas, Real-time scene text localization and recognition, in: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, 2012, pp. 3538–
3545.

[22] B. Epshtein, E. Ofek, Y. Wexler, Detecting text in natural scenes with stroke width
transform, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
2010, pp. 2963–2970.

[23] X. Tang, X. Gao, J. Liu, H. Zhang, A spatial-temporal approach for video caption
detection and recognition, IEEE Trans. Neural Netw. (2002) 961–971.

[24] R. Wang, W. Jin, L. Wu, A novel video caption detection approach using multi-frame
integration, in: International Conference on Pattern Recognition, ICPR, 2004, pp.
449–452.

[25] X. Liu, W. Wang, Robustly extracting captions in videos based on stroke-like edges
and spatio-temporal analysis, IEEE Trans. Multimedia (2012) 482–489.

[26] X. Wang, L. Huang, C. Liu, A new block partitioned text feature for text verification,
in: International Conference on Document Analysis and Recognition, ICDAR, 2009,
pp. 366–370.

[27] R. Minetto, N. Thome, M. Cord, N.J. Leite, J. Stolfi, T-HOG: An effective gradient-
based descriptor for single line text regions, Pattern Recognit. (2013) 1078–1090.

[28] G. Liang, P. Shivakumara, T. Lu, C.L. Tan, Multi-spectral fusion based approach for
arbitrarily oriented scene text detection in video images, IEEE Trans. Image Process.
24 (11) (2015) 4488–4501.

[29] X.-C. Yin, X. Yin, K. Huang, H.-W. Hao, Robust text detection in natural scene images,
IEEE Trans. Pattern Anal. Machine Intell. 36 (5) (2014) 970–983.

[30] C. Yao, X. Bai, N. Sang, X. Zhou, S. Zhou, Z. Cao, Scene text detection via holistic,
multi-channel prediction, 2016. ArXiv Preprint ArXiv:1606.09002.

[31] C.-Y. Lee, A. Bhardwaj, W. Di, V. Jagadeesh, R. Piramuthu, Region-based discrimi-
native feature pooling for scene text recognition, in: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, 2014, pp. 4050–4057.

[32] K. Wang, S. Belongie, Word spotting in the wild, in: European Conference on
Computer Vision, ECCV, 2010, pp. 591–604.

[33] A. Bissacco, M. Cummins, Y. Netzer, H. Neven, PhotoOCR: reading text in uncon-
trolled conditions, in: IEEE International Conference on Computer Vision, ICCV,
2013, pp. 785–792.

[34] J. Bai, Z. Chen, B. Feng, B. Xu, Chinese image text recognition on grayscale pixels, in:
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP,
2014, pp. 1380–1384.

[35] C. Yao, X. Bai, B. Shi, W. Liu, Strokelets: A learned multi-scale representation
for scene text recognition, in: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2014, pp. 4042–4049.

[36] Z. Saidane, C. Garcia, Automatic scene text recognition using a convolutional neural
network, in: International Workshop on Camera-Based Document Analysis and
Recognition, CBDAR, 2007.

[37] Z. Saidane, C. Garcia, J. Dugelay, The image text recognition graph (iTRG), in: Proc.
Intl. Conf. on Multimedia and Expo, 2009, pp. 266–269.

[38] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A.Y. Ng, Reading digits in natural
images with unsupervised feature learning, Neural Inf. Process. Syst. (2011).

[39] J. Bai, Z. Chen, B. Feng, B. Xu, Image character recognition using deep convolutional
neural network learned from different languages, in: IEEE International Conference
on Image Processing, ICIP, 2014, pp. 2560–2564.

[40] K. Elagouni, C. Garcia, F. Mamalet, P. Sébillot, Text recognition in multimedia docu-
ments: a study of two neural-based ocrs using and avoiding character segmentation,
Int. J. Doc. Anal. Recognit. (2014) 19–31.

[41] Z. Zhong, L. Jin, Z. Feng, Multi-font printed chinese character recognition using
multi-pooling convolutional neural network, in: International Conference on Docu-
ment Analysis and Recognition, ICDAR, 2015, pp. 96–100.

[42] K. Elagouni, C. Garcia, P. Billot, A comprehensive neural-based approach for text
recognition in videos using natural language processing, in: International Conference
on Multimedia Retrieval, ICMR, 2011, pp. 1–8.

[43] V. Khare, P. Shivakumara, P. Raveendran, M. Blumenstein, A blind deconvolution
model for scene text detection and recognition in video, Pattern Recognit. 54 (2016)
128–148.

[44] I.J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, Y. Bengio, Maxout net-
works, in: International Conference on Machine Learning, ICML, 2013, pp. 1319–
1327.

[45] A.-B. Wang, K.-C. Fan, Optical recognition of handwritten chinese characters by
hierarchical radical matching method, Pattern Recognit. (2001) 15–35.

[46] J. Bai, Z. Chen, B. Feng, B. Xu, Chinese image character recognition using DNN
and machine simulated training samples, in: International Conference on Artificial
Neural Networks, ICANN, 2014, pp. 209–216.

[47] M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Synthetic data and artificial
neural networks for natural scene text recognition, 2014. ArXiv Preprint ArXiv:
1406.2227.

[48] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolu-
tional neural networks, Neural Inf. Process. Syst. (2012) 1097–1105.

[49] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images,
2009.

[50] CNN configuration, 2014. http://code.google.com/p/cuda-convnet/source/browse/
trunk/example-layers/layers-conv-local-11pct.cfg. (Accessed 16 September 04).

[51] Layer parameters, 2014. https://code.google.com/p/cuda-convnet/source/browse/
trunk/example-layers/layer-params-conv-local-11pct.cfg. (Accessed 16 September
04).

[52] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visu-
alising image classification models and saliency maps, 2013. ArXiv Preprint ArXiv:
1312.6034.

[53] D. Erhan, Y. Bengio, A. Courville, P. Vincent, Visualizing Higher-Layer Features of a
Deep Network, Technical Report, University of Montreal, 2009.

[54] C. Cortes, V. Vapnik, Support-vector networks, Machine Learn. (1995) 273–297.
[55] Y. Qu, W. Liao, S. Lu, S. Wu, Hierarchical text detection: From word level to char-

acter level, in: Advances in Multimedia Modeling: 19th International Conference,
Springer, 2013, pp. 24–35.

[56] J. Sauvola, M. Pietikinen, Adaptive document image binarization, Pattern Recognit.
(2000) 225–236.

[57] B. Verma, A contour code feature based segmentation for handwriting recognition,
in: International Conference on Document Analysis and Recognition, ICDAR, 2003,
pp. 1203–1207.

142

http://refhub.elsevier.com/S0923-5965(17)30173-X/sb1
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb1
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb1
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb5
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb5
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb5
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb6
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb6
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb6
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb7
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb7
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb7
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb10
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb10
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb10
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb10
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb10
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb12
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb12
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb12
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb12
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb12
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb23
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb23
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb23
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb25
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb25
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb25
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb27
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb27
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb27
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb28
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb28
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb28
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb28
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb28
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb29
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb29
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb29
http://arxiv.org/ArXiv:1606.09002
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb38
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb38
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb38
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb40
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb40
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb40
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb40
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb40
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb43
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb43
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb43
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb43
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb43
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb45
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb45
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb45
http://arxiv.org/ArXiv:1406.2227
http://arxiv.org/ArXiv:1406.2227
http://arxiv.org/ArXiv:1406.2227
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb48
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb48
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb48
http://code.google.com/p/cuda-convnet/source/browse/trunk/example-layers/layers-conv-local-11pct.cfg
http://code.google.com/p/cuda-convnet/source/browse/trunk/example-layers/layers-conv-local-11pct.cfg
http://code.google.com/p/cuda-convnet/source/browse/trunk/example-layers/layers-conv-local-11pct.cfg
https://code.google.com/p/cuda-convnet/source/browse/trunk/example-layers/layer-params-conv-local-11pct.cfg
https://code.google.com/p/cuda-convnet/source/browse/trunk/example-layers/layer-params-conv-local-11pct.cfg
https://code.google.com/p/cuda-convnet/source/browse/trunk/example-layers/layer-params-conv-local-11pct.cfg
http://arxiv.org/ArXiv:1312.6034
http://arxiv.org/ArXiv:1312.6034
http://arxiv.org/ArXiv:1312.6034
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb53
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb53
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb53
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb54
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb55
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb55
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb55
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb55
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb55
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb56
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb56
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb56


Y. Xu et al. Signal Processing: Image Communication 60 (2018) 131–143

[58] S.M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, R. Young, ICDAR 2003
robust reading competitions, in: International Conference on Document Analysis and
Recognition, ICDAR, 2003, p. 682.

[59] ABBYY FineReader 12, https://www.abbyy.com/finereader/, 2016. (Accessed 16
September 04).

[60] Microsoft OCR library, https://code.msdn.microsoft.com/Uses-the-OCR-Library-to-
2a9f5bf4, 2014. (Accessed 16 September 04).

[61] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and rever-
sals, Probl. Inf. Transm. (1965) 707–710.

143

https://www.abbyy.com/finereader/
https://code.msdn.microsoft.com/Uses-the-OCR-Library-to-2a9f5bf4
https://code.msdn.microsoft.com/Uses-the-OCR-Library-to-2a9f5bf4
https://code.msdn.microsoft.com/Uses-the-OCR-Library-to-2a9f5bf4
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb61
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb61
http://refhub.elsevier.com/S0923-5965(17)30173-X/sb61

	End-to-end subtitle detection and recognition for videos in East Asian languages via CNN ensemble
	Introduction
	Related work
	Image text detection
	Methods incorporating video sequence information
	Text region verification based on hand-engineered features
	Text region verification based on feature learning

	Image text recognition
	Image text recognition based on hand-engineered features
	Image text recognition based on feature learning


	Method
	Synthetic data generation
	Convolutional neural networks ensemble
	Details of learning
	Visualization
	Training the text/non-text SVM classifier

	STBB and SCW detection
	Character width transform
	Detecting the STBB and SCW

	SLRB detection
	Subtitle recognition
	Sliding window based segmentation
	Window region recognition
	Dynamic programming determination


	Experiments
	Dataset
	Experiments on STBB and SCW detection
	Experiments on SLRB detection
	Experiments on subtitle recognition
	End-to-end performance

	Discussion
	Conclusion
	Acknowledgments
	References


