
BLAS-on-flash : An Alternative for Large Scale ML Training and Inference?

Suhas Jayaram Subramanya
Microsoft Research India
t-sujs@microsoft.com

Harsha Vardhan Simhadri
Microsoft Research India
harshasi@microsoft.com

Srajan Garg
IIT Bombay

srajan.garg@gmail.com

Anil Kag
Microsoft Research India
t-anik@microsoft.com

B. Venkatesh
Microsoft Research India
t-venkb@microsoft.com

Abstract
Many large scale machine learning training and inference
tasks are memory-bound rather than compute-bound.
That is, on large data sets, the working set of these al-
gorithms does not fit in memory for jobs that could run
overnight on a few multi-core processors. This often
forces an expensive redesign of the algorithm for dis-
tributed platforms such as parameter servers and Spark.

We propose an inexpensive and efficient alternative
based on the observation that many ML tasks admit al-
gorithms that can be programmed with linear algebra
subroutines. A library that supports BLAS and sparse-
BLAS interface on large SSD-resident matrices can en-
able multi-threaded code to scale to industrial scale
datasets on a single workstation.

We demonstrate that not only can such a library pro-
vide near in-memory performance for BLAS, but can
also be used to write implementations of complex algo-
rithms such as eigensolvers that outperform in-memory
(ARPACK) and distributed (Spark) counterparts.

Existing multi-threaded in-memory code can link to
our library with minor changes and scale to hundreds of
gigabytes of training or inference data at near in-memory
processing speeds. We demonstrate this with two in-
dustrial scale use cases arising in ranking and relevance
pipelines: training large scale topic models and inference
for extreme multi-label learning.

This suggests that our approach could be an efficient
alternative to expensive distributed big-data systems for
scaling up structurally complex machine learning tasks.

1 Introduction

Data analysis pipelines in scientific computing as well
as ranking and relevance often work on datasets that are
hundreds of gigabytes to a few terabytes in size. Many
algorithms in these pipelines, such as topic modeling [6],
matrix factorizations [34], spectral clustering [33], ex-

treme multi-label learning [45], are memory limited as
opposed to being limited by compute. That is, on large
datasets, a training algorithm that requires a few hours
of compute on a multi-core workstation would run out of
DRAM for its working set.

This forces users to move the algorithm to distributed
big-data platforms such as Apache Spark [61] or sys-
tems based on Parameter Servers [37, 19, 58], which in-
curs three costs: (1) the cost of rewriting code in a dis-
tributed framework, (2) the cost of a cluster of nodes or
non-availability in production environments, and (3) in-
efficiencies of the platform in using the hardware. Train-
ing on these platforms can require dozens of nodes for
moderate speedups over single threaded code for non-
trivial algorithms [23, 38]. This could be due to plat-
form overheads as well as mismatch between the struc-
ture of the algorithm and the platform’s programming
model [56, 9, 18], resulting in low processor utilization.

Several light-weight frameworks for single node
workstations demonstrate that this inefficiency is unnec-
essary for many classes of algorithms that admit multi-
threaded implementations that are orders of magnitude
more efficient [35, 49, 50, 17]. It is also widely observed
that many machine learning problems admit algorithms
that are essentially compositions of linear algebra oper-
ations on sparse and dense matrices. High performance
code for these algorithms is typically written as a main
thread consisting of glue code that invokes linear alge-
bra calls through standard APIs such as BLAS [10] and
sparseBLAS [21]. High performance implementations
for these standard APIs are provided by hardware ven-
dors [27, 28, 41, 42].

Linear algebra kernels offer plenty of locality, so much
so that the bandwidth required for running them on high-
end multiprocessors can be provided by a non-volatile
memory over PCIe or SATA bus [54, 5, 13]. Non-volatile
memory is already widely deployed in cloud and de-
velopments in hardware and software eco-system posi-
tion non-volatile memory as an inexpensive alternative to

1

DRAM [3, 47, 20, 16]. Hardware technology and inter-
faces for non-volatile memories have increasingly lower
end-to-end latency (few µs) [26] and higher bandwidth:
from 4-8 GT/s in PCIe3.0 to 16GT/s in PCIe4.0 [43]
and 32GT/s in PCIe5.0. Hardware manufactures are also
packaging non-volatile memory with processing units,
e.g. Radeon PRO SSG [2] to increase available memory.

These observations point to a cost-effective solution
for scaling linear algebra based algorithms to large
datasets in many scenarios. Use inexpensive PCIe-
connected SSDs to store large matrices corresponding to
the data and the model, and exploit the locality of linear
algebra to develop a library of routines that can operate
on these matrices with a limited amount of DRAM. By
conforming to the standard APIs, such a library could be
a replacement for code that would have linked to BLAS
libraries such as Intel MKL or OpenBLAS [57].

We present empirical evidence that this approach can
be practical, easy, and fast by developing a library which
provides near in-memory speeds on NVM-resident data
for subroutines on dense matrices and sparse matrices.

The performance of our BLAS-on-flash library is com-
parable to that of in-memory Intel MKL implementations
for level-3 BLAS and sparseBLAS kernels such as gemm
(dense-dense matrix multiplication) and csrmm (sparse-
dense matrix multiplication) on multiprocessor machines
with SSDs. The key to this performance is using the
knowledge of data-access patterns arising in linear alge-
bra kernels to effectively pipeline IO with computation.
Using these kernels, we can implement algorithms such
as k-means clustering that run at near in-memory speeds.

To illustrate that this approach is not limited to sim-
ple kernels, we consider one of the most structurally
complex numerical algorithms – eigensolvers. Using the
BLAS-on-flash library, we built a general purpose sym-
metric eigen-solver which is critical to dimensionality
reduction (e.g. PCA) and spectral methods. Specifi-
cally, we wrote an implementation of the restarted block
Krylov-Schur [63] algorithm that can compute hundreds
or thousands of eigen-vectors on SSD-resident data faster
than standard in-memory solvers based on the IRAM al-
gorithm [52] (e.g., Spectra [46], ARPACK [36]). On
large bag of words text data sets running into hundreds of
gigabytes, our implementation running on one multi-core
workstation with under 50GB DRAM outperforms Spark
MLlib’s computeSVD [39] deployed on hundreds of
executors, representing an order of magnitude efficiency
gain in hardware utilization. Further, our solver can com-
pute thousands of eigenvalues, while computeSVD is
limited to 500 or fewer.

We present two use cases of the library for algorithms
used in ranking and relevance pipelines that process hun-
dreds of gigabytes of data: training topic models, and
inference in Extreme Multi-Label learning.

Topic modeling [11] involves summarizing a corpus
of documents, where each document is a collection of
words from a fixed vocabulary, as a set of topics that are
probability distributions over the vocabulary. Although
most large scale algorithms are based on approximating
and scaling an intractable probabilistic model on param-
eter servers [59, 14, 60], recent research [6] has shown
that linear algebra based approaches can be just as good
qualitatively. We take a highly optimized version of the
algorithm in [6] that already outperforms prior art on sin-
gle node workstations, and link to the eigensolvers and
clustering algorithms written using our framework. This
allows the algorithm to train a 2000 topic model on a 60
billion token (500GB on disk) corpus in under 4 hours.

Extreme Multi-Label Learning (XML) is the problem
of learning to automatically annotate a data point with
the most relevant subset of labels from an extremely
large label set (often many millions of labels). This is
an important task that has many applications in tagging,
ranking and recommendation [8]. Models in extreme
multi-label learning tasks are often ensembles of deep
trees with smaller classifier(s) at each node. e.g. Pfas-
treXML [45], Parabel [44]. In production, models that
exceed DRAM in size need to score (i.e. infer) several
hundreds of millions sparse data points from a space with
million+ dimensions every week on a platform that pro-
vides machines with moderate sized DRAM. As datasets
grow in size, XML algorithms need to scale 10x along
multiple axes: model size, number of points scored and
the dimensionality of data.

In this work, we start with PfastreXML and Parabel
models and a dataset that needed 440 and 900 compute
hours repsectively on a VM with large RAM. We opti-
mized this code and reduced in-memory compute time
by a factor of six. When the optimized code is linked
to our library, it runs at about 90% of in-memory speed
with a much smaller memory fooprint.

These results suggest that for complicated numeri-
cal algorithms, our approach is capable of running at
near in-memory speeds on large datasets while provid-
ing significant benefits in hardware utilization as com-
pared to general-purpose big-data systems. Further, we
envision our library being useful in the following sce-
narios: (1) Environments without multi-node support for
MPI, Spark etc., (2) Laptops and workstations or VMs
in cloud with limited RAM but large non-volatile mem-
ories, (3) Batch mode periodic retraining and inferenc-
ing of large scale models in production data analysis
pipelines, (4) Extending the capabilities of legacy single-
node ML training code.

Roadmap. Sections 2, 3 and 4 provide an overview of
the interface, design and the architecture of the library.
Section 5 presents an evaluation of the performance of
our library and algorithms written using the library.

2

2 BLAS-on-flash : Overview and Interface

The BLAS-on-flash library provides an easy way to write
external memory parallel algorithms, especially numeri-
cal algorithms processing large matrices, that run at near
in-memory speed on SSD-resident data. At its core, it
pipelines calls to an existing math library (Intel MKL)
on in-memory data blocks with prefetching via a stan-
dard Linux asynchronous IO calls (io submit) that use
NVMe block drivers to access the SSD. The in-memory
math and the IO calls can easily be replaced with other
libraries. The size of matrices that the library can handle
is limited by the size of the SSD.

The BLAS-on-flash library is intended for program-
mers who already write multi-threaded code in C++ us-
ing shared memory pointers. The interface of the library
is C++ based and designed to make it easy to integrate
with such code with a few modifications.

Typically, programmers writing high-performance na-
tive code track data objects with pointers and manipulate
the data by passing these pointers to user-defined func-
tions or linked libraries that perform operations such as
matrix multiplication.

In similar spirit, the BLAS-on-flash library interface
provides a flash ptr<T> type to refer to large, pos-
sibly SSD-resident, objects in place of pointer type
T*. The programmer can invoke functions pro-
vided by the library that operate on objects of type
flash ptr<T>. The library allows users to define new
functions that operate on flash ptr<T> by specializ-
ing the Task class. Programmers can define programs
by stitching together a directed acyclic graph (DAG) of
tasks using existing code with library-defined and user-
defined tasks. In this section, we show how to use each
of these functionalities.

2.1 The flash ptr<T> type
The flash ptr<T> is a replacement for in-memory
pointers of type T that allows the programmers to handle
large blocks of SSD-resident data. There are two ways
of creating a new flash ptr<T>. The first is by
allocating a large block on the disk using the allocator
provided by the library. For example, using
flash ptr<int> mat=flash::malloc<int>(len);

in place of int *mat=(int *)malloc(len);

allows the user to create a large scratch space on SSD.
The second way to create a flash ptr<T> is to map

it to existing files. For example, using
flash ptr<float> mat fptr =

map file<float>(mat file, READWRITE);

allows read and write accesses to the floating point ma-
trix in the file named mat file. This allows the users
to read and write to the file through the library. For exam-
ple, the following writes N elements to the file mapped

to mat fptr from an in-memory buffer mat ptr.
flash::write sync(mat fptr, mat ptr, N);

The flash ptr<T> type supports pointer arithmetic
and can be cast and used as a normal pointer through
memory mapping for functionality not supported by the
library.
float* mmap mat ptr = mat fptr.ptr;

2.2 Library Kernels
BLAS-on-flash kernels are functions that operate on
flash ptr<T> types, and are designed to be drop-
in replacements for in-memory calls that operate on T*
types. Kernels we have implemented include:

• gemm: Takes two input matrices A, B of type
flash ptr<float|double> and outputs
C := α · op(A) * op(B) + β · C,
where α and β are floating point scalars, and op(·)
is either the matrix X or its tranpose. The library
allows striding and layout choices that a standard
BLAS gemm call would offer.

• csrmm : Performs same computation as gemm, but
on a sparse A in Compressed Sparse Row (CSR)
format and allows for op(X) only on B. In addi-
tion to the version where all matrices are of type
flash ptr<float>, we also provide a variant
where B and C are in memory pointers. The CSR
format stores three arrays: the non-zeros values or-
dered first by row and then columns, the column in-
dex of each non-zero value, and the offsets into the
two previous arrays where each row starts.

• csrgemv : Takes a sparse matrix A on disk and
computes c := op(A)∗ b for in-memory vectors
b and c, where op(X)=X or XT.

• csrcsc : Converts a sparse matrix in CSR
form into its Compressed Sparse Column
(CSC) form with both inputs and outputs as
flash ptr<float>. This is equivalent to
computing transpose of the input matrix.

• kmeans : Given seed centers and input data points,
all as flash ptr<float> types , the kernel runs
a specified number of Lloyd’s iterations and over-
writes the seeds with final cluster centroids.

• sort : Sorts an array of type flash ptr<T>
using a user-defined comparator using the parallel
SampleSort algorithm.

Using these kernels, one could overcome the memory
limitations faced by their in-memory variants. For ex-
ample, using csrmm and csrgemv, one could imple-
ment an eigensolver for flash-resident matrices. In a later
section, we describe complex algorithms using these and
other custom kernels to process large amounts of data.

3

2.3 Tasks and Computation Graphs
A BLAS-on-flash kernel operating on large inputs is com-
posed of smaller units of computation called tasks. New
tasks are defined using the Task interface of the library.
The Task interface allows users to define in-memory
computations on smaller portions of the input and pro-
vides a mechanism to compose a computation graph by
allowing parent-child relationships between tasks. Our
scheduler guarantees that child tasks will not be executed
until its parent tasks are complete.

Task inputs and outputs are uniquely described using
an access specifier: 〈flash_ptr<T>, StrideInfo〉.
Here flash ptr<T> describes the start of an access
and StrideInfo describes an access pattern starting
at flash ptr<T>. An access pattern could be a:

• Strided access to retrieve a matrix block that
touches a small strip – i.e. a subset – of each
row/column of a dense matrix. This is specified us-
ing 3 parameters - number of strides, access length
per stride (strip size) and the length to stride before
next access. For the matrix block b in Figure 2, these
are n, l, and s respectively.

• Single contiguous access to a chunk of data, equiv-
alent to a strided access with only one strip

In addition to specifying the input and output, the user
must supply the execute function to complete the def-
inition of a new task. Inputs specified in the task in-
terface are made available as in-memory buffers for the
execute function to acceess. Once the execution is
complete, the buffers marked as outputs through the task
interface are written back to their corresponding location
on file. Figure 1 (a) illustrates a task Gk

i,j , its inputs
(Ai,k, Bk,j , Ci,j) and the computation in its execute
as a block-matrix multiplication on its inputs using an
in-memory gemm call.

A user can create a new kernel by specifying a di-
rected acyclic graph (DAG) with a Task at each node
and directed edges from parent task to child task. Once a
Task’s parents are specified, the user injects it through
the BLAS-on-flash Scheduler interface. By allowing
tasks to be injected into the scheduler at runtime, the user
can specify data-dependent computation graphs required
for certain algorithms like eigensolvers.

Figures 1a and 1b illustrate the gemm kernel and the
DAG associated with its implemention using the Block
Matrix Multiplication algorithm. For inputsA,B, andC,
shown with 16 blocks for each matrix, the output block
Ci,j is given by Cij := β · Ci,j + α ·

∑k=3
k=0Ai,k · Bk,j .

The inner summation is converted into an accumulate
chain by using a task Gk

i,j in Figure 1a, for each k.
Gi,j indicates the dependence between successive tasks
in the accumulate chain using arrows from a parent task

to its child task. Figure 1a illustrates the composition
of the gemm kernel using accumulate chains and Figure
1b gives the complete DAG for the A,B, and C as the
inputs and C as the output. The parallel composition op-
erator X||Y allows both X and Y to execute in parallel
while the serial composition operator X → Y allows Y
to execute only after X .

The task injection and logic required for creating a
DAG corresponding to a kernel are packaged into a sin-
gle module representing the kernel. This helps the user
adapt in-memory code to use our library by modifying
one computational kernel at a time. We demonstrate this
by adapting the memory-intensive kernels in the ISLE
topic modeling algorithm.

3 Library Design
In this section, we’ll enumerate the technical challenges
our library solves to achieve near in-memory perfor-
mance for matrix operations with a small amount of
DRAM. To motivate these challenges, we use the exam-
ple of a gemm kernel on single precision (32 bit) floating
point matricesA,B, and C of sizes 32768×32768 each,
blocked as shown in Figure 1. Assume that the matrix
block size is 8192 × 8192. Consider its execution on a
machine, test, with 32 cores capable of 1TFLOPs, and
an NVMe SSD with sustained read and write bandwidths
of 3GB/s and 0.5GB/s respectively.

3.1 Pipelining
Since our library focuses on batch compute, utilizing
disk bandwidth, rather than minimizing disk access la-
tency, is critical for performance. Since PCIe-based
SSDs have limited bandwidth, where possible, the li-
brary must overlap prefetching inputs and writing back
outputs with actual computation. To maximize through-
put from the system, we saturate all available cores with
compute and use hyper-threading to perform IO. To il-
lustrate the balance between computation and IO, we
present an analysis of the gemm kernel.

Each task in the gemm kernel performs 1TFLOP of
compute on 768MB of input to produce 256MB output.
On our test system, each such task requires 0.75s of
IO time for 1s of compute (using all 32 threads per task).
Since every task has the same IO and compute require-
ments, a gemm kernel with 64 tasks would take 112s to
execute out of memory, instead of 64s if executed com-
pletely in memory. However, if we prefetch and issue
write-backs for next and previous tasks respectively dur-
ing any task’s compute time, we can in principle com-
plete the kernel in 64.75s accounting for prefetch of first
task and write-back of last task. In reality, however, we
noticed that mixing reads and writes results in less than
peak bandwidths for just reading and just writing (mea-

4

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3

A B C

gemm(A,B,C,α, β) := C ← (α ⋅ A ⋅ B + β ⋅ C)

:= gemm(, , ,α, ⋅ β +)Gk
i,j Ai,k Bk,j Ci,j �k=0 �k≠0

gemm(A,B,C,α, β) = ∥ ∥ ⋅ ⋅ ⋅ ∥ ∥G0,0 G0,1 G3,2 G3,3

:= → → →Gi,j G
0
i,j

G1
i,j

G2
i,j

G
3
i,j

G
0
0,0

G
0
0,1

G
0
3,2

G
0
3,3

G
1
0,0

G
1
0,1

G
1
3,2

G
1
3,3

G
2
0,0

G
2
0,1

G
2
3,2

G
2
3,3

G
3
0,0

G
3
0,1

G
3
3,2

G
3
3,3

(a) (b)

X Task

True Dependence

False Dependence

Legend

← Y → Matrix Block Y

← C2,2 →C2,3

← C2,2 →C2,3

Sector Boundaries

Unaligned Blocks

Aligned Blocks

(c)

Figure 1: The gemm kernel, its DAG using the Task interface, and sector-sharing among adjacent output blocks in C.

n

N

M

B

b �

(0, 0) (p,q) (p,q + m) (p + 1,q) (p + 1,q + m)

s

�

l

(p, q)

n

m � �����_��� < � >

l length per stride

s stride length

number of strides

Figure 2: 〈b, {l, s, n}〉 is an access specifier for block b
of a flash-resident matrix B stored in Row-Major layout.

sured with the fio tool[4]). As a result, the kernel runs
slower than would be expected with perfect pipelining.
Getting the kernel to run at in-memory speed requires
additional measures to save bandwidth.

3.2 Buffer Sharing

To increase pipelining efficiency, we use knowledge
of task inputs and outputs to increase reuse of data
prefetched into memory. Certain kernels like gemm per-
form O(n3) computation on inputs of size O(n2). This
gap between computation and IO implies that prefetched
data can be reused. A naive task scheduler executing
the gemm kernel using the DAG in Figure 1b can per-
form n3

b reads resulting in multiple copies of the same
data being present in memory. In Figure 1b, if G1

0,0

and G0
1,0 execute in parallel, a naive scheduler would

prefetch B0,0 twice. Data duplication and redundant IO
adversely affect pipeline efficiency, and can also reduce
effective available memory which could stall prefetch-
ing. Redundant IO results in more mixing of read and
write accesses to disk than necessary, resulting in worse
performance than expected.

We reduce such redundancy by mapping access spec-
ifiers to unique buffers. This allows the BLAS-on-
flash scheduler to issue only one read to fetch B0,0 and
the same buffer is provided to both G1

0,0 and G0
1,0 as

read-only buffers.

3.3 Prioritized Scheduling
How does one build a real-time online scheduler that
can maximize buffer sharing among tasks in a dynamic
DAG with little context? In a First-In-First-Out(FIFO)
task scheduler, any occurrence of buffer sharing is purely
accidental. We propose a heuristic to select a task to
prefetch based on the data currently buffered in mem-
ory and the input requirements of the tasks in the DAG
that are ready at the moment.

Our heuristic selects the task that requires the fewest
number of bytes to be prefetched given the current con-
tent of the memory buffer. This forces buffer sharing and
maximizes overlap with in-memory buffers while read-
ing the minimum number of bytes from disk. For kernels
like gemm, shown in Figure 1b, our heuristic keeps an
output matrix block, Ci,j , in memory and executes the
accumulate chain Gi,j on it. Ci,j is written back to disk
only once, at the end of the chain Gi,j . Furthermore, our
heuristic schedules accumulate chains with high input
and output locality i.e. chains that use adjacent blocks in
both input and output matrices. For sparse kernels, like
csrmm, our heuristic achieves optimal buffer sharing by
scheduling tasks with a common input block.

Consider the following example of the
gemm kernel (Figure 1). Let M =
{A0,0, A1,0, A1,1, B0,0, B1,0, B1,1, C0,0, C1,0, C1,1}
be the set of all matrix blocks in memory and the
following be four tasks part of the gemm kernel.

G1
0,0 := gemm(A0,1, B1,0, C0,0, α, 1)

G0
1,0 := gemm(A1,0, B0,0, C1,0, α, β)

G1
1,1 := gemm(A1,1, B1,1, C1,1, α, 1)

G1
1,0 := gemm(A1,1, B1,0, C1,0, α, 1)

LetG1
0,0, G

0
1,0, andG1

1,1 be the latest 3 tasks to complete
execution. Since G0

1,0 has completed, its child, G1
1,0, is

now ready for execution. By scheduling G1
1,0 instead of

a next-in-queue task, G1
1,0 can immediately start execu-

tion without requiring any IO. Since outputs from the ac-
cumulate chains G0,0, G0,1, G1,0, and G1,1 exhibit high

5

File Handle

OS Kernel I/O

I/O Executor

Program Cache Prioritizer

Scheduler

Kernels

Figure 3: The BLAS-on-flash software stack

locality, such nearby accumulate chains execute concur-
rently and share more buffers than non-nearby chains.

4 Architecture

The BLAS-on-flash library implementation consists of
the software stack in Figure 3. We describe the role of
each of the 5 layers:

File Handle provides a read-write interface using ac-
cess specifiers for all library calls. Specialized imple-
mentations can be provided for different hardware IO
interfaces (e.g. SATA or network). We implement the
IO interface for SSDs using the Linux NVMe driver.
This implementation uses the Linux kernel asynchronous
IO syscall interface, io_submit, to submit IO jobs
and io_getevents to reap completions of operations
on flash-resident files. The io_submit syscall inter-
face provides a simple interface to bypass kernel buffers
and execute asynchronous IO at sector-level. We chose
this over user-space NVMe drivers like SPDK [25] and
unvme [40] because of its simplicity. Each access spec-
ifier for large matrix blocks translates into a list of con-
tiguous accesses that can listed using an array of iocb
structs that can be submitted at once. The large number
of simultaneous accesses saturates available bandwidth.

IO Executor consists of a threadpool that accepts IO
requests generated by the Program Cache and executes
non-overlapping requests concurrently. Overlap check
is necessary for ensuring correctness since the IO layer
does not attempt to serialize access to sectors. Consider
Figure 1c. When matrix block sizes are aligned to a mul-
tiple of the flash device’s sector size, C2,2 and C2,3 can
be read from and/or written into concurrently. However,
if C2,2 and C2,3 happen to share sectors on the disk i.e.
there exist some sectors on the device containing por-
tions of bothC2,2 andC2,3, writes to the common sectors
must be ordered to avoid data corruption. Every write ac-
cess is advertised and followed up with an overlap check
on other threads’ writes. If a conflict is detected, the
thread adds the access to a local backlog and requests
a different access to execute. Backlog accesses are re-
visited in the next cycle and executed if no overlap is

detected.
Program Cache tracks BLAS-on-flash memory usage,

maps access specifiers to buffers and stores the map-
ping as a unique entry. Each entry is given one of four
tags - Active(A), Prefetch(P), Write-Back(W), or Zero-
Reference(Z). Tag A against an entry indicates an ac-
tive reference, i.e, at least one task has a reference to the
buffer. Tag P indicates that a prefetch associated with the
access specifier is in progress, W indicates a write-back
in progress, and Z otherwise. It uses this information to
serve five types of requests.

• Batch HIT/MISS requests ask if buffers correspond-
ing to a batch of access specifiers are in memory. A
response is returned for each unique access specifier.
• A COMMIT request asks the cache to commit a task

to memory by issuing prefetch requests to the IO Ex-
ecutor. A task is said to be committed if all its inputs
and outputs can be allocated by either provisioning
unused memory or by evicting unused buffers (i.e. its
entry has a Z tag). If the request is successful, some
buffers with Z tag are evicted to free up memory.
This causes some write-backs and prefetch requests
are enqueued to a backlog. Program Cache state is
unchanged if the request is unsuccessful.
• A RELEASE request returns a task’s inputs and out-

puts to the cache. Reference counts are decreased for
all returned buffers, and entries tagged A with zero
references are tagged with Z and made available for
eviction in future.
• A SERVICE request checks entries tagged W for

completion of write-backs and frees the associated
buffer if the operation is complete. If memory is
available, backlog prefetch requests are issued to the
IO executor and are tagged with P .
• A GET request queries the status of entries tagged P

that have issued prefetch requests. If an entry tagged
P has finished prefetching, it is tagged with A and
the associated buffer is returned as response; a NULL
buffer is returned otherwise.
• A FLUSH request evicts all buffers tagged Z and is-

sues write-backs if required. A, P and W tagged en-
tries are not affected.

Prioritizer implements scheduling heuristics by main-
taining a list of ready tasks and issuing HIT/MISS re-
quests to the Program Cache. Other task selection heuris-
tics can be implemented in place of Prioritizer.

Scheduler provides an interface for users to inject
tasks at runtime and track their progress through the 4
stages of the pipeline — Wait, Prefetch, Compute and
Complete. It also provides an interface to enable/disable
the Prioritizer, enable/disable overlap checks in IO ex-
ecutor and exposes the FLUSH request to the Program
Cache to the user.

6

To select the next task to prefetch, the Scheduler
queries the Prioritizer and issues a ALLOCATE request
to the Program Cache. A task is said to be Complete if
it has finished all 4 stages. It is then removed from the
DAG and a RELEASE request is issued for the task to
the Program Cache.

5 Algorithms and Evaluation
We now discuss the implementation and performance of
the kernels provided by the library as well as algorithms
built using the library — eigensolvers, an SVD-based
algorithm for topic modeling, and inference in extreme
multi-label learning. We will compare the running time
and memory requirements of in-memory and SSD-based
versions of these algorithms. We use Intel MKL 2018
and Ubuntu 16.04LTS in all our experiments.

5.1 Machines
Table 1 lists the configurations of machines used to eval-
uate our library. sandbox is a high-end bare-metal
server with enterprise class Samsung PM1725a SSD ca-
pable of sustained read speeds of up to 4GB/s and write
speeds of up to 1GB/s for the strided accesses created
by our library. z840 is chosen to represent a typi-
cal bare-metal workstation machine configured with two
Samsung 960EVO SSDs in RAID0 configuration. This
provides sustained read speed of about 3GB/s and write
speed of about 2.2GB/s. L32s VM is a virtual machine
configured for heavy IO. We believe that the underly-
ing hardware supports very high bandwidths; however,
the hypervisor throttles it to 1.6GB/s sustained reads and
writes or 160K IO ops/second. M64-32ms VM is a vir-
tual machine with 1.7TB RAM which we use for run-
ning in-memory experiments that require large amounts
of memory. The Apache Spark instances used for com-
parison run MLLib 2.1 on DS14v2 VM clusters.

Name Processor Cores RAM SSD

sandbox Gold 6140 36 512GB 3.2TB
z840 E5-2620v4 16 32GB 2TB

L32s VM E5-2698Bv3 32 256GB 6TB
M64-32ms VM E7-8890v3 32 1.7TB –

DS14v2 VM E5-2673v3 16 112GB –

Table 1: Intel Xeon-based machines used in experiments.

5.2 Matrix kernels
General Matrix Multiply (gemm) and Sparse (CSR) Ma-
trix Multiply (csrmm) are perhaps the most used kernels
in math libraries. Therefore, it is important to optimize
their performance with careful selection of tiling patterns
and prefetch and execution orders in order to minimize

IO. For this, we build on well-established results on ex-
ploiting locality in matrix multiplications [31, 29, 5]. We
also use the fact that BLAS and sparseBLAS computa-
tions can be tiled so that they write the output to disk just
once [13, 12], thus saving on write bandwidth.
gemm. The block matrix multiplication algorithm in
Figure 1 requires O(n3) floating point operations for
n × n matrices. With block size b, it reads O(n3/b)
bytes from disk and writes O(n2) bytes back. It is ideal
for the library to increase the block size b as much as its
in-memory buffer allows so as to decrease the amount of
IO required. Figure 4 presents the ratio of running times
of the in-memory MKL gemm call to that of our library
for various reduction dimension sizes in two cases:

• 512-aligned. A matrix is 512-aligned if the size
of its leading dimension is a multiple of 512. For
example, a 1024x1000 float matrix in row-major
layout that would require 4096 bytes for each row
is 512-aligned.

• unaligned. A matrix is said to be unaligned if it
is not 512-aligned. For example, a 500x500 ma-
trix with 32-bit floats in row-major form would
require 2000 bytes, which is not a multiple of 512,
and is said to be unaligned.

The distinction between 512-aligned and unaligned ma-
trices is important as the two cases generate a different
number of disk access when a block of the matrix is to be
fetched or written to. To flush an unaligned matrix block,
we need to read in the start and end sectors of each row in
the block, overwrite them with new values and then issue
a write to disk. In the case of aligned matrix blocks, we
need only one write to flush it to the disk.

We define the reduction dimension to be the dimen-
sion along which summation is carried out during ma-
trix multiplication. Using notation from Figure 1, if all
three matrices, A,B, and C, are stored in row-major
form, reduction dimension is the number of columns in
A, or equivalently the number of rows in B. For a given
block size, increasing reduction dimension increases the
length of the accumulate chain, which in turn translates
to fewer disk writes per FLOP. Since write bandwidth is
low, and writes affect read bandwidth as well, our sched-
uler should use a smaller ratio of writes to FLOPs to im-
prove performance for larger reduction dimension. Fig-
ure 4 demonstrates that this is indeed the case. In fact,
because of careful pipelining, our library outperforms in-
memory MKL calls in many instances.

Further, as expected, BLAS-on-flash performs better
on 512-aligned instances than in the unaligned instances.
We attribute this to the increased number of requests is-
sued to the disk in the unaligned case.
csrmm. The csrmm kernel requires O(n3 ∗ s) float-
ing point operations on an input matrices of n × n di-

7

0.6

0.8

1

1.2

1.4

1.6

1.8

16384 32768 65536 131072 262144

z840 L32s VM sandbox

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

15000 31000 63000 127000 255000

z840 L32s VM sandbox

Figure 4: Ratio of in-memory MKL gemm to BLAS-on-flash gemm running times for 512-aligned (left) and unaligned
(right) instances for various values of reduction dimension (d). The matrix dimensions are 215× d× 215 and 31000×
d×31000 for the aligned and unaligned plots. BLAS-on-flash library has a 8GB Program Cache. gemm tasks in BLAS-
on-flash library use 4 threads each and the number of simultaneous tasks is detemined by Program Cache budget.

mensions with sparsity s (this represents an input size
of O(n2(1 + s)) and output size of n2). For a ma-
trix whose sparsity is uniform across rows and columns,
with a block size of b, the compute to IO ratio is only
O(bs) as opposed to b for gemm. For sparse matri-
ces such as those in Table 2 arising from text data (e.g.
bag-of-words representation) , sparsity can be as low as
s = 10−4. Therefore, although the execution of tasks
in csrmm loaded into memory is slower (sparse opera-
tions are 10 − 100× slower than dense operations), the
low locality (bs as opposed to b) makes it hard to always
obtain near in-memory performance. Figure 5 demon-
strates the effect of sparsity on csrmm by fixing the
problem dimensions at (220 × 217 × 212) and measuring
the ratio of in-memory to BLAS-on-flash running times
for s ∈ {10−2, 10−3, 10−4}. It is evident that the effi-
ciency of the csrmm kernel decreases with sparisty.

0

0.2

0.4

0.6

0.8

1

0.01 0.001 0.0001

z840 L32s VM sandbox

Figure 5: Ratio of in-memory MKL csrmm to BLAS-
on-flash csrmm running times for (220 × 217 × 212)
sized instances and various values of sparsity. BLAS-on-
flash library has a 8GB Program Cache. csrmm tasks in
BLAS-on-flash library use 4 threads each and the number
of simultaneous tasks is detemined by Program Cache.

We also benchmark the csrmm call required to project
the sparse bag-of-words datasets listed in Table 2 into
a 1024-dimensional space (say, obtained from Principal
Component Analysis). The dense input matrix and out-
put matrices are in a row-major format. Note that this

Dataset #Cols #Rows NNZs Tokens Size

Small 8.15M 140K 428M 650M 10.3GB
Medium 22M 1.56M 6.3B 15.6B 151GB

Large 81.7M 2.27M 22.2B 65B 533GB

Table 2: Sparse matrices bag-of-words text data sets.
Columns and rows of the matrix represent the documents
and words in the vocabulary of a text corpora. The (i, j)-
th entry of the matrix represents the number of times the
j-th word in the vocabulary occurs in the i-th document.

means that the matrices are 512-aligned. A performance
drop is expected in the unaligned case just as in gemm.

Table 3 compares the performance of the csrmm in
BLAS-on-flash to the in-memory version implemented
by MKL on z840 , L32s VM and sandbox ma-
chines. z840 is too small to run the in-memory ver-
sion for all three data sets because it has only 32GB
RAM. Since projecting the Large dataset into 1024 di-
mensions requires 559GB of RAM, both L32s VM and
sandbox are unable to do it in memory. As an ap-
proximation to the speed of an in-memory call on L32s
VM we ran it on M64-32ms VM which has 1.7TB RAM.

Despite a sparsiy of 2×10−4, the csrmm in BLAS-on-
flash is about 50% as fast as its in-memory counterpart on
the Medium dataset (when the dense matrices are in row-
major layout). We picked row-major order for dense ma-
trices because our library was able to outperform MKL’s
csrmm implementation for column-major order by over
2× on Small and Medium datasets. We attribute this to
poor multi-threading in MKL’s implementation. We con-
clude that the BLAS-on-flash csrmm kernel is reasonably
efficient even on large and extremely-sparse inputs.
csrcsc.To support the compressed sparse column for-
mat (CSC), we implemented a kernel csrcsc to convert
a large sparse matrix between the CSR and CSC formats.
This kernel is relatively fast and takes about 100 seconds
for a 100GB matrix. Intel MKL’s csrcsc call fails on

8

Dataset z840 L32s VM sandbox
flash in-mem flash in-mem flash

Small 34.7 8.2 24.5 6.9 35.2
Medium 135.75 58.5 101.3 49.5 98.0

Large 636.2 512.3* 390.6 – 354.9

Table 3: Running times in seconds for csrmm operations
that projects datasets in Table 2 into 1024-dimensions.
BLAS-on-flash has a 16GB Program Cache. *This is run
on M64-32ms VM as an approximation to L32s VM .

Medium and Large data sets.

5.3 Eigensolver
Eigen-decomposition is widely used in data analytics,
e.g., dimensionality reduction. Given a symmetric ma-
trix A, a symmetric eigensolver attempts to find k
eigenvalue-eigenvector pairs (λi,vi) such that

Avi = λivi ∀i
vT
i vj = 0, ‖vi‖2 = 1 ∀i 6= j

|λ1| ≥|λ2| . . . ≥ |λk|

Popular dimensionality reduction techniques like Princi-
pal Component Analysis (PCA) and Singular Value De-
composition (SVD) use the symmetric eigenvalue de-
composition (syevd) to compute the projection matri-
ces required for dimensionality reduction. The follow-
ing equations describe SVD of a matrix M, and how it
may be formulated as a symmetric eigen-decomposition
problem.

Mui = σivi, ‖vi‖2 = ‖ui‖2 = 1∀i
uT
i uj = 0, vT

i vj = 0∀i 6= j

|σ1| ≥ |σ2| . . . ≥ |σk|
MMTui = σ2

i ui, M
TMvi = σ2

i vi

svd(M) = syevd(MMT) = syevd(MTM)

To showcase the versatility of our library, we imple-
ment a symmetric eigensolver and time it on large ma-
trices (in CSR format) obtained from text corpora in Ta-
ble 2. Eigensolvers are typically iterative and involve
many subroutines. Among the many flavors of eigen-
solvers available, we picked the Kyrlov-subspace class
of algorithms because they have been shown to be stable
for a wide-variety of matrices. This class of algorithms
uses iterated Sparse Matrix-Vector (csrgemv) products
to converge on the solution pairs.
csrgemv is bandwidth bound and not suitable for

an eigensolver operating on SSD-resident matrices. To
overcome this limitation, we implemented the Restarted
Block Krylov-Schur (Block KS) [63] algorithm. The
Block KS algorithm can potentially use fewer matrix ac-
cesses to achieve the same tolerance by using a csrmm

kernel in place of csrgemv by expanding the Krylov
basis several columns at a time. Although the Block
KS algorithm performs extra computation compared to
its non-block variants, this extra work is highly parallel
and the IO saved makes up for the extra compute.

The running time of an eigensolver depends not only
on the input size and the number of eigenpairs desired,
but also the distribution of the eigenvalues of the matrix.
The further apart eigenvalues are spaced, the faster the
convergence. The largest singular values of the sparse
matrices we use are well separated – this helps Block KS
converge faster without many restarts.

Evaluation. We benchmark both our in-memory and
flash-based single node implmentations of the Block KS
algorithm against a single node and distributed imple-
mentation of the Implicitly Restarted Arnoldi Method
(IRAM) algorithm. The single node version is pro-
vided by Spectra [46], a C++ header-only implemen-
tation of ARPACK [36], while the distributed version
is computeSVD in Apache Spark MLLib library (v2.1).
The Spark job was deployed on both a shared and a ded-
icated Hadoop cluster through YARN [53] to workers
with 1 core and 8GB memory each and a driver node with
96GB memory. The shared cluster uses Xeon E5-2450L
processors and 10Gb Ethernet, while the dedicated clus-
ter uses DS14v2 VM nodes.

Table 4 compares the time taken to solve for the top
singular values of sparse matrices in Table 2 to a toler-
ance precision of 10−4 (this is sufficient for the SVD-
based topic modeling algorithm described in the next
subsection). It must be noted that the computeSVD
uses double precision floating point numbers while our
algorithm uses single precision. We solve for only 200
singular values on the large data set and 500 on the
Medium data set because the Spark solver would not
solve for more. On the other hand, our implementation
easily scales to thousands of singular values.

The flash version of Block KS works almost as fast
as the in-memory version. Further, both Block KS im-
plementations easily outperform both Spectra and Spark
jobs in time to convergece. Spark does not see any ben-
efit from more workers beyond a point; in fact it be-
comes slower. These results demonstrate that our flash-
based eigensolver utilizes hardware order(s) of mangin-
utes more efficiently than distributed methods.

5.4 SVD-based Topic Modeling

Topic modeling involves the recovery of underlying top-
ics from a text corpus where each document is repre-
sented by the frequency of words that occur in it. Mathe-
matically, the problem posits the existence of a topic ma-
trix M whose columns M.l are probability distributions
over the vocabulary of the corpus. The observed data

9

Dataset Block Krylov-Schur Spectra computeSVD (shared) computeSVD (dedicated)
(#eigenvalues) L32s VM sandbox Number of Spark Executors Number of Spark Executors

in-mem flash in-mem flash 64 128 256 512 64 128 256 512

Medium(500) 76 182 63 95 934 320 275 365 450 460 225 228 226
Large (200) 154∗ 429 – 153 – – – 169 230 236 126 104 164

Table 4: Time (in minutes) to compute eigenvalues. For both Medium and Large datasets, Block KS is run with
block=25. For Medium, nev=500 and ncv=2500 and for Large, nev=200 and ncv=1500. We run Block KS in-memory
on M64-32ms VM as an approximation to L32s VM . Spark MLLib’s computeSVD was timed with 64, 128, 256,
512 workers with 8GB memory on both a shared and a dedicated cluster. The Large dataset needs at least 256 workers
to run on the shared clsuter. On standalone cluster with 64 works, the Large dataset needed 10GB memory per worker.

is assumed to be generated by (1) picking a matrix W ,
whose columns sum to one and represent linear combina-
tions of topic columns in M , (2) calculating P = MW ,
where the j-th column P.j represents the probability of
words in the document j, and (3) sampling the observed
documentsA.j using a multinomial distribution based on
the p.d.f. P.j . The computational problem is to recover
the underlying topic matrixM , given the observationsA.

ISLE, or Importance Sampling for Learning Edge top-
ics, is a direct adaption of the TSVD algorithm [6] for
recovering topic models. It is based on linear-algebraic
techniques (unlike other LDA based algorithms which
are based on MCMC techniques) that can provably re-
cover the underlying topic matrix under reasonable as-
sumptions on the observed data. Empirically, it has been
shown to yield qualitatively better topics in real world
data. The open source implementation is faster than other
single node implementations of any topic modeling al-
gorithms [51]. It takes as input bag-of-words represen-
tation for documents in CSR or CSC format, and does
the following steps: (1) threshold to denoise the data,
(2) use SVD to compute a lower dimensional space to
project the documents into, (3) cluster documents using
k-means++ initialization and the k-means algorithm on
the projected space, (4) use the resultant clusters to seed
clustering in the original space using the k-means algo-
rithm, and finally (5) construct the topic model. For large
datasets, sampling techniques can be used to pick a sub-
set of data for the expensive steps (2), (3), and (4). We
linked ISLE to the BLAS-on-flash framework to leverage
the flash-based Block KS eigensolver and the clustering
algorithms built in our framework.

Evaluation. Table 5 compares the running times of the
in-memory version and the version that uses the BLAS-
on-flash library. Using this redesigned pipeline, we were
able to train a 5000-topic model with a DRAM require-
ment of 1.5TB on both L32s VM and sandbox ma-
chines with only 32GB budget for in-memory buffers.
We note that the number of tokens in this data set (about
65 billion) is in the same ballpark as the number of
tokens processed by LDA-based topic modeling algo-
rithms in Parameter Server based systems that use multi-

Dataset Sample
Rate

sandbox L32s VM
(# Topics) in-mem flash in-mem flash

Small(1000) 1.0 15 27 18 37
Medium(1000) 0.1 46 66 63 72
Medium(2000) 0.1 119 144 158 212

Large(1000) 0.1 – 149 163* 172
Large(2000) 0.1 – 228 285* 279
Large(5000) 0.1 – 522 980* 664
Large(2000) 0.4 – 532 684* 869

Table 5: Running time of the ISLE algorithm in minutes.
*We use M64-32ms VM as an approximation to L32s
VM for the Large dataset.

ple nodes [37].
On the Medium data set where it is possible to run

an in-memory version, notice that the code linked to
BLAS-on-flash achieved about 65−80% in-memory per-
formance while requiring under 128GB of main mem-
ory. For the Large dataset, the flash version running
on sandbox is able to perform better than the in-
memory version on M64-32ms VM . We think this is
because sandbox has newer hardware, and because the
eigensolver and kmeans kernels written using BLAS-on-
flash achieve near in-memory performance.

5.5 Extreme Multi-Label Learning
Extreme multi-label (XML) learning addresses the prob-
lem of automatically annotating a data point with the
most relevant subset of labels from an extremely large la-
bel set. It has many applications in tagging, ranking and
recommendation. For instance, one might wish to build
an extreme multi-label classifier that recommends a sub-
set of millions of Amazon items that a user might wish
to buy or view next after buying or viewing a given item.
Many popular XML algorithms use tree based meth-
ods due to low training and prediction times. Here, we
present experiments with two such algorithms which use
ensembles of trees: PfastreXML [30] and Parabel [44].

In a current deployment, both these algorithms train
an ensemble of trees (50 trees for PfastreXML, and 3 for
Parabel) from 40 million data points, each of which is a

10

sparse vector in a 4.5 million-dimensional space. Once
trained, each tree in the ensemble predicts label proba-
bilities/ranks for 250 million test data points. The test
dataset takes 500GB of space when stored in a sparse
format. Both training and inference are difficult to scale
– training requires weeks on a machine with multiple
terabytes of RAM, and inference currently consumes
dozens of machines. As XML algorithms are applied to
larger search problems and advertisement domains, it is
projected that they need to scale to much larger datasets
with billions of points and hundreds of millions of labels
(e.g. web search), and train trees that are hundreds of
gigabytes in size.

In such scenarios, because of the memory limitations
of the platforms on which these algorithms are deployed,
orchestrating data and models out of SSDs becomes crit-
ical. We demonstrate the capabilities of our library in
such cases. We focus on inference here since it is run at
a much higher frequency than training — typically once
every week in ad recommendation applications. Similar
techniques can be applied for training.

PfastreXML: For training, trees are grown by recur-
sively partitioning nodes starting at the root until each
tree is fully grown. Nodes are split by learning a hy-
perplane which partitions training points between left
and right children. Node partitioning terminates when a
node contains less than a certain number of points. Leaf
nodes contain a probability distribution over label. Dur-
ing inference, predictions are made in logarithmic time
by passing a test point down from the root to a leaf in
each of the trees in ensemble. At each internal node, the
test point is sent to the left or right child based on its
position with respect to the hyperplane at that node.

Parabel: For training, trees are grown by recursively
partitioning the nodes by distributing the labels assigned
to the node in equal amounts to each of its two children.
Nodes containing less than a user specified number of
labels are split into multiple leaf nodes with each la-
bel allotted to a separate leaf. Each tree node contains
a probabilistic linear classifier which decides whether a
data point has some relevant labels in its left or right sub-
tree. The node classifiers are trained so as to maximize
the aposteriori probability distribution over the training
data. For inference, predictions are made in logarithmic
time by passing a test data point down a fixed number
of paths, at most 10 in our case, in each of the balanced
trees of the ensemble. Along each such path from root to
a leaf, the probabilities estimated by classifiers are multi-
plied to give the corresponding path probability. Finally,
the labels are ranked in the decreasing order of the aver-
age probabilities where average is over paths that lead to
the label in different trees.

The inference code downloaded for both algorithms
from the XML repository [8] is single-threaded and

takes about 440 hours and 900 hours for PfastreXML and
Parabel inference, respectively, on Azure D14 v2 SKUs
with 112GB RAM and 16 cores. The orchestration re-
quired to complete the inference in under two days is
complex and increases the likelihood of disk, node or
network failures.

In the code we started from, PfastreXML inference in-
volves a depth-first traversal of a non-balanced binary
tree while Parabel inference requires breadth-first beam
search of a balanced binary tree. In both cases, the no-
ticed that the baseline code was inefficient. We improved
the code to take a batch of test data points (about 2-4 mil-
lion per batch) and traverse the tree in a Breadth-First or-
der, i.e., level by level. With this transformation, the in-
memory running times of the inference code improved
by about 6× on nodes with a large amount of RAM. We
feel this is close to the limit of how fast this code can run
based on DDR3 bandwidth.

We use the BLAS-on-flash library to orchestrate level-
by-level traversal of the trees for a batch of points with
the Task interface. We construct one task for a (level,
batch) pair and dynamically inject new tasks into the
scheduler. Since inference is data parallel for a given
(level, batch) pair, we execute multiple batches in par-
allel and rely on the BLAS-on-flash library to prefetch
levels and points.

Evaluation. We compare the in-memory and BLAS-
on-flash -based versions of the inference code on mod-
els in two regimes – medium and large. The medium-
sized models consist of 20GB trees containing about 25
million nodes, while the large Parabel model consists of
122GB trees. The Medium sized models fit in the mem-
ory of the largest machines used in the inference plat-
form, while the large dataset does not fit in the memory
of any machine in the platform. We use a total of 50
trees for PfastreXML and 3 trees for Parabel inference.
Our test data consists of 250 million points drawn from
a 4.3 million dimensional space and is about 500GB in
compressed sparse format.

We benchmark both inference algorithms on z840 ,
L32s VM , and sandbox and use 221 points per batch
for z840 and 222 points for L32s VM and sandbox .
The size of Program Cache for the BLAS-on-flash li-
brary is 20GB for z840 and 40GB for L32s VM and
sandbox . We use 32 compute threads on z840 and
L32s VM and 64 threads on sandbox .

Tables 6 and 7 present the running time and memory
requirement of our code on the medium- and large-sized
models. Using the BLAS-on-flash library, the inference
code runs at over 90% of in-memory speed using only a
third of the required memory. The memory requirement
can be further reduced by decreasing the data batch size
or splitting each level of the tree into multiple tasks. The
reduction in working set with practically no impact on

11

PfastreXML (50 trees) Parabel (3 trees)
in-mem flash in-mem flash

sandbox 45 (155) 51.0 (42) 27.3 (125) 25.3 (47.6)
L32s VM 69.2 (149) 67.0 (42) 44.3 (123) 45.8 (48)

z840 – 118 (26.2) – 71.5 (30.5)

Table 6: Running time in hours and peak DRAM usage in
GB (inside paranthesis) for XML inference on an ensem-
ble of medium-sized trees for 250× 106 data points. We
used 64 threads on sandbox and 32 threads on L32s
VM and z840 .

Time (hours) RAM (GB)
in-mem flash in-mem flash

sandbox 51.7 57.0 241.3 80.1
L32s VM 108.4 118.2 235.5 80.9

Table 7: Running time in hours and peak DRAM us-
age (in GB) for inference on the large Parabel model
for 250 million data points. We used 64 threads on
sandbox and 32 threads on L32s VM and allocate
70GB as Program Cache budget.

performance critically enables us to execute inference on
larger models (for ranking and relevance tasks) that do
not fit in DRAM, for greater accuracy.

6 Other Related Work

Recent work [12, 7, 13] has studied parallel and sequen-
tual external memory algorithms in the setting where
writes to non-volatile memories are much more expen-
sive than reads. They conclude that for kernels like sort-
ing and FFTs, decreasing writes to non-volatile external
memory is possible at the price of more reads. Fortu-
nately, in the case of linear algebra, this is not the case.
Simple reordering of the matrix tiles on which the in-
memory computation is performed can achieve asymp-
totic reduction in the amount of writes for gemm and
csrmm calls without increase in reads. We use this ob-
servation extensively in our work.

While our system uses existing processing and mem-
ory hardware, new hardware and accelerators that move
computation to the memory have been proposed. For ex-
ample, [1] proposes how expensive access patterns such
as shuffle, tranpose, pack/unpack might be performed in
accelerator co-located with DRAM, and analyzes poten-
tial energy gains for math kernels from such accelerators.
Further, systems that proposes moving entire workloads
to memory systems have been proposed [48, 24, 55].
Some of the techniques in our work are complementary
to this line of work.

Partitioned Global Address Space systems such as

FaRM [20] and UPC [22, 15, 62, 32] that present an uni-
fied view of the entire memory available in a distributed
system present an alternative for programs considered
here to scale to larger data and model sizes. However,
the network bandwidth available presents a barrier to the
scalability of sparse kernels just as in the case of Spark.
Further, with careful co-design, we feel that a large range
of workloads (of up to a few terabytes in size) can be
processed on a single node without the cost overhead of
a cluster of RDMA-enabled nodes. Scaling our library to
such systems remains future work.

7 Conclusion

Our results suggests that operating on data stored in fast
non-volatile memories on a singlde node could provide
an efficient alternative to distributed big-data systems for
training and inference of industrial scale machine learn-
ing models for algorithms that are not computation in-
tensive. On complicated numerical algorithms such as
eigensolvers, we demonstrated that careful co-design of
algorithm and software stack can offer large gains in
hardware utilization and keep the costs of data analyt-
ics pipelines low. Further, our library provides a higher
value proposition for the large quantity of NVM storage
that has already been deployed as storage in data centers.
Our library can also be adapted to support GPU and other
PCIe storage devices like Optane with minor changes.

8 Acknowledgments

The authors would like to thank Anirudh Badam, Ravi
Kannam, Muthian Sivathanu, and Manik Varma for their
useful comments and advice.

9 Availability

The topic modeling training and extreme multi-label
learning inference code that we have adapted to use the
BLAS-on-flash library can be downloaded from the two
following sites:
github.com/Microsoft/ISLE
manikvarma.org/downloads/XC/XMLRepository.html

We intend to release our library, the eigensolvers, and the
adapted code on github once the conditions of anonynomity
are removed.

References
[1] AKIN, B., FRANCHETTI, F., AND HOE, J. C. Data reorgani-

zation in memory using 3d-stacked dram. In Proceedings of the
42Nd Annual International Symposium on Computer Architecture
(New York, NY, USA, 2015), ISCA ’15, ACM, pp. 131–143.

[2] AMD. RadeonTM Pro SSG, 2018.

12

[3] ARULRAJ, J., AND PAVLO, A. How to build a non-volatile mem-
ory database management system. In Proceedings of the 2017
ACM International Conference on Management of Data (New
York, NY, USA, 2017), SIGMOD ’17, ACM, pp. 1753–1758.

[4] AXBOE, J. Fio-flexible io tester. URL http://freecode.
com/projects/fio (2014).

[5] BALLARD, G., DEMMEL, J., HOLTZ, O., AND SCHWARTZ, O.
Minimizing communication in numerical linear algebra. SIAM
Journal on Matrix Analysis and Applications 32, 3 (2011), 866–
901.

[6] BANSAL, T., BHATTACHARYYA, C., AND KANNAN, R. A prov-
able svd-based algorithm for learning topics in dominant admix-
ture corpus. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2 (Cam-
bridge, MA, USA, 2014), NIPS’14, MIT Press, pp. 1997–2005.

[7] BEN-DAVID, N., BLELLOCH, G. E., FINEMAN, J. T., GIB-
BONS, P. B., GU, Y., MCGUFFEY, C., AND SHUN, J. Paral-
lel algorithms for asymmetric read-write costs. In Proceedings
of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures (New York, NY, USA, 2016), SPAA ’16, ACM,
pp. 145–156.

[8] BHATIA, K., DAHIYA, K., JAIN, H., PRABHU, Y., AND
VARMA, M. The extreme classification repository: Multi-label
datasets and code.

[9] BILENKO, M., FINLEY, T., KATZENBERGER, S., KOCHMAN,
S., MAHAJAN, D., NARAYANAMURTHY, S., WANG, J., WANG,
S., AND WEIMER, M. Salmon: Towards production-grade,
platform-independent distributed ml. In The ML Systems Work-
shop at ICML (2016).

[10] BLACKFORD, L. S., DEMMEL, J., DONGARRA, J., DUFF, I.,
HAMMARLING, S., HENRY, G., HEROUX, M., KAUFMAN, L.,
LUMSDAINE, A., PETIET, A., POZO, R., REMINGTON, K.,
AND WHALEY, R. C. An updated set of basic linear algebra
subprograms (blas). ACM Trans. Math. Softw. 28, 2 (June 2002),
135–151.

[11] BLEI, D. M., NG, A. Y., AND JORDAN, M. I. Latent dirichlet
allocation. J. Mach. Learn. Res. 3 (Mar. 2003), 993–1022.

[12] BLELLOCH, G. E., FINEMAN, J. T., GIBBONS, P. B., GU, Y.,
AND SHUN, J. Sorting with asymmetric read and write costs. In
Proceedings of the 27th ACM Symposium on Parallelism in Al-
gorithms and Architectures (New York, NY, USA, 2015), SPAA
’15, ACM, pp. 1–12.

[13] CARSON, E., DEMMEL, J., GRIGORI, L., KNIGHT, N.,
KOANANTAKOOL, P., SCHWARTZ, O., AND SIMHADRI, H. V.
Write-avoiding algorithms. In 2016 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS) (May 2016),
pp. 648–658.

[14] CHEN, J., LI, K., ZHU, J., AND CHEN, W. Warplda: A cache
efficient o(1) algorithm for latent dirichlet allocation. Proc. VLDB
Endow. 9, 10 (June 2016), 744–755.

[15] CHEN, W.-Y., BONACHEA, D., DUELL, J., HUSBANDS, P.,
IANCU, C., AND YELICK, K. A performance analysis of the
berkeley upc compiler. In Proceedings of the 17th Annual Inter-
national Conference on Supercomputing (New York, NY, USA,
2003), ICS ’03, ACM, pp. 63–73.

[16] DASK DEVELOPMENT TEAM. Dask: Library for dynamic task
scheduling, 2016.

[17] DHULIPALA, L., BLELLOCH, G., AND SHUN, J. Julienne:
A framework for parallel graph algorithms using work-efficient
bucketing. In Proceedings of the 29th ACM Symposium on Par-
allelism in Algorithms and Architectures (New York, NY, USA,
2017), SPAA ’17, ACM, pp. 293–304.

[18] DINH, D., SIMHADRI, H. V., AND TANG, Y. Extending the
nested parallel model to the nested dataflow model with provably
efficient schedulers. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures (New York, NY,
USA, 2016), SPAA ’16, ACM, pp. 49–60.

[19] DMTK. Multiverso: Parameter server for distributed machine
learning, 2015.

[20] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND HOD-
SON, O. Farm: Fast remote memory. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
2014) (April 2014).

[21] DUFF, I. S., HEROUX, M. A., AND POZO, R. An overview of
the sparse basic linear algebra subprograms: The new standard
from the blas technical forum. ACM Trans. Math. Softw. 28, 2
(June 2002), 239–267.

[22] EL-GHAZAWI, T., AND SMITH, L. Upc: Unified parallel c. In
Proceedings of the 2006 ACM/IEEE Conference on Supercom-
puting (New York, NY, USA, 2006), SC ’06, ACM.

[23] GITTENS, A., DEVARAKONDA, A., RACAH, E., RINGEN-
BURG, M., GERHARDT, L., KOTTALAM, J., LIU, J.,
MASCHHOFF, K., CANON, S., CHHUGANI, J., SHARMA, P.,
YANG, J., DEMMEL, J., HARRELL, J., KRISHNAMURTHY, V.,
MAHONEY, M. W., AND PRABHAT. Matrix Factorization at
Scale: a Comparison of Scientific Data Analytics in Spark and
C+MPI Using Three Case Studies. ArXiv e-prints (July 2016).

[24] GUO, Q., GUO, X., BAI, Y., AND İPEK, E. A resistive tcam ac-
celerator for data-intensive computing. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (New York, NY, USA, 2011), MICRO-44, ACM, pp. 339–
350.

[25] INTEL. Storage performance development kit (spdk), 2016.

[26] INTEL R©. OptaneTM memory, 2017.

[27] INTEL R©. Math Kernel Library Sparse BLAS level 2 and 3 rou-
tines, 2018.

[28] INTEL R©. Math Kernel Library Sparse BLAS level 2 and 3 rou-
tines, 2018.

[29] IRONY, D., TOLEDO, S., AND TISKIN, A. Communication
lower bounds for distributed-memory matrix multiplication. J.
Parallel Distrib. Comput. 64, 9 (Sept. 2004), 1017–1026.

[30] JAIN, H., PRABHU, Y., AND VARMA, M. Extreme multi-label
loss functions for recommendation, tagging, ranking and other
missing label applications. In Proceedings of the ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (August
2016).

[31] JIA-WEI, H., AND KUNG, H. T. I/o complexity: The red-blue
pebble game. In Proceedings of the Thirteenth Annual ACM Sym-
posium on Theory of Computing (New York, NY, USA, 1981),
STOC ’81, ACM, pp. 326–333.

[32] KAMIL, A., ZHENG, Y., AND YELICK, K. A local-view array
library for partitioned global address space c++ programs. In Pro-
ceedings of ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming (New York,
NY, USA, 2014), ARRAY’14, ACM, pp. 26:26–26:31.

[33] KANNAN, R., VEMPALA, S., AND VETTA, A. On clusterings:
Good, bad and spectral. J. ACM 51, 3 (May 2004), 497–515.

[34] KUMAR, A., SINDHWANI, V., AND KAMBADUR, P. Fast con-
ical hull algorithms for near-separable non-negative matrix fac-
torization. In Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28
(2013), ICML’13, JMLR.org, pp. I–231–I–239.

13

[35] KYROLA, A., BLELLOCH, G., AND GUESTRIN, C. Graphchi:
Large-scale graph computation on just a pc. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2012), OSDI’12, USENIX
Association, pp. 31–46.

[36] LEHOUCQ, R., MASCHHOFF, K., SORENSEN, D., AND YANG,
C. ARPACK software, 2009.

[37] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J.,
AHMED, A., JOSIFOVSKI, V., LONG, J., SHEKITA, E. J., AND
SU, B.-Y. Scaling distributed machine learning with the param-
eter server. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation (Berkeley, CA,
USA, 2014), OSDI’14, USENIX Association, pp. 583–598.

[38] MCSHERRY, F., ISARD, M., AND MURRAY, D. G. Scalability!
but at what cost? In Proceedings of the 15th USENIX Conference
on Hot Topics in Operating Systems (Berkeley, CA, USA, 2015),
HOTOS’15, USENIX Association, pp. 14–14.

[39] MENG, X., BRADLEY, J., YAVUZ, B., SPARKS, E.,
VENKATARAMAN, S., LIU, D., FREEMAN, J., TSAI, D.,
AMDE, M., OWEN, S., XIN, D., XIN, R., FRANKLIN, M. J.,
ZADEH, R., ZAHARIA, M., AND TALWALKAR, A. Mllib: Ma-
chine learning in apache spark. J. Mach. Learn. Res. 17, 1 (Jan.
2016), 1235–1241.

[40] MICRONSSD. UNVMe - A User Space NVMe Driver, 2016.
https://github.com/MicronSSD/unvme.

[41] NICKOLLS, J., BUCK, I., GARLAND, M., AND SKADRON, K.
Scalable parallel programming with cuda. Queue 6, 2 (Mar.
2008), 40–53.

[42] NVIDIA. cuSPARSE library, 2017.

[43] PCI-SIG. Pci express base specification revision 4.0, version
1.0, October 2017.

[44] PRABHU, Y., KAG, A., HARSOLA, S., AGRAWAL, R., AND
VARMA, M. Parabel: Partitioned label trees for extreme classi-
fication with application to dynamic search advertising. In Pro-
ceedings of the International World Wide Web Conference (April
2018).

[45] PRABHU, Y., AND VARMA, M. Fastxml: A fast, accurate and
stable tree-classifier for extreme multi-label learning. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (New York, NY, USA,
2014), KDD ’14, ACM, pp. 263–272.

[46] QIU, Y. Spectra - Sparse Eigenvalue Computation Toolkit as a
Redesigned ARPACK, 2015. https://spectralib.org.

[47] SCALEMPTM . vSMP Foundation Flash Expansion, 2018.

[48] SHAFIEE, A., NAG, A., MURALIMANOHAR, N., BALASUBRA-
MONIAN, R., STRACHAN, J. P., HU, M., WILLIAMS, R. S.,
AND SRIKUMAR, V. Isaac: A convolutional neural network ac-
celerator with in-situ analog arithmetic in crossbars. In Proceed-
ings of the 43rd International Symposium on Computer Architec-
ture (Piscataway, NJ, USA, 2016), ISCA ’16, IEEE Press, pp. 14–
26.

[49] SHUN, J., AND BLELLOCH, G. E. Ligra: A lightweight graph
processing framework for shared memory. In Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (New York, NY, USA, 2013), PPoPP ’13,
ACM, pp. 135–146.

[50] SHUN, J., ROOSTA-KHORASANI, F., FOUNTOULAKIS, K.,
AND MAHONEY, M. W. Parallel local graph clustering. Proc.
VLDB Endow. 9, 12 (Aug. 2016), 1041–1052.

[51] SIMHADRI, H. V. Svd and importance sampling-based algo-
rithms for large scale topic modeling. https://github.
com/Microsoft/ISLE, 2017.

[52] SORENSEN, D. C. Implicit application of polynomial filters in
a k-step arnoldi method. SIAM Journal on Matrix Analysis and
Applications 13, 1 (1992), 357–385.

[53] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGAR-
WAL, S., KONAR, M., EVANS, R., GRAVES, T., LOWE, J.,
SHAH, H., SETH, S., ET AL. Apache Hadoop YARN: Yet An-
other Resource Negotiator. In Proceedings of the 4th annual Sym-
posium on Cloud Computing (2013), ACM, p. 5.

[54] VITTER, J. S. External memory algorithms and data structures:
Dealing with massive data. ACM Comput. Surv. 33, 2 (June
2001), 209–271.

[55] WANG, K., ANGSTADT, K., BO, C., BRUNELLE, N., SADRE-
DINI, E., TRACY, II, T., WADDEN, J., STAN, M., AND
SKADRON, K. An overview of micron’s automata processor. In
Proceedings of the Eleventh IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis
(New York, NY, USA, 2016), CODES ’16, ACM, pp. 14:1–14:3.

[56] WEIMER, M., CHEN, Y., CHUN, B.-G., CONDIE, T., CURINO,
C., DOUGLAS, C., LEE, Y., MAJESTRO, T., MALKHI, D.,
MATUSEVYCH, S., ET AL. Reef: Retainable evaluator execu-
tion framework. In Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data (2015), ACM,
pp. 1343–1355.

[57] XIANYI, Z. Openblas, 2017.

[58] XING, E. P., HO, Q., DAI, W., KIM, J.-K., WEI, J., LEE, S.,
ZHENG, X., XIE, P., KUMAR, A., AND YU, Y. Petuum: A
new platform for distributed machine learning on big data. In
Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (New York, NY, USA,
2015), KDD ’15, ACM, pp. 1335–1344.

[59] YUAN, J., GAO, F., HO, Q., DAI, W., WEI, J., ZHENG, X.,
XING, E. P., LIU, T.-Y., AND MA, W.-Y. Lightlda: Big topic
models on modest computer clusters. In Proceedings of the 24th
International Conference on World Wide Web (Republic and Can-
ton of Geneva, Switzerland, 2015), WWW ’15, International
World Wide Web Conferences Steering Committee, pp. 1351–
1361.

[60] YUT, L., ZHANG, C., SHAO, Y., AND CUI, B. Lda*: A robust
and large-scale topic modeling system. Proc. VLDB Endow. 10,
11 (Aug. 2017), 1406–1417.

[61] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Spark: Cluster computing with
working sets. In Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing (Berkeley, CA, USA, 2010),
HotCloud’10, USENIX Association, pp. 10–10.

[62] ZHENG, Y., KAMIL, A., DRISCOLL, M. B., SHAN, H., AND
YELICK, K. Upc++: A pgas extension for c++. In Proceedings of
the 2014 IEEE 28th International Parallel and Distributed Pro-
cessing Symposium (Washington, DC, USA, 2014), IPDPS ’14,
IEEE Computer Society, pp. 1105–1114.

[63] ZHOU, Y., AND SAAD, Y. Block Krylov–Schur method for large
symmetric eigenvalue problems. Numerical Algorithms 47, 4
(Apr 2008), 341–359.

14

