
ARcadia: A Rapid Prototyping Platform for Real-time
Tangible Interfaces

Annie Kelly
R. Benjamin Shapiro

University of Colorado Boulder
Boulder, CO

annie.kelly@colorado.edu
ben.shapiro@colorado.edu

Jonathan de Halleux
Thomas Ball

Microsoft Research
Redmond, WA

jhalleux@microsoft.com
tball@microsoft.com

ABSTRACT
Paper-based fabrication techniques offer powerful opportu-
nities to prototype new technological interfaces. Typically,
paper-based interfaces are either static mockups or require
integration with sensors to provide real-time interactivity. The
latter can be challenging and expensive, requiring knowledge
of electronics, programming, and sensing. But what if com-
puter vision could be combined with prototyping domain-
aware programming tools to support the rapid construction
of interactive, paper-based tangible interfaces? We designed
a toolkit called ARcadia that allows for rapid, low-cost pro-
totyping of TUIs that only requires access to a webcam, a
web browser, and paper. ARcadia brings paper prototypes to
life through the use of marker based augmented reality (AR).
Users create mappings between real-world tangible objects
and different UI elements. After a crafting and programming
phase, all subsequent interactions take place with the tangi-
ble objects. We evaluated ARcadia in a workshop with 120
teenage girls and found that tangible AR technologies can
empower novice technology designers to rapidly construct and
iterate on their ideas.

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User Inter-
faces;
H.5.1. Information interfaces and presentation: Multimedia
Information Systems – Artificial, augmented, and virtual reali-
ties

Author Keywords
Tangible user interfaces; real-time interactivity; augmented
reality; paper prototyping; block-based programming.

INTRODUCTION
Paper prototyping is a commonly used method employed by
designers and developers in the building of user-centered in-
terfaces and applications. This practice is advantageous for
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’18, Apr 21–26, 2018, Montréal, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: https://doi.org/10.1145/3173574.3173983

designers because it is a simple, low-cost technique for iter-
ative usability testing. However, paper-based techniques are
best suited for prototyping static mockups of 2D Graphical
User Interfaces (GUIs); these methods do not easily allow
for the prototyping of real-time, tangible interactive systems.
Transforming paper prototypes into live, interactive tangibles
typically involves integrating electronic sensors with craft or
other fabrication technologies, and authoring software to work
with those sensors and integrate their data with the rest of a
prototype software system. This approach is typically chal-
lenging, time-consuming, expensive, and requires working
with electronics and programming. While there are available
programming and electronics toolkits targeted towards makers
and avid DIYers, these products come with their own limi-
tations. These toolkits are often expensive; consumers may
need to purchase a microcontroller or single-board computer,
and also purchase compatible sensors [17]. There are some
less expensive solutions such as Arduino, but they require
more prerequisite knowledge of hardware and software such
as circuitry, and programming real-time sensor interactivity.
The complexity of these tools, and the amount of engineering
effort that they demand for productive use, may also make
repeated design iteration prohibitively expensive.

Recently, researchers have been adopting AR techniques in
order to address some of the shortcomings of available proto-
typing toolkits [8] [6] [9] [13] [10]. One of the key elements
of Augmented Reality is that computer generated graphics and
sounds are overlaid onto the physical world, or a represen-
tation of the physical world. This can be achieved by using
projection mapping, creating composite videos of reality with
graphics superimposed, and other techniques. Development of
AR applications has become increasingly popular in gaming,
entertainment, artistic performances, and education. Although
AR is becoming more ubiquitous, the development of these ap-
plications still requires the work of experienced programmers
and artists. Developers commonly program AR applications
using 3D gaming engines such as Unity or Unreal, and then
deploy these applications across desktops, mobile phones, and
other platforms. Artists working on AR applications work in
the realm of 3D graphics which typically requires knowledge
of advanced topics such as the graphics/rendering pipeline,
3D modeling, materials, complex mathematical transforma-
tions, animation, and more. These prerequisites can make it
intimidating and nearly impossible for inexperienced software

https://doi.org/10.1145/3173574.3173983

developers to incorporate the affordances of AR into their
paper prototyping practices.

Currently, there are limited solutions for beginners or non-
programmers who would like to work with AR. A few re-
cent frameworks such as Google’s ARCore [7] and Apple‘s
ARKit [2] can make it easier for developers to create their
own mobile, AR applications. However, these frameworks are
still targeted towards developers that have substantial software
development knowledge. These frameworks are not as useful
for beginner developers who would like to use AR to incor-
porate real-time interactivity into their paper-based interfaces.
In addition, these toolkits typically do not provide an API for
enabling the use of physical and tangible objects to alter the
state of the AR application; instead, they are focused on de-
signing applications where users interact with a mobile device
to enact changes on overlaid graphics on a real-time video
feed, offering little to no interaction with tangible objects in
the real world. This is because the available frameworks do
not include mechanisms for developers to define event-based
interactions with tangible objects. Consequently, it is difficult
to use current AR frameworks to create applications that link
interactions with tangible objects to changes in augmented
graphics and sounds. In addition, developers that explore non-
mobile device based AR technologies are presented with bulky
and expensive hardware that is difficult to develop for.

RELATED WORK
The inception of tangible user interface research was (and
still is) very much about representing digital information as
physical artifacts, and in effect providing users a physical way
of controlling said information beyond the classic scenario
of a user interacting with a graphical interface on a screen.
Hiroshi Ishii and the MIT Tangible Media Group’s work has
offered a vision of interfaces where "tangible bits" and "radical
atoms" unite, illuminating new paradigms for how we think
about human computer interaction [11].

Much recent work in the area of tangible user interfaces in-
vestigates the development of applications for enabling the
mixing of TUIs and GUIs without embedded electronics, i.e.
for interfaces where interactions with physical materials shape
virtual representations without the need to embed electronic
sensors within the tangibles. For example, Smart Objects [8]
uses Qualcomm’s Vuforia framework to construct mappings
between physical objects and their virtual representations on
touchscreens. When a mobile device, such as a tablet, is held
in front of the TUI, a GUI is overlaid onto different elements
of the TUI such as knobs and buttons. Initially, to program
the logic behind the TUI, the user must drag and drop certain
actions or menu items onto each of the TUI elements using
a touch screen. However, once a user has accomplished this
they can manipulate the application solely by interacting with
the TUI.

Other work investigates adding reactivity to tangible inter-
faces without the need for attaching sensors to tangible objects
through the use of a mounted depth camera, leap motion, and
projector to capture the interactions of the TUI and display the
resulting application state [6].

Horn et. al created Quetzal and Tern, two tangible program-
ming toolkits for computer science education [9]. Their ap-
proach pre-maps specific meanings to a pre-constructed set
of composable tangible blocks (e.g. a block to make a robot
move forward). Their work is more about using tangible ob-
jects to design programs, rather than creating programs to add
interactivity to tangible objects.

Prototyping AR experiences with paper materials has been
previously studied by [13] and [10]. They argue that standard
paper-based prototyping techniques for real-time interactive in-
terfaces often require copious amounts of paper or storyboards,
and do not capture the essence of the intended application.

GOALS
Our goals for ARcadia were for it to be low-cost, easy to use,
enable abstractions for common TUI elements (i.e. sliders
and knobs), enable overlaid graphics and musical output, offer
customizable mappings between fiducial markers and their
computational abstractions, and enable real-time interactivity
with the tangible elements. We decided to support the over-
laying of graphics onto the live video feed of the tangible
interface to better indicate to users which fiducial markers are
“live” (i.e. which markers are currently being tracked by the
system), and to help represent the state of controller abstrac-
tions like sliders, knobs, and buttons. In addition, we wanted
users to program their prototypes in a web browser using a
block-based programming language to better support novice
programmers.

DESIGN
For the initial design of our application we decided to focus
on the use case of building real-time musical controllers.

With our goals and use-case in mind we designed ARcadia to
support these primary features:

• Customizable declarative mappings of fiducial markers to
common user interface elements (e.g. buttons, sliders)

• Real-time interactivity using an event-based programming
architecture

• Ability to utilize low-cost construction materials

• Novice-friendly programming

• Built-in programming abstractions of common TUI ele-
ments such as sliders and knobs

• No need for specialized hardware

• Real-time music and 3D AR overlays generated in the
browser

Consider the following hypothetical scenario of a musician
named Carrie who prototypes her own tangible user interface.

Carrie would like to prototype her own disc jockey (DJ) table
interface for a musical performance. She wants her DJ table
to contain a wheel that she can rotate in order to change the
speed of the musical track that is playing. Carrie would also
like to have three buttons on her DJ table that she can use to
toggle different synthesizer effects on and off: distortion, delay,

Figure 1. A screenshot of the ARcadia programming editor [1]. The pro-
gram on the right side of the editor corresponds to real-time mappings
between fiducial markers and different computational abstracts. In this
case, when the fiducial marker defined in the program is detected by the
camera it will display a purple background with the text "hi!" overlaid
on top. In addition, when the marker is "hidden" (i.e. the application
loses tracking of the marker) the browser will play a kick drum sample,
and when the marker is "visible" (i.e. tracking of the marker is resumed)
the browser will play a snare drum sample.

and chorus. In addition, she would like to have a vertical
slider that she can interact with to adjust the volume of her
music. She needs all of these features to work in real-time
since the intended use of her project is a musical performance.
Carrie is a beginner programmer and does not want to spend
a lot of money to prototype her project as she is worried that
she may need to build several prototypes before she finds one
that suits her needs. She decides to use ARcadia so that she
can simply use her laptop, webcam, paper, and cardboard.

All of ARcadia runs inside a web browser. The fiducial marker
tracking system only requires the browser’s access to real-time
camera data (using the HTML5 features for accessing desktop
or mobile devices’ cameras). Therefore, users do not require
sensors or other types of electronics to build their prototypes;
all they need is a computer equipped with at least one camera
and some basic office supplies. Designers using ARcadia also
program their interfaces within the browser. Once completed,
users interact with ARcadia projects in the physical world,
through manipulation of the paper-based tangible interface.
It is these features of ARcadia that enable Carrie to begin
prototyping her interface with low-cost.

Carrie prepares her materials for her project. She prints out a
sheet of paper with images of seven unique fiducial markers.
She cuts them out in preparation to eventually glue them to her
DJ table. She cuts out a roughly 12" x 8" piece of cardboard
to use for her table. She then cuts out a cardboard circle to be
used for her wheel.

Designers can prepare their ARcadia materials using a few
different methods. They can print out several different marker
images, cut them out, and then glue them onto cardboard for
extra stability. Another option is to hand-draw the markers
using a thick black pen (or any color as long as the contrast
between the marker and the background is high enough). In
this case, Carrie chooses to print out her markers.

Figure 2. A cardboard prototype of a DJ table. The three fiducial mark-
ers in the upper right section correspond to toggle buttons that map to
different musical effects, the marker on the wheel maps its rotation to
the tempo of the music track that is playing, and the three markers on
the left side make up a slider element that controls the volume of the
music.

Now that Carrie has prepared her construction materials, she
begins to assemble her DJ table. She attaches the wheel to the
cardboard table using a thumb tack so that it can move freely
when she spins it. She then glues one of her fiducial markers
onto the wheel. Then, Carrie glues three more markers onto
the table that she intends to use as her toggle buttons. Finally,
she takes on the more complicated task of building her slider
mechanism. She straightens out a paper clip and attaches a
marker to it such that it can slide freely up and down along
the clip. She then places one marker at the top of the paper
clip, and another at the bottom. Carrie has now completed the
physical construction of her prototype using paper, cardboard,
and other commonly used office supplies. The cardboard and
paper prototype of the DJ table can be seen in figure 2.

In our application, we wanted designers to be able to easily
construct TUIs and set them up anywhere. In addition, we
wanted the tangible prototypes to be as low-cost as possible.
In Carrie’s case, she already had access to a laptop with a
compatible web browser and a camera, which is the most
expensive hardware necessary to use ARcadia.

Drawing on Ishii and Ullmer’s work we can understand AR-
cadia in terms of “bits and atoms,” where “atoms” are the
physical artifacts users interact with and “bits” are the compu-
tational abstractions the atoms map to [11]. Fiducial markers
in the real world serve as anchors for ARcadia’s representa-
tional bridge between atoms and bits.

Carrie now needs to set up her camera in order to enable track-
ing of the fiducial markers via the browser’s video capture.
Carrie has a tablet equipped with two webcams: a front-facing
camera and a rear-facing camera. She decides to use her rear-
facing camera so that she can interact with the DJ table with
it behind her laptop (figure 6).

In order to enable the image tracking of markers, the designer
and/or user must have access to a camera. The camera can

be embedded into a laptop, an external camera attached to a
computer, a camera in a mobile device, etc. We wanted our
system to be able to render 3D graphics atop the fiducial mark-
ers so we opted to use cameras and video feeds as opposed to
projection like that of Funk and Korn’s work [6].

Figure 3. Code that is mapped to one of the fiducial marker buttons
from the DJ table prototype. When the button (i.e. the fiducial marker)
is covered by the user’s hand and is "hidden" the distortion effect on the
music will be removed, when the button is "visible" to the camera again
the distortion effect will be re-added to the music.

Figure 4. This code snippet illustrates the wheel and slider elements of
the DJ table prototype. The forever block defines logic that will run
repeatedly. This allows for the real-time interactivity of the DJ table
because the values of the slider and wheel will be continuously mapped
to the volume and tempo values respectively.

With Carrie’s DJ table constructed and her camera rig set
up, she now begins to program the interactive elements of her
project. First, Carrie starts by programming the mappings for
her three toggle buttons. She uses the on marker hidden
do and on marker visible do blocks for each of the three
buttons. Inside of each of these blocks she also adds code
specifying whether to add or remove a particular musical ef-
fect. Figure 3 shows the code Carrie programs for adding
and removing distortion based on the visibility of marker 0,
i.e. one of the effects toggle buttons for her DJ table. After
she finishes programming her buttons, she moves on to pro-
gram her wheel/knob. As mentioned before, Carrie wants her
wheel to control the tempo, or speed, or her music that is
playing. To achieve this, Carrie uses a few blocks, mainly
the map rotation and set tempo blocks. She decides to

bound her rotation mapping between the values 80 and 120
because she wants the tempo to be 80 beats per minute (bpm)
at minimum, and 120 bpm at maximum. She puts this code
inside of a forever block so that the program continuously
maps the wheel’s rotation to the music’s tempo (figure 4). Fi-
nally, Carrie needs to program the functionality of her volume
slider. She wants the interactivity to work such that she can
control the volume between the values 0 and 100 by moving it
up and down. Carrie uses both the set volume and slider
blocks. Within the slider block Carrie has to map which fidu-
cial markers correspond to which aspects of the slider. She
maps marker 5 to serve as the bottom of the slider and marker
7 to represent the top of the slider. She then maps marker 10
to act as the movable element of the slider, meaning that she
will move marker 10 up (towards marker 7) when she wants
the volume to be higher, and she will move marker 10 down
(towards marker 5) when she wants the volume to be lower.
She also puts this logic inside of her forever loop (figure 4).

Our approach allows the user to select the logic and events
mappings that different interactions with TUI elements will
represent. This is in contrast to Horn’s work we discussed
earlier where the tangible block objects contain pre-mapped
logic for different actions that a robot could perform [9].

As Carrie is programming the mappings of her interface, we
see the parallels between the UI elements of her prototype and
the common UI elements of buttons, sliders, and knobs. For
example, her use of altering a marker’s state between "hidden"
and "visible" in order to turn on or off a particular musical
effect parallels a typical interaction with a touch button on a
user interface. Physical buttons normally have binary positions
they can be in, whether it is a push button or a toggle button.
Furthermore, the functionality of her wheel (or knob) and
slider that use markers’ positions and rotations to map to
different output values mimics how a user would typically
interact with those similar elements on a standard UI (figure
5).

Now, Carrie can begin interacting with her prototype.

When Carrie is finished building and programming her proto-
type, she is then able to interact with it. In this scenario, she is
both the designer and the user (figure 6).

A real-time feed of camera data is displayed to the left of
users’ code, and the effects of users’ programs (i.e. mapping
3D objects to fiducial markers detected in the camera feed)
are overlaid on this video. As users make changes to their
code, the code executed by the browser updates in real-time,
enabling users to see and/or hear the effects of their program
modifications immediately. This allows for a very rapid design
and development loop.

IMPLEMENTATION DETAILS
ARcadia is built on Microsoft MakeCode’s open-source frame-
work for developing in-browser programming editors for be-
ginners where their code can be executed directly within the
browser [14]. MakeCode has already been used to create edi-
tors for the BBC Micro:bit, the Adafruit Circuit Playground
Express, Minecraft, and several other products [15].

Figure 5. This is a screenshot of the video feed view when a designer
declares a slider construct. The fiducial marker at the top of the photo
(marker 2) represents the maximum output that the slider can go to. The
fiducial marker at the bottom of the photo (marker 0) represents the
minimum output the slider can go to. The marker in the middle of the
photo (marker 1) is the one the user would typically interact with; she/he
would move it closer towards the bottom marker to create a smaller out-
put value, and in contrast would move it towards the top marker to cre-
ate a larger output value. The middle part of the slider gets mapped to
a value between 0.0 and 1.0 based on its distance between the two outer
markers.

ARcadia also uses the AR.js [5] and three.js [4] libraries for
rendering 3D graphics in the browser, and the jsARToolkit [3]
for image-recognition and tracking of environments and sev-
eral kinds of fiducial markers. AR.js provides a simplified API
for initializing different kinds of fiducial markers for tracking
from a user‘s webcam or mobile phone camera. In addition,
ARcadia uses the Tone.js [18] library for generating real-time
audio in the browser.

The system uses ARToolkit’s 3x3 barcode matrices to distin-
guish between different fiducial markers, and ARcadia itself
has built-in support for recognizing 16 of these unique markers.
Users can distinguish between the different fiducial markers
solely by the shape, or they can distinguish the markers by
numbers 0 to 15. In the augmented workplace system, users
can define any physical object as part of the TUI [6], however
since our entire system runs in the web-browser we wanted
to limit the amount of processing power needed for real-time

Figure 6. This diagram demonstrates the two roles an ARcadia user
might perform: A. designer and B. user. The designer is the one who
constructs the physical prototype and programs the different mappings,
the user is the one who ultimately interacts with the prototype after it is
built.

interaction by limiting users to 16 different barcode fiducial
markers.

The framework is event-driven and is based on relationships
between atoms (i.e. fiducial markers attached to craft con-
struction materials); whether it is the relationship of one atom
to another, or the relationship of an atom to the camera. In
addition, ARcadia has built-in functions for transforming phys-
ical relationships between atoms to classical UI elements like
sliders and knobs.

EVALUATION
We ran two 90 minute ARcadia workshops with 60 female
middle school and high school students in each session. The
students were enrolled in a summer Microsoft workshop called
DigiGirlz whose goal is to provide opportunities to young
women to learn about careers in technology and participate in
some hands-on programming workshops. Overall, the partici-
pants had limited programming experience, and for some this
workshop was the first time they had experienced program-
ming.

Figure 7. An AR piano for playing “Happy Birthday” developed by two
high school students who attended the DigiGirlz workshop. The differ-
ent notes of the song can be played by covering a specific marker and
then uncovering it (i.e. triggering an on visible event), offering button-
like semantics. The different markers map to the notes labeled beneath
them.

Figure 8. An example of participants incorporating their own aesthetic
choices into their fiducial markers.

The workshops
Before each workshop began we placed an assortment of fidu-
cial markers, cardboard, pens, glue, scissors, and other craft
materials in the center of each table. Around 10 students sat at
each table and each one received a laptop equipped with two
cameras (both front and rear-facing webcams). The structure
of the groups varied from participants working individually to
participants working together in larger groups.

At the start of each session we gave a simple demonstration of
how to set up a basic interaction with a fiducial marker. We
demonstrated this by writing a short program that let us trigger
different drum samples by alternating between eclipsing and
revealing the marker to the camera; essentially, when a user
covers the marker with her hand the browser plays a kick drum
sample, and when the user removes her hand (thus revealing
the marker to the camera) the browser plays a snare drum sam-
ple. We chose to do this as our demo because it demonstrates
the event-driven nature of interacting with the markers in a
small amount of code. Because we chose to start the sessions
off with this demo, most of the groups created simple, button-
based music controller prototypes — a limitation we would
like to address in future workshops. In the future we plan to
offer participants time to explore the ARcadia editor before
we provide examples, and we plan to have more complex ex-
amples to show the students (i.e. examples that incorporate
sliders and knobs instead of only buttons).

A popular project that students created was an AR piano.
These prototypes typically only used button abstractions where
events were triggered by hiding and revealing fiducial markers
with their hands. One pair created an AR piano that contained
only the notes needed to play Happy Birthday transposed to
the key of C (figure 7). They placed sticky notes on their
piano that explained how to use it, and they wrote the corre-
sponding notes for each marker. The code they wrote worked
similar to the code we provided in our demo, i.e. on marker
hidden play C note and so on for the rest of the notes on
their piano.

A problem that the participants often had was deciding whether
to use their front or rear-facing camera. Those who used front-

facing cameras typically closed their laptops at a sharp angle
so that the camera could see the piano on their table, which
prevented them from being able to look at the screen while
they played it. In future workshops we plan to provide external
webcams and camera stands to participants to make it easier
to prototype table-top interfaces.

During the workshops we found that participants cared about
the aesthetics of the fiducial markers they worked with (fig-
ure 8) Some girls colored in different parts of their fiducial
markers. For example, one group decided to color in the white
part of their marker dark blue, but upon realizing that there
was not enough contrast for the marker to be tracked by the
camera they decided to use red to color in their other markers.
In addition, another group used a marker that looked like an
equals sign and added a mouth to it to make it look like a
smiley face (see top right in figure 8). One participant wrote
in her feedback, “I wish you could put blocks ON YOUR
FACE!” We did in fact see one group experimenting with tap-
ing fiducial markers on their foreheads, and we have recently
been experimenting with temporary tattoos to determine fun
and feasible ways to use wearable fiducial markers to control
ARcadia.

The lack of physical working space provided to participants
led many participants to build basic projects where they would
hold up different fiducial markers to the front-facing webcam
that would make different sounds, show different shapes, and
show different colors. This is in contrast to the table-top style
interfaces we thought more participants would construct. One
participant created a project where she could use a fiducial
marker as a paintbrush, tracing lines on the screen as she
moved her "brush" relative to the camera. She used the rear-
facing camera on her laptop and attached a fiducial marker to
a paper clip so that she could augment the world behind her
laptop by drawing pictures onto it. Many of these kinds of
projects were fun and creative, but did not exactly capture the
types of musical, table-top interfaces we thought participants
would focus on.

Participant feedback
Throughout the workshops, we asked the students to anony-
mously write down things that they liked about the editor,
and things that they wished the editor could do. Most of the
positive responses had to do with the ease of use, musical func-
tionality, and overall creativity that the system offers. Many
of the critical responses, i.e. the “I wish” responses, men-
tioned problems with the software itself. For example, some
girls complained about the image recognition being “spotty”,
meaning that ARcadia would occasionally flicker and lose and
regain tracking repeatedly. This is a possible limitation of
ARToolkit, or can be attributed to users accidentally eclipsing
their markers with their fingers, poor room lighting, and/or is-
sues with performance in the browser. Rendering 3D graphics
and scheduling musical events requires a lot of CPU and can
be quite demanding on the browser.

In addition, many of the students expressed a desire to use
ARcadia for more than just making music. One respondent
said she would like to see “the possibilities of augmented
reality in regular office settings,” while another mentioned she

wishes “to design my own personal game in the future.” One
respondent’s opinion that encapsulates the prior two responses
is simply, “I wish we could see other things we can do.” Future
Directions describes the work that we are doing to expand
ARcadia to be used across domains beyond simple musical
controllers, in order to “widen the walls” of the toolkit [16].

Summary of Design & Findings
We have presented the design of a low-cost, toolkit for the
rapid prototyping of real-time, interactive and tangible inter-
faces. ARcadia enables this through its built-in support for
common interface elements and semantics – buttons, sliders,
and knobs – and event-based control of system behavior and
adjustment of continuous parameters.

We have shown through our initial evaluation that ARcadia can
be used productively by novice designers and programmers
to create interactive musical prototypes in a short amount
of time. We found that the workshop participants generally
had ease in iteratively modifying their prototypes. In general,
the resulting projects that the girls built would typically take
hours and possibly days for even an experienced programmer
to create. For example, the “Happy Birthday” AR piano,
which was made over the course of 90 minutes by two first-
time programmers, would require the work of a much more
experienced developer and would still likely take much longer
to build. Although the workshops demonstrated ARcadia’s
ease of use and ability for novices to construct interactive
projects, due to space constraints and decisions we made at
the beginning of the workshops the projects remained pretty
limited in their functionality. Projects only incorporated the
use of on or off buttons and no sliders or knobs. In the future
we would like to provide an easier way for participants to
construct more complex table-top interfaces.

In addition, many of the workshop participants expressed a
desire to use ARcadia for other projects beyond simple musical
controllers.

CONTRIBUTION
The primary contribution of this work is to demonstrate how
AR technologies make it possible for designers to prototype
and construct tangible interfaces that require no embedded
electronics. Additionally, the fusion of AR technologies and
paper prototyping techniques allows for the existence of tools
that enable novice programmers and/or engineers to construct
said tangible interfaces and incorporate real-time interactivity
into their interface designs.

FUTURE DIRECTIONS
We plan to address participants’ feedback and pursue addi-
tional design ideas we have for ARcadia through additional
functionality and user-centered research.

Networked Tangible Interfaces
In order to extend ARcadia to be used across a variety of
domains we have been working on adding networking capabil-
ities to allow users to send data in and out of ARcadia between
external programs. We have completed two prototypes of net-
worked versions of ARcadia, one that utilizes Open Sound

Control (OSC) protocol to send information from ARcadia to
programs like Processing, Max/MSP, Unity, etc. For example,
we have used ARcadia to build a prototype where fiducial
markers can be used to control parameters of a synthesizer. In
addition to OSC, we have also been working on a version of
ARcadia that uses WebRTC to share data peer-to-peer with
other Microsoft MakeCode applications. For instance, we can
use ARcadia to send data to a browser-based MakeCode edi-
tor for a YouTube scrubber where different interactions with
fiducial markers control different parameters of the video like
playback rate and volume (an example of this can be seen at
[12]).

Studies
In the future we plan to conduct further evaluations of users
developing prototypes with ARcadia. In addition, we plan
to make alterations to our application based on participant
feedback from the pilot workshop with a particular focus on
improving system performance around image tracking and
audio synthesis, and also increase the creative functionality to
increase the potential scope of prototypes that can be created
with ARcadia. We also plan to improve the workshop based
on limitations we ran into in our pilot study, such as providing
external webcams, camera stands, and more working space to
participants.

ACKNOWLEDGEMENTS
We would like to thank Microsoft Research and the Microsoft
MakeCode team for their tremendous support of this project.
Thank you Richard, Sam, and Guillaume for development ad-
vice and help navigating the MakeCode framework, and thank
you Jacqueline and Abhijith for your feedback throughout the
early stages of ARcadia’s development. In addition, we thank
DigiGirlz for letting us lead an ARcadia workshop for their
group. We would also like to thank the reviewers for their
constructive feedback.

REFERENCES
1. 2017. ARcadia. https:
//laboratoryforplayfulcomputation.github.io/arcadia/.
(2017).

2. Apple. 2017. ARKit.
https://developer.apple.com/arkit/. (2017). [Online;
accessed 5-August-2017].

3. ARToolKit. 2017. Javascript ARToolKit v5.x.
https://github.com/artoolkit/jsartoolkit5. (2017).
[Online; accessed 1-September-2017].

4. Ricardo Cabello. 2017. three.js. https://threejs.org/.
(2017). [Online; accessed 21-June-2017].

5. Jerome Etienne. 2017. AR.js. https://github.com/
jeromeetienne/AR.js/blob/master/README.md. (2017).
[Online; accessed 21-June-2017].

6. Markus Funk and Oliver Korn. 2014. An Augmented
Workplace for Enabling User-Defined Tangibles.
Proceedings of the 2014 CHI Conference on Human
Factors in Computing Systems (2014), 1285–1290.

https://laboratoryforplayfulcomputation.github.io/arcadia/
https://laboratoryforplayfulcomputation.github.io/arcadia/
https://developer.apple.com/arkit/
https://github.com/artoolkit/jsartoolkit5
https://threejs.org/
https://github.com/jeromeetienne/AR.js/blob/master/README.md
https://github.com/jeromeetienne/AR.js/blob/master/README.md

7. Google. 2017. ARCore.
https://developers.google.com/ar/. (2017). [Online;
accessed 5-August-2017].

8. Valentin Heun, Shunichi Kasahara, and Pattie Maes.
2013. Smarter Objects: Using AR Technology to
Program Physical Objects and their Interactions.
Proceedings of the 2013 CHI Conference on Human
Factors in Computing Systems (2013), 2939–2942.

9. Michael S Horn and Robert J K Jacob. 2007. Designing
Tangible Programming Languages for Classroom Use.
January 2007 (2007). DOI:
http://dx.doi.org/10.1145/1226969.1227003

10. Andrew J Hunsucker and Jennifer Wang. 2017.
Augmented Reality Prototyping For Interaction Design
Students. Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (2017),
1018–1023.

11. Hiroshi Ishii and Brygg Ullmer. 1997. Tangible Bits:
Towards Seamless Interfaces Between People, Bits and
Atoms. In Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems (CHI ’97).
ACM, New York, NY, USA, 234–241. DOI:
http://dx.doi.org/10.1145/258549.258715

12. Annie Kelly. 2017. Augmented Reality Tangible
YouTube Scrubber. https://youtu.be/pbuMtTkT1F4.
(2017).

13. Felix Lauber, Claudius Böttcher, and Andreas Butz. 2014.
PapAR: Paper Prototyping for Augmented Reality.
Automotive UI’14 (2014).

14. Microsoft. 2017a. Microsoft MakeCode.
https://github.com/Microsoft/pxt. (2017). [Online;
accessed 5-June-2017].

15. Microsoft. 2017b. Microsoft MakeCode.
https://makecode.com/about. (2017). [Online; accessed
11-June-2017].

16. Mitchel Resnick, John Maloney, Andrés
Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (Nov. 2009),
60–67. DOI:http://dx.doi.org/10.1145/1592761.1592779

17. R Benjamin Shapiro, Annie Kelly, Matthew Ahrens,
Benjamin Johnson, and Heather Politi. 2017.
BlockyTalky: Tangible Distributed Computer Music for
Youth. The Computer Music Journal. MIT Press. (2017).

18. Tonejs. 2017. Tone.js. https://tonejs.github.io/. (2017).
[Online; accessed 2-July-2017].

https://developers.google.com/ar/
http://dx.doi.org/10.1145/1226969.1227003
http://dx.doi.org/10.1145/258549.258715
https://youtu.be/pbuMtTkT1F4
https://github.com/Microsoft/pxt
https://makecode.com/about
http://dx.doi.org/10.1145/1592761.1592779
https://tonejs.github.io/

	Introduction
	Related Work
	Goals
	Design
	Implementation Details
	Evaluation
	The workshops
	Participant feedback
	Summary of Design & Findings

	Contribution
	Future Directions
	Networked Tangible Interfaces
	Studies

	Acknowledgements
	References

