

3%

=& Microsoft

(/]

%
.’/ /.//, N

Wrangling the Ghost

An Inside Story of Mitigating Speculative Execution

Side Channel Vulnerabilities

Christopher Ertl

Security Engineer, Microsoft

You've most likely heard of Spectre & Meltdown

9Ly

A new class of

hardware vulnerability

Exploring a new vulnerability class

Microsoft first learned about these issues in June, 2017 when a CPU partner notified us

MSRC kicked off our “SSIRP” incident response process to drive remediation

SSIRP drives cross-company and cross-industry response to critical security issues
Eventually mobilized hundreds of people across Microsoft in response to this issue

Disclosure date was eventually extended by 120 days due to complex nature of the mitigations
required

Advisory and security updates released January 39, 2018

Why does Microsoft care about these issues?

Because they are relevant to nearly every security boundary that software relies on

Virtualization-based isolation RUEEESEVERIEERY Affectec
Kernel-user separation Windows Affected
Process-based isolation Windows Affected
Language-based isolation Microsoft Edge & Internet Explorer Affected

EﬂClaveS Microsoft Azure, Windows Affected

Impact: an attacker with local code execution can potentially read information that is

stored in a higher privileged context

Systematization of Spectre and Meltdown

A taxonomy and framework for reasoning about speculative execution side channels

Parallelism and speculation

We usually think of programs as a recipe

- Instructions are sequentially executed one after the other
« As it turns, out this sequential approach is pretty slow

Modern high performance CPUs do many tasks at once

Instructions are put on an “assembly line” and different

Pipeline jobs are done in different stages
Superscalar Multiple instructions are executed at once

Instructions are executed as dependencies are resolved

Out-of-order execution .
and resources are available

Speculative execution Instructions are executed based on predictions

General definition of speculative execution

» Speculative execution: when the pipeline works on
information that may not be correct it a program were
executing like a recipe

« Speculative execution can consist of

» Predicted conditional logic

» Predicted instruction pointer (branch targets)
» Predicted register values

» Deferred error handling

« And so on...

Spectre and Meltdown

« Fundamental idea of Spectre & Meltdown

 Not everything is thrown away when speculative execution is unrolled
» By carefully examining things like caches, results can be reestablished
» These results may contain private data

Spectre (variant 1): conditional branches

A conditional branch can potentially mispredict, thus leading to a speculative out-of-

bounds load that feeds a second load, thus creating cache side effects based on a secret.
he attacker can train the branch to speculatively run the code.

if (untrusted index < length) { This can mispredict executing the below lines with
any value of untrusted_index

char value = buf[untrusted_index]; Loads nearly arbitrary memory
char value2 = buf2[value * 0x40]; Loads the cache as an artifact of the value

Consequence

It an attacker can find/create & execute this code in Hypervisor/Kernel/Enclave/sandbox,
they can read the memory

Spectre (variant 2): indirect branches

An indirect branch can potentially mispredict the branch target, thus leading to

speculative execution from an attacker controlled target address which could perform a
load and feed that value to a second load

0x4000: JMP RAX ; RAX = 0x5000

This can mispredict the target address, thus
speculative executing anywhere

Ox6000: MOVZX RCX, BYTE PTR [RCX] L0ads any memory at RCX
SHL RCX, 6 . . .
MOV RCX, [RDX+RCX] Multiply by 0x40 (cacheline size)
| 0oads the cache as an artifact of the value

Consequence

It attacker can find/create & execute this code in Hypervisor/Kernel/Enclave/sandbox, they
can read the memory

Meltdown (variant 3): exception deferral

Exception delivery may be deferred until instruction retirement, thus allowing data that

should be inaccessible to be speculatively forwarded onto other instructions
JESU A, [This can mispredict the target address, thus

JE Skip ot . -
MOVZX RCX, BYTE PTR [KERNEL Aappr] >P€cUlative executing anywnere

SHL RCX, 6

AOE B D2y Fetch any kernel address. Error/Roll back arrives

delayed

Multiply by 0x40 to store information in the cache

Consequence

An unprivileged user mode process can read kernel memory

Why create a taxonomy?

» Designing robust mitigations requires a systematic
approach

» Being systematic about a class of vulnerabillities requires a
taxonomy

Building a taxonomy

4 steps are required of an attacker to successtully launch any
speculative side channel attack

__________Reguirement ____Taxonomy

1. Gaining speculation Speculation primitive

SpéCUlathn 2. Maintaining speculation ~ Windowing gadget
. 3. Persisting the results Disclosure gadget
Side channel 4. Observing the results Disclosure primitive

If any of these 4 components are not present, there is no speculative side channel

Gaining speculation: speculation primitives

To have a speculative side channel, the CPU must be put in a situation where
it will speculate

Conditional branches are predicted on past behavior, thus we can train

Spectre variant 1 therm

Indirect branches can be trained in place like conditional branches, or
Spectre variant 2 since not all bits are used for prediction, they can be trained in an
attacker controlled context

The CPU may defer exceptions and may speculatively forward data on
to dependent instructions

Meltdown

Maintaining speculation: windowing gadgets

An attacker can execute code speculatively

» Starting with entering speculation
 Ending with CPU detecting and rectifying mis-speculation

To win this race condition, an attacker needs a windowing
gadget

» Allows for out-of-order execution
 Can occur naturally in code

- Can sometimes be engineered by an attacker
« Window size is determined by hardware, dependencies and resource congestion

Side channel basics

Str

Siqe chan

nels typically contain 3 phases of which 2 are
uirec

ctly rec

Priming Getting the system into a known initial state (e.g. flushing cache lines)

Triggering Actively or passively causing the victim to execute

Observing Observe if state is changed and thereby infer information from this

Persisting results: disclosure gadgets

« When speculation is rolled back information is lost unless exfiltrated by side
channel

» Thus, an attacker needs to write to a side channel within the speculative
window

« Example: speculative execution changes the cache state

Observing the results: disclosure primitives

» Finally the attacker needs to read the results from the side channel
« Example: check if a cache line was loaded

The four components of speculation techniques

Speculation

primitive

Conditional branch
misprediction

Indirect branch
misprediction

Exception delivery

Disclosure

if (n < *p) {
// can speculate when n >= *p
}

// can speculate wrong branch target
(*FuncPtr)();

// may do permission check at
// retirement
value = *p;

primitive

FLUSH+RELOAD

EVICT+TIME

PRIME+PROBE

Priming phase: flush candidate cache lines

Trigger phase: cache line is loaded based off secret
Observing phase: load candidate cache lines, fastest
access may be signal

Priming phase: evict congruent cache line

Trigger phase: cache line is loaded based off secret
Observing phase: measure time of operation, slowest
operation may be signal

Priming phase: load candidate cache lines
Triggering phase: cache set is evicted based off secret

Observing phase: load candidate cache lines, slowest
Accece mav be cianal

Windowing gadget

// *p
Non-cached load

value
Dependency chain of e
loads
Dependency chain of ALU zziag
operations vaue

not present in cache

= *p;

= ********p;

+= 10;
+= 10;
+= 10;

Disclosure gadget | Example

One level of memory indirection, if (x < y)
out-of-bounds return buf[x];

if (x <y) {
Two levels of memory indirection, n = buf[x];
out-of-bounds return buf2[n];

}

if (x <y) {

*pny = .

Three levels of memory indirection, E::: bp= *El.“c[n]’
out-of-bounds return buf2[b];

}

Relevance to software security models

Attack category | Attack scenario branch
misprediction

Conditional Indirect branch

misprediction Exception delivery

Hypervisor-to-

guest

Inter-VM Host-to-guest
Guest-to-guest
Kernel-to-user

Intra-OS Process-to-process
Intra-process

Enclave Enclave-to-any

Legend: | Applicable Not applicable

Mitigating speculative execution side
channel vulnerabilities

Using our taxonomy to help mitigate Spectre, Meltdown, and speculative execution side
channels as a whole

Defining our mitigation tactics

The systematization we developed provides the basis for defining our mitigation tactics

Prevent speculation Prevent a speculation primitive from executing a disclosure
techniques gadget

Remove sensitive content Ensure there is no sensitive information in memory that
from memory could be read by a speculation technique

Remove observation Remove channels for communicating information via
channels speculation techniques

No silver bullet; a combination of software, hardware, and scenario-specific mitigations

Preventing speculation technigues

Goal: prevent a speculation primitive from executing a disclosure gadget

\Speculation \Windowing \ Disclosure Disclosure
’ primitive gadget gadget primitive

Speculation barrier via execution serializing instruction

Speculative execution can be prevented through the use of a serializing instruction

Explicit serialization Implicit serialization

if (untrusted index < length) {
~mm_lfence(); // barrier for speculation
char value = buf[untrusted index];
char value2 = buf2[value * 0x40];

if (untrusted index < length) {
// cmp untrusted index, length
// Xor reg,reg
// cmovae untrusted index, reg
char value = buf[untrusted index];
char value2 = buf2[value * 0x40];

Architectural instruction that acts as a speculation barrier

LFENCE on AMD/Intel and CSDB on ARM

Force safe behavior in the speculative path by bounding array
indices

CMOV-based implicit serialization is safe on existing CPUs

* Microsoft Visual C++ compiler supports /Qspectre which has narrow heuristics to find and instrument variant 1
e Microsoft Edge and Internet Explorer JavaScript engines have code generation mitigations for variant 1

Security domain CPU core isolation

CPUs typically store prediction state in per-core or per-SMT caches

Isolating workloads to distinct cores can prevent colliding of prediction state

ot NN | Coec MNEEEN | coe: [EE

SMT 1 SMT 2 SMT 1 SMT 2 SMT 1 SMT 2

Assigned to host VM @elllle NIlellaile iR I-I Assigned to guest VM #1

Microsoft Hyper-V supports minimum root (“minroot”) and CPU groups which can isolate VMs to cores

https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-minroot-2016
https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-cpugroups

Indirect branch speculation barrier on demand & mode change

Cross-mode attacks on indirect branch misprediction can be mitigated with new CPU features

Intel, AMD, and ARM have created or defined interfaces to manage indirect branch predictions

Indirect Branch Restricted Indirect Branch Prediction Single-Thread Indirect Prediction
Speculation (IBRS) Barrier (IBPB) Barrier (STIBP)

When IBRS=1, less-privileged When IBPB=1, indirect branch L
modes cannot influence indirect prediction state is flushed (BTB When STIBP=1, sioling SMTs

branch predictions of higher- and RSB) cannot milEnEs one a.nother >
. indirect branch predictions
privileged modes

Kernel and/or hypervisor can
. . . o Processes can request that the

Kernel and/or hypervisor can set write this when switching .
cernel set this to prevent cross-

IBRS=1 on entry to prevent less process or VM contexts to soEaes SVT-hecad att=dha o

Pravilggech Fags bR A8FHBGs RUBYBRLIREREET BFKESE SHIFDI (1BC) fafieseron ! SREMRN
thempc is enabled by default on WinddW98sieMM ttagkSibled by default on Windows Server
Intel and AMD have released microcode updates

Non-speculated or safely-speculated indirect branches

Some indirect branches are not predicted or can be safely predicted

RDTSCP or LFENCE before : :
FAR JMP and FAR RET are not i direct IMP is safe on AMD Indirect calls and jumps can be

predicted on Intel CPUs CPUs transformed into “retpolines”

Indirect calls and jumps can be Indirect calls and jumps can be Google proposed “retpoline”

transformed into FAR JMP on transformed into RDTSCP or which transforms indirect calls
Intel CPUs LFENCE before indirect JMP on and jumps into “retpoline” stubs
AMD CPUs

Hyper-V hypervisor transforms all indirect calls to FAR JMP on Intel and RDTSCP-before-JMP on AMD
Windows kernel is exploring a hybrid retpoline + IBC model as a possible way to help improve performance
These solutions require rebuilding the world which limits viable use cases

Removing sensitive content from memaory

oal: ensure there is no sensitive information in memory that could be read by a speculation technique

Speculation Windowing \ Disclosure Disclosure
primitive gadget gadget primitive

Hypervisor address space segregation

Hyper-V's hypervisor historically mapped all physical memory into HV address space

Removing the physical map helps eliminate cross-VM secrets that may be subject to disclosure

Hypervisor Virtual

Address Space Physical Memory

Physical Map “

Hyper-V hypervisor now maps guest physical memory on-demand, limiting physical memory that is mapped

Split user and kernel page tables (KVA Shadow)

Variant 3 was exploitable because kernel memory was part of the address space even in user mode
KVA Shadow creates split kernel/user page tables which makes kernel memory inaccessible in user mode

Without KVA Shadow With KVA Shadow

User mode and kernel mode share the same page tables User mode and kernel mode have their own page directory base
CR3 swaps between them on kernel entry and exit

User page directory base Kernel page directory base User page directory base Kernel page directory base

User PTEs User PTEs User PTEs User PTEs

Only transition
kernel PTEs

Kernel PTEs Kernel PTEs Kernel PTEs

« All supported versions of Windows support KVA Shadow
« KVA Shadow is enabled by default on Windows Client and is disabled by default on Windows Server

Removing observation channels

oal: remove channels for communicating information via speculation techniques

Speculation Windowing Disclosure \ Disclosure
primitive gadget gadget ’ primitive

Map guest memory as UC in root EPT

FLUSH+RELOAD relies on shared cache lines for host-to-guest disclosure

Hypervisors can map guest physical memory as UC into the root partition’s extended page tables (EPT)

Speculative
load of VA X

Root Virtual Address
Space

Root Physical Address Space System Physical Memory Guest Physical Address Space
(EPT) (EPT)

\V

SPA Z

GPA W (mapped WB)

GPA'Y (mapped UQC)

UC mapping into root prevents speculative load of a shared cache line, generically mitigating host-to-guest FLUSH+RELOAD

DO Not share physical pages across guests

FLUSH+RELOAD relies on shared cache lines for guest-to-guest attacks

Hypervisor can ensure that physical memory is not shared between guests

Guest #1 Physical Address System Physical Memory Guest #2 Physical Address
Space (EPT) Space (EPT)

SPA Z

Absence of shared physical pages between guests provides a mitigation for guest-to-guest FLUSH+RELOAD

Decrease browser timer precision

Speculative execution side channels rely on precise timing for high bandwidth signal detection

Browsers can reduce the precision of timers that are visible to JavaScript that attackers specify

Dilation Algorithm

Display Refresh
60hz Callbacks
Hardware Timestamp

HTML Callbacks
Variable Frequency
Hardware Signal

Media Playback
ims Resolution
Hardware Timestamp

CPU Counter
Realtime Cycle Count
Hardware Signal

Two Display Frames (33.4ms)

« Microsoft Edge and Internet Explorer both decrease timer precision and add random jitter

Closing remarks

Mitigation relationship to attack scenarios & primitives

Mitigation Tactic

Attack category | Speculation primitive

Mitigation Name Conditional branch |Indirect branch
misprediction misprediction

Inter-VM Intra-OS Enclave

Prevent speculation techniques

Exception
delivery

Speculation barrier via execution serializing
instruction

Security domain CPU core isolation

Indirect branch speculation barrier on demand
and mode change

Non-speculated or safely-speculated indirect
branches

Remove sensitive content from
memory

Hypervisor address space segregation

Split user and kernel page tables ("KVA
Shadow”)

Remove observation channels

Map guest memory as noncacheable in root
extended page tables

Do not share physical pages across guests

Decrease browser timer precision

Legend: _ Not applicable

How should developers think about each variant?

Variant Conceptualization

This Is a hardware vulnerability class that requires

Variant 1 (CVE-2017-5753) software changes in order to mitigate.

No universal mitigation for this variant exists today.

This Is a hardware vulnerability that can be mitigated

vaniant ¢ (CVE=2017-5715) through a combination of OS and firmware changes.

This is a hardware vulnerability that can be mitigated
Variant 3 (CVE-2017-5754) through OS changes to create split user/kernel page
tables.

New variants & mitigations

Since January, research interest has increased & new variants have been identified

Disclose Variant Speculation primitive Mitigation
d category

» Disable speculative store

Speculative Store Memory access L
May, . _ bypass optimization
2018 Sypass MIPIEEIHe e Speculation barrier prior to

(CVE-2018-3639) (new category)

unsafe store

June, Lazy FP State Restore Exception delivery » Use eager restore of FP state
2018 (CVE-2018-3665) (same as Meltdown) (rather than lazy restore)
July, Bounds Check Bypass Snci)sndrgg)iggloi)ranch » Speculation barrier as
2018 Store P required

(same as Spectre variant 1)

Mg expect speculative executiofy3RtERENPIERD be an ongoipg sukiss baffassarch

5078 NetSpectre rﬁmspredmtpn .(sla\lme as eauired

Resources

Microsoft Speculative Execution Side Channel Bounty

- https://aka.ms/sescbounty

C++ developer guidance for speculative execution side channels

- https://aka.ms/sescdevguide

Technical analysis

- https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-
vulnerabilities/

« https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/

- https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-
2018-3639/

https://aka.ms/sescbounty
https://aka.ms/sescdevguide
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/

A huge THANK YOU to:

« The security researchers who identified
these issues

» Everyone in the industry who worked
collaboratively to help protect the world

e The many individuals & teams at
Microsoft who helped mitigate

T h a ﬂ k yO u I these issues ©

Acknowledgements

Yuwval Yarom of The Unn
Additional information on t

Anders Fogh of GDATA Advanced Analytics

=& Microsoft

© 2018 Microsoft. All rights reserved. Microsoft, Windows and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft
Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date

of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

© Copyright Microsoft Corporation. All rights reserved.

	Research�Faculty Summit 2018
	Wrangling the Ghost�An Inside Story of Mitigating Speculative Execution �Side Channel Vulnerabilities
	You’ve most likely heard of Spectre & Meltdown
	Exploring a new vulnerability class
	Why does Microsoft care about these issues?
	Systematization of Spectre and Meltdown��A taxonomy and framework for reasoning about speculative execution side channels
	Parallelism and speculation
	General definition of speculative execution
	Spectre and Meltdown
	Spectre (variant 1): conditional branches
	Spectre (variant 2): indirect branches
	Meltdown (variant 3): exception deferral
	Why create a taxonomy?
	Building a taxonomy
	Gaining speculation: speculation primitives
	Maintaining speculation: windowing gadgets
	Side channel basics
	Persisting results: disclosure gadgets
	Observing the results: disclosure primitives
	The four components of speculation techniques
	Relevance to software security models
	Mitigating speculative execution side channel vulnerabilities
	Defining our mitigation tactics
	Preventing speculation techniques
	Speculation barrier via execution serializing instruction
	Security domain CPU core isolation
	Indirect branch speculation barrier on demand & mode change
	Non-speculated or safely-speculated indirect branches
	Removing sensitive content from memory
	Hypervisor address space segregation
	Split user and kernel page tables (KVA Shadow)
	Removing observation channels
	Map guest memory as UC in root EPT
	Do not share physical pages across guests
	Decrease browser timer precision
	Closing remarks
	Mitigation relationship to attack scenarios & primitives
	How should developers think about each variant?
	New variants & mitigations
	Resources
	Slide Number 41
	Slide Number 42

