
Systems | Fueling future disruptions

Research
Faculty Summit 2018

Wrangling the Ghost
An Inside Story of Mitigating Speculative Execution
Side Channel Vulnerabilities

Christopher Ertl
Security Engineer, Microsoft

Virtualization-based isolation Microsoft Azure, Hyper-V Affected

Kernel-user separation Windows Affected

Process-based isolation Windows Affected

Language-based isolation Microsoft Edge & Internet Explorer Affected

Enclaves Microsoft Azure, Windows Affected

Pipeline Instructions are put on an “assembly line” and different
jobs are done in different stages

Superscalar Multiple instructions are executed at once

Out-of-order execution Instructions are executed as dependencies are resolved
and resources are available

Speculative execution Instructions are executed based on predictions

A conditional branch can potentially mispredict, thus leading to a speculative out-of-
bounds load that feeds a second load, thus creating cache side effects based on a secret.
The attacker can train the branch to speculatively run the code.
if (untrusted_index < length) { This can mispredict executing the below lines with

any value of untrusted_index
char value = buf[untrusted_index]; Loads nearly arbitrary memory
char value2 = buf2[value * 0x40]; Loads the cache as an artifact of the value

}

Consequence
If an attacker can find/create & execute this code in Hypervisor/Kernel/Enclave/sandbox,
they can read the memory

An indirect branch can potentially mispredict the branch target, thus leading to
speculative execution from an attacker controlled target address which could perform a
load and feed that value to a second load
0x4000: JMP RAX ; RAX = 0x5000
....

This can mispredict the target address, thus
speculative executing anywhere

0x6000: MOVZX RCX, BYTE PTR [RCX]
SHL RCX, 6
MOV RCX, [RDX+RCX]

Loads any memory at RCX
Multiply by 0x40 (cacheline size)
Loads the cache as an artifact of the value

Consequence
If attacker can find/create & execute this code in Hypervisor/Kernel/Enclave/sandbox, they
can read the memory

Exception delivery may be deferred until instruction retirement, thus allowing data that
should be inaccessible to be speculatively forwarded onto other instructions
TEST RAX, RAX
JE Skip
MOVZX RCX, BYTE PTR [KERNEL_ADDR]
SHL RCX, 6
MOV RCX, [Buf2+RCX]

This can mispredict the target address, thus
speculative executing anywhere

Fetch any kernel address. Error/Roll back arrives
delayed

Multiply by 0x40 to store information in the cache

Consequence
An unprivileged user mode process can read kernel memory

Requirement Taxonomy

Speculation 1. Gaining speculation Speculation primitive
2. Maintaining speculation Windowing gadget

Side channel 3. Persisting the results Disclosure gadget
4. Observing the results Disclosure primitive

If any of these 4 components are not present, there is no speculative side channel

Spectre variant 1 Conditional branches are predicted on past behavior, thus we can train
them

Spectre variant 2
Indirect branches can be trained in place like conditional branches, or
since not all bits are used for prediction, they can be trained in an
attacker controlled context

Meltdown The CPU may defer exceptions and may speculatively forward data on
to dependent instructions

Priming Getting the system into a known initial state (e.g. flushing cache lines)

Triggering Actively or passively causing the victim to execute

Observing Observe if state is changed and thereby infer information from this

Speculation
primitive Example

Conditional branch
misprediction

if (n < *p) {
// can speculate when n >= *p

}

Indirect branch
misprediction

// can speculate wrong branch target
(*FuncPtr)();

Exception delivery
// may do permission check at
// retirement
value = *p;

Windowing gadget Example

Non-cached load
// *p not present in cache

value = *p;

Dependency chain of
loads

value = ********p;

Dependency chain of ALU
operations

value += 10;
value += 10;
value += 10;

…

Disclosure gadget Example
One level of memory indirection,
out-of-bounds

if (x < y)
return buf[x];

Two levels of memory indirection,
out-of-bounds

if (x < y) {
n = buf[x];
return buf2[n];

}

Three levels of memory indirection,
out-of-bounds

if (x < y) {
char *p = buf[n];
char b = *p;
return buf2[b];

}

…

Disclosure
primitive Example

FLUSH+RELOAD
Priming phase: flush candidate cache lines
Trigger phase: cache line is loaded based off secret
Observing phase: load candidate cache lines, fastest
access may be signal

EVICT+TIME
Priming phase: evict congruent cache line
Trigger phase: cache line is loaded based off secret
Observing phase: measure time of operation, slowest
operation may be signal

PRIME+PROBE
Priming phase: load candidate cache lines
Triggering phase: cache set is evicted based off secret
Observing phase: load candidate cache lines, slowest
access may be signal

Attack category Attack scenario
Conditional
branch
misprediction

Indirect branch
misprediction Exception delivery

Inter-VM

Hypervisor-to-
guest

Host-to-guest

Guest-to-guest

Intra-OS

Kernel-to-user

Process-to-process

Intra-process

Enclave Enclave-to-any

Applicable Not applicableLegend:

Prevent speculation
techniques

Prevent a speculation primitive from executing a disclosure
gadget

Remove sensitive content
from memory

Ensure there is no sensitive information in memory that
could be read by a speculation technique

Remove observation
channels

Remove channels for communicating information via
speculation techniques

Goal: prevent a speculation primitive from executing a disclosure gadget

Speculation
primitive

Windowing
gadget

Disclosure
gadget

Disclosure
primitive

if (untrusted_index < length) {
_mm_lfence(); // barrier for speculation
char value = buf[untrusted_index];
char value2 = buf2[value * 0x40];

}

if (untrusted_index < length) {
// cmp untrusted_index, length
// xor reg,reg
// cmovae untrusted_index, reg
char value = buf[untrusted_index];
char value2 = buf2[value * 0x40];

}

minimum root CPU groups

https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-minroot-2016
https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-cpugroups

Indirect Branch Restricted
Speculation (IBRS)

Indirect Branch Prediction
Barrier (IBPB)

Single-Thread Indirect Prediction
Barrier (STIBP)

When IBRS=1, less-privileged
modes cannot influence indirect
branch predictions of higher-
privileged modes

Kernel and/or hypervisor can set
IBRS=1 on entry to prevent less
privileged modes from attacking
them

When IBPB=1, indirect branch
prediction state is flushed (BTB
and RSB)

Kernel and/or hypervisor can
write this when switching
process or VM contexts to
prevent cross-process and
cross-VM attacks

When STIBP=1, sibling SMTs
cannot influence one another’s
indirect branch predictions

Processes can request that the
kernel set this to prevent cross-
process SMT-based attacks on
indirect branch prediction

FAR JMP and FAR RET are not
predicted on Intel CPUs

RDTSCP or LFENCE before
indirect JMP is safe on AMD
CPUs

Indirect calls and jumps can be
transformed into “retpolines”

Indirect calls and jumps can be
transformed into FAR JMP on
Intel CPUs

Indirect calls and jumps can be
transformed into RDTSCP or
LFENCE before indirect JMP on
AMD CPUs

Google proposed “retpoline”
which transforms indirect calls
and jumps into “retpoline” stubs

Goal: ensure there is no sensitive information in memory that could be read by a speculation technique

Speculation
primitive

Windowing
gadget

Disclosure
gadget

Disclosure
primitive

Goal: remove channels for communicating information via speculation techniques

Speculation
primitive

Windowing
gadget

Disclosure
gadget

Disclosure
primitive

Mitigation Tactic Mitigation Name
Attack category Speculation primitive
Inter-VM Intra-OS Enclave Conditional branch

misprediction
Indirect branch
misprediction

Exception
delivery

Prevent speculation techniques

Speculation barrier via execution serializing
instruction

Security domain CPU core isolation

Indirect branch speculation barrier on demand
and mode change

Non-speculated or safely-speculated indirect
branches

Remove sensitive content from
memory

Hypervisor address space segregation

Split user and kernel page tables (“KVA
Shadow”)

Remove observation channels

Map guest memory as noncacheable in root
extended page tables

Do not share physical pages across guests

Decrease browser timer precision

Applicable Not applicable

Variant Conceptualization

Variant 1 (CVE-2017-5753)

This is a hardware vulnerability class that requires
software changes in order to mitigate.

No universal mitigation for this variant exists today.

Variant 2 (CVE-2017-5715) This is a hardware vulnerability that can be mitigated
through a combination of OS and firmware changes.

Variant 3 (CVE-2017-5754)
This is a hardware vulnerability that can be mitigated
through OS changes to create split user/kernel page
tables.

Disclose
d Variant Speculation primitive

category Mitigation

May,
2018

Speculative Store
Bypass
(CVE-2018-3639)

Memory access
misprediction
(new category)

• Disable speculative store
bypass optimization

• Speculation barrier prior to
unsafe store

June,
2018

Lazy FP State Restore
(CVE-2018-3665)

Exception delivery
(same as Meltdown)

• Use eager restore of FP state
(rather than lazy restore)

July,
2018

Bounds Check Bypass
Store

Conditional branch
misprediction
(same as Spectre variant 1)

• Speculation barrier as
required

July,
2018 NetSpectre

Conditional branch
misprediction (same as
S t i t 1)

• Speculation barrier as
required

https://aka.ms/sescbounty

https://aka.ms/sescdevguide

https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-
vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-
2018-3639/

https://aka.ms/sescbounty
https://aka.ms/sescdevguide
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/

Thank you!

	Research�Faculty Summit 2018
	Wrangling the Ghost�An Inside Story of Mitigating Speculative Execution �Side Channel Vulnerabilities
	You’ve most likely heard of Spectre & Meltdown
	Exploring a new vulnerability class
	Why does Microsoft care about these issues?
	Systematization of Spectre and Meltdown��A taxonomy and framework for reasoning about speculative execution side channels
	Parallelism and speculation
	General definition of speculative execution
	Spectre and Meltdown
	Spectre (variant 1): conditional branches
	Spectre (variant 2): indirect branches
	Meltdown (variant 3): exception deferral
	Why create a taxonomy?
	Building a taxonomy
	Gaining speculation: speculation primitives
	Maintaining speculation: windowing gadgets
	Side channel basics
	Persisting results: disclosure gadgets
	Observing the results: disclosure primitives
	The four components of speculation techniques
	Relevance to software security models
	Mitigating speculative execution side channel vulnerabilities
	Defining our mitigation tactics
	Preventing speculation techniques
	Speculation barrier via execution serializing instruction
	Security domain CPU core isolation
	Indirect branch speculation barrier on demand & mode change
	Non-speculated or safely-speculated indirect branches
	Removing sensitive content from memory
	Hypervisor address space segregation
	Split user and kernel page tables (KVA Shadow)
	Removing observation channels
	Map guest memory as UC in root EPT
	Do not share physical pages across guests
	Decrease browser timer precision
	Closing remarks
	Mitigation relationship to attack scenarios & primitives
	How should developers think about each variant?
	New variants & mitigations
	Resources
	Slide Number 41
	Slide Number 42

