
Systems | Fueling future disruptions

Research
Faculty Summit 2018

Secure Speculative
Execution Processors

Ilia Lebedev, Srini Devadas

With contributions from Victor Costan,
Vladimir Kiriansky, Saman Amarasinghe and Joel Emer

Outline

• Violating isolation by exploiting speculative execution

• Defenses against cache timing attacks

• Secure enclaves in Intel SGX and MIT Sanctum

Outline

• Violating isolation by exploiting speculative execution

• Defenses against cache timing attacks

• Secure enclaves in Intel SGX and MIT Sanctum

Architectural Isolation

Fundamental to maintaining correctness and privacy!

Control Flow Speculation for Performance

I: Compute

I+1: Compute

I+2: Compute

I+3: Compute

I: Control Flow

J: Compute

J+1: Compute

J+2: Compute

K: Compute

K+1: Compute

K+2: Compute

Correct
direction

Mis-speculated
direction

Sequential
Instruction
Execution

Non-sequential
Instruction
Execution

Control Flow Speculation is insecure

Speculative execution does not affect architectural state → “correct”
… but can be observed via some “side channels” (primarily cache tag state)

… and attacker can influence (mis)speculation
branch predictor inputs not authenticated

A huge, complex attack surface!

Side Channels in the Wild
• Real systems: large, complex, cyberphysical

(not secure)

• Spies potentially everywhere

Hypervisor,
Bios

CPU

DR
AM

Chipset

Network

Thread L1 $
L2 $

L3 $DR
AM

 C
trl

.

Disk

Main
board

OS

sharing!

sharing!sharing!

App

admins! users!
vendors!

users!

admins!

AttackerDomain of Victim

Secret

Channel
TransmitterAccess

Secret

Receiver

Attack Schema

1. Create a channel
2. Create the transmitter
3. Launch the transmitter
4. Access the secret

AttackerDomain of Victim

Secret

Channel
TransmitterAccess

Secret

Receiver

Building a Transmitter

Pre-existing (RSA conditional execution example)
Written by attacker (Meltdown)
Synthesized out of existing victim code by attacker (Spectre)

Outline

• Violating isolation by exploiting speculative execution

• Defenses against cache timing attacks

• Secure enclaves in Intel SGX and MIT Sanctum

AttackerDomain of Victim

Secret

Channel
TransmitterAccess

Secret

Receiver

Defense Schema

Here, we focus
on this one

1. Create a channel
2. Create the transmitter
3. Launch the transmitter
4. Access the secret

Block any of
these steps!

Intel’s Cache Allocation Technology (CAT)

CAT can be configured to
prevent a potential
transmitter from evicting LLC
lines of a potential receiver.

Core 0 Core 1

Shared cache

Private
Cache

Private
Cache

DRAM
domain 0

domain 1
Way partitioning is flexible, but
CAT is built for QoS and not for
security

- Shared addresses are
visible across domains

- Replacement metadata
updates are not isolated

Intel’s CAT leaks information through cache hits

(rep. state,
tag, data)

...

(rep. state,
tag, data)

...

...

...

(rep. state,
tag, data)

...

way 0 way 1 way w
set 0
set 1

address,
class of
service

set
index

tag
==?

CAT restricts cache
fills to a portion of
the LLC

Select way
to fill from

ways

Fill the selected line,
invalidate/writeback
current contents, if

applicable

==? ==?

No match → cache miss → cache fill

class of service
→ ways

Match → cache hit → send / modify data
Cache hits are not isolated

across domains

Sharing replacement metadata leaks information

Our Work: DAWG: Dynamically Allocated Way Guards

DAWG tracks global protection domains

Core 0 Core 1

Shared cache

Private Cache Private
Cache

DRAM
Instruction

fetch domain

Core 1’s DAWG domain_id MSR
domain 0

domain 1

domain 2
(not currently
scheduled)

Caches ensure protection domains
do not interfere via cache tags
or replacement metadata.

Cores tag each access with a protection domain id:

Load domain Store*
domain

Need DAWG-like approach for other shared
microarchitectural state, e.g., branch predictors

Complication!

Masking cache hits may lead to duplicated lines!
→ OS ensures only clean, read-only lines are duplicated.

This is conveniently compatible with modern copy-on-write sharing
- Efficient ways to handle MMAP and Fork

Outline

• Violating isolation by exploiting speculative execution

• Defenses against cache timing attacks

• Secure enclaves in Intel SGX and MIT Sanctum

TRUSTED

TRUSTED

A Typical Computer System’ TCB

CPU

D
RA

M

Chipset

Network

Thread L1 $
L2 $

L3 $D
RA

M
 C

tr
l.

Disk

Main
board

Pr
iv

ile
ge

BIOS (SMM)

Hypervisor (Ring 0, VMX root)

OS Kernel (Ring 0)

App App

(Ring 3)

Software…
… Running on hardware

Secure App

Intel’s SGX to reduce TCB

• SGX protects a small codebase
• good!

• Protected process = “Enclave”
• Provides a trusted environment:

- app integrity
- protects data

Pr
iv

el
eg

e

BIOS (SMM)

Hypervisor (VMX root)

OS Kernel (Ring 0)

App

(Ring 3) TRUSTED
Enclave

TRUSTED
CPU

D
RA

M

Chipset

Network

Thread
L1 $
L2 $

L3 $D
RA

M
 C

tr
l.

Disk

Main
board

SGX leaks privacy in many ways
Hyperthreading, Speculation, Page Tables, Caches, ...

Software uses attestation key to sign
results of computation
Cache timing attacks could leak the
key
Foreshadow, Usenix Security

SGX Uses Enclaves
for Attestation
(EPID)

Sanctum Secure Processor
No Speculation, No Hyperthreading

LLC

Private Cache

Core 0

DRAM

In-order datapath

$

Co
re

 1

$ $

Co
re

 2

Co
re

 3

I/O

Partitioned
Last Level
Cache

Sanctum’s Chain of Trust

Manufacturer

Sanctum HW

Security Monitor
(SM)

Process

OS

ProcessUnprivileged
(user mode)

Privileged
(supervisor

mode)

Machine
mode

Pr
iv

ile
dg

e Certificate
Authority

Strongly Isolated
Enclave

Isolated Page Tables

Sanctum Secure Processor
No Speculation, No Hyperthreading

RISCV Rocket Core, Changes required by Sanctum (+ ~2% of core)

Also requires 9 new config registers

Status

• Sanctum on AWS F1—you too can use it (or break it!)

• Ongoing: Keystone processor on HiFive Unleashed RISC-V chip (with Krste
Asanovic and Dawn Song, UCB)

• Near future: Out-of-order “Sanctoom” processor

• Near future: Formal verification effort (with Adam Chlipala, MIT)

In Conclusion,

• Significant security concerns with outsourcing computation especially to
public clouds

• Intel’s SGX helps but leaks privacy through software side channels and is
quite opaque

• Rethinking processor architecture to not sacrifice isolation and privacy
when optimizing for performance

Thank you!

	Research�Faculty Summit 2018
	Secure Speculative �Execution Processors�
	Outline
	Outline
	Architectural Isolation
	Control Flow Speculation for Performance
	Control Flow Speculation is insecure
	Side Channels in the Wild
	Attack Schema
	Building a Transmitter
	Outline
	Defense Schema
	Intel’s Cache Allocation Technology (CAT)
	Intel’s CAT leaks information through cache hits
	Sharing replacement metadata leaks information
	Our Work: DAWG: Dynamically Allocated Way Guards
	Complication!
	Outline
	A Typical Computer System’ TCB
	Intel’s SGX to reduce TCB
	SGX leaks privacy in many ways�Hyperthreading, Speculation, Page Tables, Caches, ...
	SGX Uses Enclaves �for Attestation�(EPID)
	Sanctum Secure Processor�No Speculation, No Hyperthreading
	Sanctum’s Chain of Trust
	Isolated Page Tables
	Sanctum Secure Processor�No Speculation, No Hyperthreading
	Status
	In Conclusion,
	Slide Number 29
	Slide Number 30

