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It’s the Golden Age of ML
Incredible advances in image recognition, natural 
language, planning, information retrieval

Society-scale impact: self-driving cars, real-time 
translation, personalized medicine

*

*for the best-funded, best-trained 
engineering teams



Building ML Products is Too Hard
Major successes (e.g., Siri, Alexa, Autopilot) require 
hundreds to thousands of engineers

Most effort in data preparation, QA, debugging, 
productionization: not modeling!

Domain experts can’t easily build ML products



“Only a fraction of real-world ML systems
is composed of ML code”



The Stanford DAWN Project

How can we enable any domain expert to build 
production-quality ML applications?
• Without a PhD in machine learning
• Without being an expert in systems
• Without understanding the latest hardware

Peter Bailis Chris Ré Kunle Olukotun Matei Zaharia
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Training Data is the Key to AI

Image search, speech, games: labeled training 
data is cheap & easy to obtain

Medicine, document understanding, fraud:
labeled data requires expensive human experts!

How can we leverage data that’s 
expensive to label at scale?



NIPS ‘16, VLDB ‘18, github.com/HazyResearch/snorkel

Snorkel Project (Chris Ré):
Labeling Functions, not Labels

1) User writes labeling functions: short programs that 
may not always give right label
• E.g. regex to search in text

2) Snorkel simultaneously learns noise in LFs and a 
noise-aware target model (e.g. LSTM)

4 hours LF coding with bio experts: match months of hand-labeling

high-quality models from low-quality, scalable labeling functions

System NCBI Disease 
(F1)

CDR Disease
(F1)

CDR Chem. 
(F1)

TaggerOne (Dogan, 2012)* 81.5 79.6 88.4
Snorkel: Logistic Regression 79.1 79.6 88.4
Snorkel: LSTM + Embeddings 79.2 80.4 88.2



The DAWN Stack
Data Acquisition Feature Engineering Model Training Productionizing

In
te

rfa
ce

s
Al

go
rit

hm
s

Sy
st

em
s

Ha
rd

w
ar

e

…

Snorkel

DeepDive

MacroBase (Anomaly Detection)

NoScope (Inference)

AutoRec, SimDex (Recommendation)

Data Fusion

Mulligan (SQL+graph+ML)

CPU GPU FPGA Cluster Mobile

New Hardware: FuzzyBit, Plasticine CGRA

End-to-End Compilers: Weld, Delite

ModelQAModelSnap



NoScope: Fast CNN-Based
Queries on Video

Opportunity: CNNs allow more accurate queries 
on visual data than ever

Challenge: processing 1 video stream in real time 
requires a $1000 GPU

Result: 100-1000x faster 
with <1% loss in accuracy



Key Idea: Model Specialization

Given a target model and a query, train a 
much smaller specialized model

When this model is unsure, call original

Target
Model

Specialized
Model

Video
Specific
Frames

+ Cost-based optimizer to select an 
efficient model cascade



NoScope Results

VLDB ‘17, github.com/stanford-futuredata/noscope



New Work: BlazeIt Query Engine
Accelerates complex, SQL-like queries using model 
specialization + statistical techniques

https://arxiv.org/abs/1805.01046
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Composition in Data Apps
ML app developers compose functions from 
dozens of high-level libraries
• Python packages, Spark packages, R, …



The Problem
Even if each individual function is well-optimized, 
the combined app may be highly inefficient

Traditional way to compose libraries: function calls that 
exchange data via buffers in memory

data = pandas.parse_csv(string)

filtered = pandas.dropna(data)

avg = numpy.mean(filtered)

parse_csv

dropna

mean

5-30x overheads in NumPy, Pandas, TensorFlow, etc



Weld’s Approach

machine 
learningSQL graph 

algorithms

CPU GPU

…

Common IR

…



Results: Individual Libraries
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Results: Cross-Library

0.01 0.1 1 10 100

Current

Weld, no CLO

Weld, CLO

Weld, 12 core

Running Time [sec; log10]

Pandas + NumPy Pipeline

CLO = cross-library optimization

CIDR ’17, VLDB ‘18, https://weld.rs

9x
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240x



“Weld without Weld”: Splittability Annotations

// @splittable
// (a: S, b: S, res: mut S)
void vdAdd(vec_t *a,

vec_t *b,
vec_t *res);

8x speedup

S: “split arrays the same way”

Data movement optimization and auto parallelization 
for unmodified, black-box functions

vdAdd(res, v1, res);
vdAdd(res, v2, res);
vdAdd(res, v3, res);
vdAdd(res, v4, res);
...0.1
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Competitive performance to Weld without rewriting libraries!



Machine Learning at Industrial Scale:
ML Platforms



ML at Industrial Scale: ML Platforms
If you believe ML will be a key part of future products, 
what should be the development process for it?

Today, ML development is ad-hoc:
• Hard to track experiments: every data scientist has their own way
• Hard to reproduce results: won’t happen by default
• Difficult to share & manage models

Need the equivalent of software dev platforms



ML Platforms
A new class of systems to manage the ML lifecycle

Pioneered by company-specific platforms: Facebook 
FBLearner, Uber Michelangelo, Google TFX, etc
+Standardize the data prep / training / deploy loop:

if you work with the platform, you get these!
– Limited to a few algorithms or frameworks
– Tied to one company’s infrastructure



Databricks MLflow
Open source, open-interface ML platform (mlflow.org)

Projects: package code & data for 
reproducible runs

Experiment tracking: record code, 
params & metrics via a REST API

MLflow models: package models 
as functions to deploy to backends

Tracking Server

Compare & 
Query Results

Run Sources

Model
Deployments

Cloud JobsLocal Apps Notebooks
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Many open questions left in designing such platforms!



Databricks MLflow
Open source, open-interface ML platform (mlflow.org)

Project

Project Spec

your_code.py
. . .
log_param(“alpha”, 0.5)
log_metric(“rmse”, 0.2)
log_model(my_model)
. . .

Deps Params

Tracking Server
UI

API

Inference Code

Bulk Scoring

Cloud Serving Tools

Deployment TargetsExperiment TrackingReproducible Projects

REST 
API
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Conclusion

The limiting factors for ML adoption are in dev and 
productionization tools, not training algorithms

Many of these are still very unexplored in research!

Follow DAWN for our research in
this area: dawn.cs.stanford.edu



Thank you!
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