
Systems | Fueling future disruptions

Research
Faculty Summit 2018

Tim Kraska <kraska@mit.edu>
[Disclaimer: I am NOT talking on behalf of Google]

Learned Index Structures
(joint work with Alex Beutel, Ed H. Chi,

Jeffrey Dean, Neoklis Polyzotis)

Work partially done at

HashMaps

SortingJoins
Bloom
Filter

Tree

“Machine Learning Just Ate Algorithms In
One Large Bite….” [Christopher Manning, Professor at Stanford]

Comments on Social Media

Disclaimer

HashMaps

Sorting

Joins

Bloom
Filter

Tree

Sorting

B-TreeHash-
Map

Quick
Sort

Radix
Sort

Merge
Join

Priority
Queue

Priority
Queue

Bloom
FilterHash

Fundamental
Building Blocks
Of Data Management
Systems
(or almost any system/application)

Goal:

Index All Integers from 900 to 800M
900 901 902 903 904 905 906 907 908 909 800M…

… … … …

… … … … … … … … … …
….

… … … … …. … …. …
….….

… … … … …. … …. … … … … … …. … …. …

B-Tree?

Goal:

Index All Integers from 900 to 800M
900 901 902 903 904 905 906 907 908 909 800M…

data_array[lookup_key - 900]

Goal:

Index All Integers from 900 to 800M
900 901 902 903 904 905 906 907 908 909 800M…

900 902 904 906 908 910 912 914 916 918 800M…
Index All Even Integers from 900 to 800M

data_array[(lookup_key – 900) / 2]

Still holds for other data distributions

Key Insight

Knowing the (empirical) Data
Distribution allows for Instance-
based Optimizations

(e.g., lookups: O(log n) à O(1)
storage: O(n) à O(1))

Building A System From Scratch For Every
Use Case Is Not Economical

B-Tree As An Example

Tree

B-Tree As An Example

Tree

For the moment focus on
in-memory immutable B-Trees
Assumptions No Inserts

No Paging
will talk about those issues later.

Conceptually a
B-Tree maps a key to a page

Assume: Data is stored in a continuous main memory region

B-Tree

key

Alternative View
B-Tree maps a key to a position with a fixed min/max error

For simplicity assume all pages are continuously stored in main memory

1. B-tree: key→pos
2. Binary search within

errmin (0) and
errmax (page-size)

Sorted Array

pos + 0 pos + page-size

B-Tree

key

position

A B-Tree Is A Model

Sorted Array

key

position

pos - errmin pos + errmax

Model

Finding an item
1. Any model: key → pos
2. Binary search in

[pos - errmin, pos + errmax]

errmin and errmax are known from
the training process

A B-Tree Is A Model

Sorted Array

key

position

pos - errmin pos + errmax

Model

A B-Tree Is A Model

PPooss--eessttiimmaattee == FF((kkeeyy)) ** ##kkeeyyss

AA CCDDFF mmooddeell

Sorted Array

key

position

pos - errmin pos + errmax

Model

The B-Tree is Also A Model

Regression Tree

Sorted Array

pos + 0 pos + page-size

B-Tree

key

position

What Does This Mean

What Does This Mean

Database people
were the first to do
large scale machine learning :)

Potential Advantages of Learned B-Tree Models

• Smaller indexes → less (main-memory) storage

• Faster Lookups?

• More parallelism → Sequential if-statements are exchanged for
multiplications

• Hardware accelerators → Lower power, better $/compute….

• Cheaper inserts? → more on that later. For the moment, assume
read-only

A First Attempt

• 200M web-server log records by timestamp-sorted
• 2 layer NN, 32 width, ReLU activated
• Prediction task: timestamp à position within sorted

array

Cache-Optimized
B-Tree

≈250ns ???

A First Attempt

A First Attempt

≈250ns ≈80,000ns

Cache-Optimized
B-Tree

Reasons
Problem I: Tensorflow is designed
for large models

PPrroobblleemm IIII: Search does not take
advantage of the prediction

PPrroobblleemm IIIIII: B-Trees are
cache-efficient

PPrroobblleemm IIVV:: B-Trees are great for
overfitting

Reasons
Problem I: Tensorflow is designed
for large models

PPrroobblleemm IIII: Search does not take
advantage of the prediction

PPrroobblleemm IIIIII: B-Trees are
cache-efficient

PPrroobblleemm IIVV:: B-Trees are great for
overfitting

Solution:
Recursive Model Index (RMI)

Model 1.1

Model 2.1 Model 2.2 Model 2.3

Model 3.1 Model 3.2 Model 3.3 Model 3.4

…

…

St
ag

e
1

St
ag

e
3

St
ag

e
2

Position

Key

L` =
X

(x,y)

(f
(bM`f`1(x)/Nc)
` (x)− y)2

L0 =
X

(x,y)

(f0(x)− y)2

How Does The Lookup-Code Look Like
Model on stage 1: f0(key_type key)
Models on stage two: f1[]
(e.g., the first model in the second stage is is f1[0](key_type key))
Lookup Code for a 2-stage RMI:

pos_estimate ß f1[f0(key)](key)
pos ß exp_search(key, pos_estimate, data);

Number of operations with linear regression models:
offset ß a + b * key
weights2 ß weights_stage2[offset]
pos_estimate ß weights2.a +
weights2.b * key
pos ß exp_search(key, pos_estimate, data)

2x multiplies
2x additions
1x array-lookup

How Does The Lookup-Code Look Like
Model on stage 1: f0(key_type key)
Models on stage two: f1[]
(e.g., the first model in the second stage is is f1[0](key_type key))
Lookup Code for a 2-stage RMI:

pos_estimate ß f1[f0(key)](key)
pos ß exp_search(key, pos_estimate, data);

Operations with a 2-stage RMI with linear regression models
offset ß a + b * key
weights2 ß weights_stage2[offset]
pos_estimate ß weights2.a +

weights2.b * key
pos ß exp_search(key, pos_estimate, data)

2x multiplies
2x additions
1x array-lookup

Model 1.1

Model 2.1 Model 2.2 Model 2.3

Model 3.2 Model 3.4

…

…

St
ag

e
1

St
ag

e
3

St
ag

e
2

Position

Key

B-Tree 3.3B-Tree 3.1

Hybrid RMI

Worst-Case Performance is the one of a B-Tree

Does it have to be

Does It Work?

Type Config Lookup
time

Speedup
vs. BTree

Size (MB) Size vs.
Btree

BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X

Learned index 2nd stage size: 10000 222 ns 1.17X 0.15 MB 0.01X

Learned index 2nd stage size: 50000 162 ns 1.60X 0.76 MB 0.05X

Learned index 2nd stage size: 100000 144 ns 1.67X 1.53 MB 0.12X

Learned index 2nd stage size: 200000 126 ns 2.06X 3.05 MB 0.23X

60% faster at 1/20th the space, or 17% faster at 1/100th the space

200M records of map data (e.g., restaurant locations). index on longitude
Intel-E5 CPU with 32GB RAM without GPU/TPUs No Special SIMD optimization (there is a lot of potential)

Does It Work?

Type Config Lookup
time

Speedup
vs. BTree

Size (MB) Size vs.
Btree

BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X

Learned index 2nd stage size: 10000 222 ns 1.17X 0.15 MB 0.01X

Learned index 2nd stage size: 50000 162 ns 1.60X 0.76 MB 0.05X

Learned index 2nd stage size: 100000 144 ns 1.67X 1.53 MB 0.12X

Learned index 2nd stage size: 200000 126 ns 2.06X 3.05 MB 0.23X

60% faster at 1/20th the space, or 17% faster at 1/100th the space

200M records of map data (e.g., restaurant locations). index on longitude
Intel-E5 CPU with 32GB RAM without GPU/TPUs No Special SIMD optimization (there is a lot of potential)

You Might
Have Seen
Certain
Blog Posts

0 50 100 150 200 250 300 350

256

32

4

0.5

Size (M
B

)

Lookup-Time (ns)

FAST

Lookup
Table

Fixed-Size Read-Optimized
B-Tree w/ interpolation search

Learned
Index

B
etter

W
orse

Better Worse

Big thanks to Thomas Neumann as his blog post actually helped us a lot to
improve our experiment section.

What About Our Assumptions

• Updates and Inserts1

• Paging

1 A-Tree: A Bounded Approximate Index Structure,
https://arxiv.org/abs/1801.10207

Fundamental Algorithms & Data Structures

Hash-MapTreeSortingJoin

Range-Filter Priority Queue

…..
Scheduling Cache Policy

Bloom-Filter

Multi-Dimensional
Index

Problems with (R-Tree / KD-Tree)

Machine Learning Is Good For
Multi-Dimensional Data

There is Only
1-Dim Order
On Disk*

*Sure the disk is more complicated, but the API and the scanning of records is usually 1-dim

Order Zip Code

Or
de

r A
m

ou
nt

Example

Order Zip Code

Or
de

r A
m

ou
nt

Equal Importance

Order Zip Code

Or
de

r A
m

ou
nt

Is It PCA?

Order Zip Code

Or
de

r A
m

ou
nt

Most Queries Are about Order Amount

Order Zip Code

Or
de

r A
m

ou
nt

Most Queries Are about Order Zip Code

Order Zip Code

Or
de

r A
m

ou
nt

Can I mix the projections?

Order Zip Code

Or
de

r A
m

ou
nt

Can I mix the projections?

2 Models
Projector

Locator

0 1 2 3

The projector

Root node define a primary
direction1

Project points on the root 2

Partition the space3

Define directions for each sub-
space4

Recurse for any depthk This is an RMI
Model not a BTree

After Projection Locator
is a Normal BTree RMI

Projector

Locator

0 1 2 3

Projector

Locator

0 1 2 3

Early results (1M points, synthetic)

• ~200ns for point queries
• ~2x speed, ~10x space vs

R-Trees

Future Work

Hash-MapTreeSortingJoin

Range-Filter Priority Queue

…..
Scheduling Cache Policy

Bloom-Filter

How Would You Design Your Algorithms/Data Structure
If You Have a Model for the Empirical Data Distribution?

The Power of Continuous Functions

Learned Adaptation

Big Potential For TPUs/GPUs

O(N2)

O(N)

O(Log N)

O(1)
N

Ti
m

e
 o

r
Sp

ac
e

Can Lower the Complexity Class

data_array[(lookup_key – 900)]

Warning
Not An Almighty Solution

DDaattaa SSyysstteemm ffoorr AAII LLaabb DSAIL@CSAIL

Re
se

ar
ch

Ar

ea
Sy

st
em

Fa
cu

lty
Fo

un
di

ng
Sp

on
so

rs
M

L
Fa

cu
lty

Tim Kraska
<kraska@mit.edu>

• A new approach to indexing
• Framework to rethink many existing data structures/algorithms
• Under certain conditions, it might allow to change the

complexity class of data structures
• The idea might have implications within and outside of DBMS

Work partially done at

Related Work

• Succinct Data Structures à Most related, but succinct data structures
usually are carefully, manually tuned for each use case
• B-Trees with Interpolation search à Arbitrary worst-case

performance
• Perfect Hashing à Connection to our Hash-Map approach, but they

usually increase in size with N
• Mixture of Expert Models à Used as part of our solution
• Adaptive Data Structures / Cracking à orthogonal problem
• Local Sensitive Hashing (LSH) (e.g., learened by NN)
à Has nothing to do with Learned Structures

Thank you!

