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Work partially done at
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“Machine Learning Just Ate Algorithms In 
One Large Bite….” [Christopher Manning, Professor at Stanford]

Comments on Social Media
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Goal: 

Index All Integers from 900 to 800M 
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Goal: 

Index All Integers from 900 to 800M 
900 901 902 903 904 905 906 907 908 909 800M…

900 902 904 906 908 910 912 914 916 918 800M…
Index All Even Integers from 900 to 800M 

data_array[(lookup_key – 900) / 2]



Still holds for other data distributions



Key Insight

Knowing the (empirical) Data 
Distribution allows for Instance-
based Optimizations

(e.g., lookups: O(log n) à O(1) 
storage: O(n) à O(1) )



Building A System From Scratch For Every 
Use Case Is Not Economical



B-Tree As An Example

Tree



B-Tree As An Example

Tree

For the moment  focus on 
in-memory immutable B-Trees
Assumptions No Inserts

No Paging
will talk about those issues later. 



Conceptually a
B-Tree maps a key to a page

Assume: Data is stored in a continuous main memory region

B-Tree

key



Alternative View
B-Tree maps a key to a position with a fixed min/max error

For simplicity assume all pages are continuously stored in main memory

1. B-tree: key→pos
2. Binary search within 

errmin (0) and 
errmax (page-size)

Sorted Array

pos + 0 pos + page-size

B-Tree

key

position



A B-Tree Is A Model

Sorted Array

key

position

pos - errmin pos + errmax

Model



Finding an item
1. Any model: key → pos
2. Binary search in 

[pos - errmin, pos + errmax]

errmin and errmax are known from 
the training process

A B-Tree Is A Model

Sorted Array

key

position

pos - errmin pos + errmax

Model



A B-Tree Is A Model
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The B-Tree is Also A Model

Regression Tree

Sorted Array

pos + 0 pos + page-size

B-Tree

key

position



What Does This Mean



What Does This Mean

Database people 
were the first to do 
large scale machine learning :)



Potential Advantages of Learned B-Tree Models

• Smaller indexes → less (main-memory) storage

• Faster Lookups?

• More parallelism → Sequential if-statements are exchanged for 
multiplications

• Hardware accelerators → Lower power, better $/compute….

• Cheaper inserts? → more on that later. For the moment, assume 
read-only



A First Attempt

• 200M web-server log records by timestamp-sorted 
• 2 layer NN, 32 width, ReLU activated
• Prediction task: timestamp à position within sorted 

array



Cache-Optimized
B-Tree

≈250ns ???

A First Attempt



A First Attempt

≈250ns ≈80,000ns

Cache-Optimized
B-Tree



Reasons
Problem I: Tensorflow is designed 
for large models

PPrroobblleemm  IIII: Search does not take 
advantage of the prediction

PPrroobblleemm  IIIIII: B-Trees are 
cache-efficient

PPrroobblleemm  IIVV::  B-Trees are great for 
overfitting
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Solution: 
Recursive Model Index (RMI)
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How Does The Lookup-Code Look Like
Model on stage 1: f0(key_type key)
Models on stage two: f1[] 
(e.g.,  the first model in the second stage is is f1[0](key_type key))
Lookup Code for a 2-stage RMI: 

pos_estimate ß f1[f0(key)](key)
pos ß exp_search(key, pos_estimate, data);

Number of operations with linear regression models:
offset ß a + b * key
weights2 ß weights_stage2[offset]
pos_estimate ß weights2.a + 
weights2.b * key
pos ß exp_search(key, pos_estimate, data)

2x multiplies
2x additions
1x array-lookup
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Lookup Code for a 2-stage RMI: 

pos_estimate ß f1[f0(key)](key)
pos ß exp_search(key, pos_estimate, data);

Operations with a 2-stage RMI with linear regression models
offset ß a + b * key
weights2 ß weights_stage2[offset]
pos_estimate ß weights2.a + 

weights2.b * key
pos ß exp_search(key, pos_estimate, data)

2x multiplies
2x additions
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Hybrid RMI

Worst-Case Performance is the one of a B-Tree



Does it have to be 



Does It Work?

Type Config Lookup 
time

Speedup 
vs. BTree

Size (MB) Size vs. 
Btree

BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X

Learned index 2nd stage size: 10000 222 ns 1.17X 0.15 MB 0.01X

Learned index 2nd stage size: 50000 162 ns 1.60X 0.76 MB 0.05X

Learned index 2nd stage size: 100000 144 ns 1.67X 1.53 MB 0.12X

Learned index 2nd stage size: 200000 126 ns 2.06X 3.05 MB 0.23X

60% faster at 1/20th the space, or 17% faster at 1/100th the space

200M records of map data (e.g., restaurant locations). index on longitude
Intel-E5 CPU with 32GB RAM without GPU/TPUs No Special SIMD optimization (there is a lot of potential)
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Certain 
Blog Posts
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Big thanks to Thomas Neumann as his blog post actually helped us a lot to
improve our experiment section. 



What About Our Assumptions

• Updates and Inserts1

• Paging

1 A-Tree: A Bounded Approximate Index Structure, 
https://arxiv.org/abs/1801.10207



Fundamental Algorithms & Data Structures

Hash-MapTreeSortingJoin

Range-Filter Priority Queue

…..
Scheduling Cache Policy

Bloom-Filter



Multi-Dimensional 
Index



Problems with (R-Tree / KD-Tree)



Machine Learning Is Good For 
Multi-Dimensional Data



There is Only 
1-Dim Order
On Disk*

*Sure the disk is more complicated, but the API and the scanning of records is usually 1-dim 
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Is It PCA? 
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2 Models
Projector

Locator

0 1 2 3



The projector

Root node define a primary 
direction1

Project points on the root 2

Partition the space3

Define directions for each sub-
space4

Recurse for any depthk This is an RMI
Model not a BTree



After Projection Locator 
is a Normal BTree RMI

Projector

Locator

0 1 2 3



Projector

Locator

0 1 2 3

Early results (1M points, synthetic)

• ~200ns for point queries
• ~2x speed, ~10x space vs 

R-Trees



Future Work

Hash-MapTreeSortingJoin

Range-Filter Priority Queue

…..
Scheduling Cache Policy

Bloom-Filter



How Would You Design Your Algorithms/Data Structure
If You Have a Model for the Empirical Data Distribution?

The Power of Continuous Functions



Learned Adaptation



Big Potential For TPUs/GPUs 
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data_array[(lookup_key – 900)]



Warning 
Not An Almighty Solution
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Tim Kraska 
<kraska@mit.edu>

• A new approach to indexing
• Framework to rethink many existing data structures/algorithms
• Under certain conditions, it might allow to change the 

complexity class of data structures
• The idea might have implications within and outside of DBMS

Work partially done at



Related Work

• Succinct Data Structures à Most related, but succinct data structures 
usually are carefully, manually tuned for each use case
• B-Trees with Interpolation search à Arbitrary worst-case 

performance
• Perfect Hashing à Connection to our Hash-Map approach, but they 

usually increase in size with N
• Mixture of Expert Models à Used as part of our solution
• Adaptive Data Structures / Cracking à orthogonal problem
• Local Sensitive Hashing (LSH) (e.g., learened by NN)
à Has nothing to do with Learned Structures



Thank you!






