

Research Faculty Summit 2018

Systems | Fueling future disruptions

Learned Index Structures

(joint work with Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis)

Tim Kraska <kraska@mit.edu>

[Disclaimer: I am NOT talking on behalf of Google]

Comments on Social Media

"Machine Learning Just Ate Algorithms In One Large Bite...." [Christopher Manning, Professor at Stanford]

Fundamental Building Blocks Of Data Management Systems

Goal:

Index All Integers from 900 to 800M

900	901	902	903	904	905	906	907	908	909		M
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--	---

Goal:

Index All Integers from 900 to 800M

900 901 902 903 904 905 906 907 9	908 909 ··· 800M
-----------------------------------	------------------

data_array[lookup_key - 900]

Goal:

Index All Integers from 900 to 800M

Index All Even Integers from 900 to 800M

900	902	904	906	908	910	912	914	916	918	800M	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	--

data_array[(lookup_key - 900) / 2]

Still holds for other data distributions

Key Insight

Knowing the (empirical) Data Distribution allows for Instancebased Optimizations

(e.g., lookups: $O(\log n) \rightarrow O(1)$ storage: $O(n) \rightarrow O(1)$)

Building A System From Scratch For Every Use Case Is Not Economical

B-Tree As An Example

B-Tree As An Example

For the moment focus on in-memory immutable B-Trees

Assumptions No Inserts No Paging

will talk about those issues later.

Conceptually *a B-Tree maps a key to a page*

Assume: Data is stored in a continuous main memory region

Alternative View B-Tree maps a key to a position with a fixed min/max error

 B-tree: key→pos
 Binary search within err_{min} (0) and err_{max} (page-size)

For simplicity assume all pages are continuously stored in main memory

A B-Tree Is A Model

A B-Tree Is A Model

Finding an item 1. Any model: key → pos 2. Binary search in [pos - err_{min}, pos + err_{max}]

 err_{min} and err_{max} are known from the training process

A CDF model

The B-Tree is Also A Model

What Does This Mean

What Does This Mean

Database people were the first to do large scale machine learning :)

Potential Advantages of Learned B-Tree Models

- Smaller indexes \rightarrow less (main-memory) storage
- Faster Lookups?
- More parallelism → Sequential if-statements are exchanged for multiplications
- Hardware accelerators → Lower power, better \$/compute....
- Cheaper inserts? → more on that later. For the moment, assume read-only

A First Attempt

- 200M web-server log records by timestamp-sorted
- 2 layer NN, 32 width, ReLU activated
- Prediction task: timestamp → position within sorted array

A First Attempt

Cache-Optimized B-Tree

≈250ns

???

A First Attempt

Cache-Optimized B-Tree

≈250ns

≈80,000ns

Reasons

Problem I: Tensorflow is designed for large models

Problem II: Search does not take advantage of the prediction

Problem III: B-Trees are cache-efficient

Problem IV: B-Trees are great for overfitting

Reasons

Problem I: Tensorflow is designed for large models

Problem II: Search does not take advantage of the prediction

Problem III: B-Trees are cache-efficient

Problem IV: B-Trees are great for

Solution: Recursive Model Index (RMI)

How Does The Lookup-Code Look Like

```
Model on stage 1: f0(key_type key)
Models on stage two: f1[]
(e.g., the first model in the second stage is is f1[0](key_type key))
Lookup Code for a 2-stage RMI:
    pos_estimate ← f1[f0(key)](key)
```

How Does The Lookup-Code Look Like

```
Model on stage 1: f0(key type key)
Models on stage two: f1[]
(e.g., the first model in the second stage is is f1[0](key type key))
Lookup Code for a 2-stage RMI:
   pos estimate \leftarrow f1[f0(key)](key)
   pos \leftarrow exp search(key, pos estimate, data);
Operations with a 2-stage RMI with linear regression models
   offset \leftarrow a + b * key
                                                         2x multiplies
   2x additions
   pos estimate \leftarrow weights2.a +
                                                         1x array-lookup
                     weights2.b * key
   pos \leftarrow exp search(key, pos estimate, data)
```

Hybrid RMI

Worst-Case Performance is the one of a B-Tree

Does it have to be

DEEP LEARNING

Does It Work?

200M records of map data (e.g., restaurant locations). index on longitude Intel-E5 CPU with 32GB RAM **without** GPU/TPUs **No Special SIMD optimization** (there is a lot of potential)

Туре	Config	Lookup time	Speedup vs. BTree	Size (MB)	Size vs. Btree
BTree	page size: 128	260 ns	1.0X	12.98 MB	1.0X

Does It Work?

200M records of map data (e.g., restaurant locations). index on longitude Intel-E5 CPU with 32GB RAM **without** GPU/TPUs **No Special SIMD optimization** (there is a lot of potential)

Туре	Config	Lookup time	Speedup vs. BTree	Size (MB)	Size vs. Btree
BTree	page size: 128	260 ns	1.0X	12.98 MB	1.0X
Learned index	2nd stage size: 10000	222 ns	1.17X	0.15 MB	0.01X
Learned index	2nd stage size: 50000	162 ns	1.60X	0.76 MB	0.05X
Learned index	2nd stage size: 100000	144 ns	1.67X	1.53 MB	0.12X
Learned index	2nd stage size: 200000	126 ns	2.06X	3.05 MB	0.23X

60% faster at 1/20th the space, or 17% faster at 1/100th the space

You Might
Have Seen
Certain
Blog Posts

Big thanks to **Thomas Neumann** as his blog post actually helped us a lot to improve our experiment section.

What About Our Assumptions

- Updates and Inserts¹
- Paging

¹ A-Tree: A Bounded Approximate Index Structure, https://arxiv.org/abs/1801.10207

Fundamental Algorithms & Data Structures

Problems with (R-Tree / KD-Tree)

Machine Learning Is Good For Multi-Dimensional Data

There is Only 1-Dim Order On Disk*

*Sure the disk is more complicated, but the API and the scanning of records is usually 1-dim

Example

Order Amount

Equal Importance

Most Queries Are about Order Amount

Most Queries Are about Order Zip Code

Can I mix the projections?

Can I mix the projections?

2 Models

The projector

1	Root node define a primary direction
2	Project points on the root
3	Partition the space
4	Define directions for each sub- space
k	Recurse for any depth

This is an RMI Model not a BTree

After Projection Locator is a Normal BTree RMI

Early results (1M points, synthetic)

- ~200ns for point queries
- ~2x speed, ~10x space vs R-Trees

Future Work

How Would You Design Your Algorithms/Data Structure If You Have a Model for the Empirical Data Distribution?

CDF

The Power of Continuous Functions

Big Potential For TPUs/GPUs

Can Lower the Complexity Class

Data System for AI Lab DSAIL@CSAIL

Data Systems for Al for Data Systems

Research Area System Faculty ML Faculty Founding Sponsors

Tim Kraska <kraska@mit.edu>

- A new approach to indexing
- Framework to rethink many existing data structures/algorithms
- Under certain conditions, it might allow to change the complexity class of data structures
- The idea might have implications within and outside of DBMS

Related Work

- Succinct Data Structures → Most related, but succinct data structures usually are carefully, manually tuned for each use case
- B-Trees with Interpolation search → Arbitrary worst-case performance
- Perfect Hashing → Connection to our Hash-Map approach, but they usually increase in size with N
- Mixture of Expert Models \rightarrow Used as part of our solution
- Adaptive Data Structures / Cracking \rightarrow orthogonal problem
- Local Sensitive Hashing (LSH) (e.g., learened by NN)
 → Has nothing to do with Learned Structures

Thank you!

