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We address the problem of Automatically adjusting the physica) organization of a data base to

opti ice acceds requirements change, We describe the principles of ‘the

i selection facility of 4 prototype self-adaptive data base management system

that is currently under development. The importance of accurate usage model acquisition and

ng mechanisms that are being

nential smoothing techniques are

0ds of time in order to. predict future

indices to match projected access

tire re is based is Flexible.

enough to incorporate the overhead costs of index creation, index storage and application
Program recompilation,

of 2 data base's physical organization must also be .
338 management fystems, the responsibility pf making reorganization decisions falls on the dara base
idministrator (DBA), whose judgements are based on. intuition and on a limited amount of communication with

some individual data bage users. For farge Integrated data bases,
information about data base usage, and a more a
configurations, will be essentla),

incorporation of mon

racterlstics of a data base, and uses this information to tune it physical organization. We operate in
the environment of a refationa) data base system, which provides a level of physical data Independence that
reorganization. Continuous monj data base opens up many

rslﬂ“l“ﬂﬂ. e rry h ariety nf altern AL 3 st 05

and tradeoffs. . As a first cut at the problem,

secandary index (sometimes referred to as an Inversion) js 3
performance of accesses tg a relation (file) I For each dq
maintained, which for each value of the domain in
contents in the designated domain is the specified valy
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ABSTRACT

In this paper we discuss advances in self-tuning darabase systems
over the past decade, based On our experience in the Ay Admin
project at Microsoft Resea ape ¥ focuses on the
problem of antomared ph : also highlight
other areas where research on sef tuning database technology has
made significan progress. We conclude with our thoughts on
Opportunities and open

1. HISTORY OF AUTOADMIN PROJE

Our VLDB 1997 paper [26] reported our first technical resy
from the AutcAdmin project that was started in Micrasoft
Research in the summer of 1996, The SQL er product group
at that time had non the ambitious of redesigning the
SQL Server code for their next release QL Server 7.0). Ease of
use and elimination of knobs was a dri ing force for their design
of 3QL Server 7.0 At the same time, in the database research
world, data analysis and mining technigues had hee ome popular,
In starting the Auto Admin project. we hoped to leverage some of
the data analysis and mining techniques 1o automate difficyle
tuning and administragive y. Se systems. As our firse
goal in AutoAdmin, we dec ed to focus on physical database
design. This was by no means & new problem, bur it still an
open prablem. Moreover, jt 15 clearly a problem thar impacted
performance tuning. The d i to focus on ical database
design was somewhar ad-hoc. Tts

Processing was an implicit driving fu

area of past work. Thy

our first solution 10 automating phy

In this paper, we take k b n the last decade ang review

some of the work on ~Tuning Database systems. A complete

survey of the field beyond the ur

i ons are influence, expe es with the specific

problems we addressed 4 Project. Since our

database design, a large pan

iding details of the progress i

) In Section 7, we s

a few of the other important areas where self-tuning

database technology have made advances over the Tast decade.

We reflect on future dircctions in Section 8 and conclude in
Section 9,

Ut Y permission of the Very L
Database Endowment. To copy otherwise, or 1o republish, to post on servers
or to redistribute 10 Jists, requires & fee andfor special permissions from the

eptember 23-25, 2007, Vie na, Ausiria,
2007 VLDB Endowrent, ACM 975. 1.5 93-649-3/07/00,
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DATABASE DESIGN

2.1 Importance of Physical Design

A crucial property of a relational DEMS s that it provides
physical data independence. This allows physical structures such
a5 indexes to change seamles: y without affec) ing the output of
the query; but such changes do impact efficien, ¥. Thus, wgether
with the capabilities of the Cxecution engine and the oplimizer,
the physical database design determines how efficiently a query is
executed on a DRMS,

The first generation of relational execution engines were
relatively simple, largeted at OLTP, making index selection Jess
of a problem. The portance of physic design was amplifi
query optimizers he E isticated o cope with complex
decision UPPOrt que: ince query execution and optimization
techniques were Far more advanced, DBAs could no longer rely
on a simplistic model of the engine, But, the choice of right index
StUCIUres was crucial for efficient query execution over large
databases,

2.2 State of the Art in 1997
The role of the workload, including queries and updates, in
Physical design was widely recognized, Therefore, at a high level,
the problem of physical database desi 1 Was - for a given
workload, find a conf;, wration, t of indexes thar minimize
the cost. How ‘e, early appro, ol always agree on what
5 & cast for a

en guery and configuration,
Papers on physical design of d y
as 1974 Early work such ¥ Stonebraker [63] 4 umed g
and work by Hammer and Chan
> model o derive the parameters. Later
ed  using an explicit  workload
cit workload can be collected using the
BI, SOme papers
[ workloads, whether licit or parametric,
ingle table queries, Sometimes restrictions  were
necessary for their proposed index selaction techniques to even
apply and in some cas hey could Justify the £oodness of thejr
solution only for the restricted class of queries,

All papers e “ognized that it is not feasible to estimate goodness
of a physical ¢ ign for a workload by actual creation of indexes
and then ex cuting the queries and updates in the workload.
Nonetheless, there was g Iot of variance on what would be the
model of cost, Some of the Papers ok the approach of doing the
comparison among the alternatives by building their own cast
model. For columns on which no indexes are resent, they built

VLDB 2007
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Why is this Previous Work
Insufficient?
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Problem #1 Problem #2 Problem #3




~

What is Different this Time?
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Database Tuning-as-a-Service

— Automatically generate
DBMS knob configurations.

— Reuse data from previous
tuning sessions.

OtterTune

ottertune.cs.cmu.edu


https://ottertune.cs.cmu.edu/
https://ottertune.cs.cmu.edu/

OTTERTUNE
TPC-C TUNING
B Default | | Scripts RDS
Throughput (txn/sec)
1000 1000

750 736 750

($1e{¢)
562
508
500 = 500
250 I6E [ = 250
0 R 0

. AUTOMATIC DATABASE MANAGEMENT SYSTEM TUNING

THROUGH LARGE-SCALE MACHINE LEARNING
SIGMOD 2017

DBA [ OtterTune

845 843

¥ PostgreSQL
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Self-Driving Database System

O — In-memory DBMS with
/b integrated planning
framework.

— Designed for autonomous
Peloton operations.

pelotondb. 10
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Design Considerations for
Autonomous Operation



AUTONMOUS DBMS
DESIGN CONSIDERATIONS




x CONFIGURATION KNOBS

Anything that requires a human value
judgement should be marked as off-limits to
autonomous components.
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X CONFIGURATION KNOBS

The autonomous components need hints
about how to change a knob.

1 KB 1 MB 1 GB 1TB

+100 KB +100 MB +100 GB
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D INTERNAL METRICS

If the DBMS has sub-components that are
tunable, then it must expose separate
metrics for those components.

Bad Example: % RocksDB

18



INTERNAL METRICS
SUB-COMPONENTS

RocksDB Column Family Knobs

rocksdb_override_cf_options=\
cf_link_pk={prefix_extractor=capped:20}

Gibbhanvretmaly Metrics

mysql> SHOW GLOBAL STATUS;

e e oo - +
| METRIC_NAME | VALUE |
e e e oo - +
| ABORTED_CLIENTS | 0 |
| ROCKSDB_BLOCK_CACHE_BYTES_READ 295700537
ROCKSDB_BLOCK_CACHE_BYTES_WRITE 709562185
ROCKSDB_BLOCK_CACHE_DATA_HIT 64184

| |
I I
ROCKSDB BLOCK CACHE DATA MISS | 1001083 |
| |
| |
| |

|

I

| ROCKSDB_BYTES_READ 5573794

| ROCKSDB_BYTES_WRITTEN 5817440

| ROCKSDB_FLUSH_WRITE_BYTES 2906384 ]

| UPTIME_SINCE_FLUSH_STATUS | 5996 |



; ACTION ENGINEERING

No action should ever require the DBMS to
restart In order for It to take affect.

The commercial systems are much better
than this than the open-source systems.

20



; ACTION ENGINEERING )1

Allow replica configurations to diverge from

each other.
Replicas

Master . +

ooo

| Doooooo
ooo
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What About Oracle’'s
Self-Driving DBMS?



Self-Driving DBMS?

From:Andy Pavlo {pavlu@ca.cmuedur:-
To: Larry Ellison <larry.ellison@oracle.com>

Date: 9/15/17 11:17 PM

LE - I saw your announcement Jbout Oracle putting out the
"self-driving” DBMS. What's up with that? You know that my

squad been working on our self-driving DBMS for the last
fwo years:

http://pelotondb.io

How can you do this to me after all Fhat we've been |
through together? This is like that time we were together in
Guatemala back in 1999. Do you remember when you
asked me whether I had a spare condom? I gave my last

t night that you
to vou and then I found out the nex
GI"IF.'_ }’. e eniteaca Youl told me that

anagement Systems

bin Lin, Jiexi Lin, Lin Ma, Prashanth Menon,
Siddharth Santurkar, Anthony Tomasic
ngjun Wu*, Ran Xian, Tieying Zhang
jonal University of Singapore

Much of the previous work on self-
bn standalone tools that target only a
For example, some tools are able
physical design of a database [16
partitioning schemes [6, 44], data o
fiews [5]. Other tools are able to se!
In application [56, 22]. Most of these ate in the same

ay: the DBA provides it with a sample database and workload
face that guides a search process to find an optimal or near-optimal

nfiguration. All of the major DBMS vendors’ tools. including
Iracle [23, 38], Microsoft [16, 42], and IBM [55, 57]. operate
this manner. There is a recent push for integrated components
jat support adaptive architectures [36]. but these again only focus
h solving one problem. Likewise. cloud-based systems employ
ynamic resource allocation at the service-level [20]. but do not
ine individual databases.

All of these are insufficient for a completely autonomous system

cause they are (1) external to the DBMS, (2) reactionary, or (3)

it able to take a holistic view that considers more than one problem

o time. That is, they observe the DBMS’s behavior from outside

the system and advise the DBA on how to make corrections o

only one aspect of the problem afier it occurs. The tuning tools
pume that the human operating them is knowledgeable enough
update the DBMS during a time window when it will have the
st impact on applications. The database landscape, however, has
inged significantly in the last decade and one cannot assume that
DBMS is deployed by an expert that understands the intricacies
fatabase optimization. But even if these tools were automated
h that they could deploy the optimizations on their own, existing
MS architectures are not designed to support major changes
hout stressing the system further nor are they able to adapt in
fcipation of future bottlenecks.
h this paper, we make the case that self-driving database systems
mow achicvable. We begin by discussing the key challenges with
a system, We then present the architecture of Peloton [1], the
IDBMS that is designed for autonomous operation. We conclude
some initial results on using Peloton’s integrated deep learning
hework for workload forecasting and action deployment.

PROBLEM OVERVIEW
e first challenge in a self-driving DBMS is to understand an
ation’s workload. The most basic level is to characterize
jes as being for either an OLTP or OLAP application [26]
DBMS identifies which of these two workload classes the
ication belongs to, then it can make decisions about how to
fize the database. For example, if it is OLTP, then the DBMS
Id store tuples in a row-oriented layout that is optimized for
. If it is OLAP. then the DBMS should use a column-oriented



https://www.oracle.com/database/autonomous-database/feature.html

@ CONCLUSION

True autonomous DBMSs are achievable In
the next decade.

You should think about how each new
feature can be controlled by a machine.

24



andy pavlo

[ 9)



https://twitter.com/andy_pavlo

Show the last

second

A
ot
=Y
s
I
L]
T’
m
L
-

3500

3000

2500

2000

1500

1000

200

|Postgres_9.3

results

Throughput (more is better)




OTTERTUNE

mysql> SHOW GLOBAL STATUS;

e R
| METRIC_NAME | VALUE
e R
o NNl 2 =YY m | ABORTED_CLIENTS | 0
L\ JINNT NJLL J|r| ABORTED_CONNECTS | 0
+ | INNODB_BUFFER_POOL_BYTES_DATA | 129499136
COIITFCTOR | | INNODB_BUFFER_POOL_BYTES_DIRTY | 76070912
| | INNODB_BUFFER_POOL_PAGES_DATA | 7904
e | INNODB_BUFFER_POOL_PAGES_DIRTY | 4643
| | INNODB_BUFFER_POOL_PAGES_FLUSHED | 25246
| | INNODB_BUFFER_POOL_PAGES_FREE | 0
| | INNODB_BUFFER_POOL_PAGES_MISC | 288
| | INNODB_BUFFER_POOL_PAGES_TOTAL | 8192
| | INNODB_BUFFER_POOL_READS | 15327
INNSTALL AGENT | | INNODB_BUFFER_POOL_READ_AHEAD | 0
—"9 | emar ey | | INNODB_BUFFER_POOL_READ_AHEAD_EVICT | ©
| | INNODB_BUFFER_POOL_READ_AHEAD_RND | ©
| | INNODB_BUFFER_POOL_READ_REQUESTS | 2604302
TARGET | | INNODB_BUFFER_POOL_WAIT_FREE | 0
Sy e = | | INNODB_BUFFER_POOL_WRITE_REQUESTS | 562763
DATABASLEL | | INNODBDATA_FSYNCS | 2836
| | INNODB_DATA_PENDING_FSYNCS | 1
. | INNODB_DATA_WRITES | 28026
I| UPTIME | 5996
.| UPTIME_SINCE_FLUSH_STATUS | 5996
|
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; ACTION ENGINEERING

Provide a notification callback to indicate
when an action starts and when it
completes.

Harder for changes that can be used before
the action completes.

30



Thank you!
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