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The “right answer” for inference

« Bayes rule

« As implemented in graphical models
« But, too expensive

 |f we could do it, benefit: each node/edge has semantics
» Helps model design, interpretation
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OTOH, deep nets

« Efficient inference = simple matrix ops, fixed nonlinearities
« Efficient training = SGD FTW
* Not much semantics, but fast and successful
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Can we get best of both worlds?

« Design deep nets that look more like graphical models (or vice versa)

* Want a model format that is both practical and “semantic”

Take advantage of semantics for interpretation, model design, expressiveness, ...
Take advantage of SGD for performance on big problems
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RNNs are Bayes nets already (sort of)

* Any RNN has to do approximate Bayesian inference (if it wants low loss)

* At each t, represents P(future | history) implicitly
* E.g., can sample by rolling out

* Update rule has to implement approximate conditioning
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Make implicit representation explicit

* In addition to predicting immediate next observation from latent state s,

 Predict richer statistics of future
« E.g., mean and covariance of observation features over next few steps
* E.g., how many steps until we next see a 1

 |f we use enough features, predictions are a 1:1 map from latent state
* And therefore from predicted P(future | history)

» Called “predictive state”
« A transformation of latent state to predictions about observables
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Predictive state example
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Predictive state example

“:(371 81) — 081
*‘:(CEQ 81) = OTSl
“:(513‘3 81) — OT281 If this matrix has
« full column rank
L1 0,
4, Lo S1 — OT S1
L3 OT2 \ :
- - - - then s, is
\ completely
so this vector determined
IS a state
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Adding predictive state to an RNN

e ... IS an inductive bias

« ... empirically helps prediction accuracy
... butlike all RNNs, serious worry about local optima

Swimmer HalfCheetah  Hopper Walker2d ~ Walker2d'

TRPO 91.34+ 255 330+ 158 1103 4+264  3834+96 1396 + 396
TRPO + pred 97.0+194 372+143 1195+272 416+88 1611+ 436

6.30%" 13.0%" 9.06%" 8.59%" 15.4%™"

Venkatraman et al. Predictive-State Decoders: Encoding
the Future into Recurrent Networks. , 2018
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ldea: bootstrap from supervised learning

« Empirically, many fewer worries about local optima for supervised learning
* And theoretically, in simple cases (e.g., linear)

* We hope to borrow this property

* Hope: solve some supervised learning problems, get good weights for our deep net
« then we can also run SGD to fine-tune these weights
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Bootstrap outline

1. Predict future features directly from a fixed window of history
« Supervised learning problem
« But suboptimal: finite memory
2. Add [predicted future at time (] as input when predicting future for t+17
« Chaining predictions allows infinite memory
« To avoid introducing recurrence, use (fixed) predictions from a previous training iteration
* Problem: training distribution changes across iterations
3. Fix the problem from step 2

* Imitation learning
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Imitation for inference

Inference is an RL problem (state = predictions so far, action = make another
prediction conditioned on state, cost = sum of errors in predictions)

Learning to do inference = finding a good policy

 Don’t need full RL: it's much easier to imitate an “expert”
« expert always gets its prediction from a labeled training set

Which is good: unlike full RL, we can reduce imitation learning to supervised learning
* Vvia approximate policy iteration
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(Exact) policy iteration

e Do at least once:

 for all states s, actions a

 calculate current total cost Q7(s, a), value V*(s) = Ea~x(s)[Q"(s, a)], and
(dis)advantage A"(s, a) = Q"(s, a) — V™(s)

» choose n"*"(s) = argmina A™(s, a) // improve

// evaluate

* Doesn’t work in a real-size problem:
* must sample (s, a) rather than iterating over all
« can't calculate A" exactly, must estimate somehow
e can’'t choose new policy freely, must work in some hypothesis class
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Approximate policy iteration (meta-algorithm)

* Do at least once:
* estimate A"(s, a) // evaluate
» update "¢V to reduce E__, [A™(s, a)] // improve

 To instantiate: way to estimate A"(s, a), way to update "
« also starting m, stopping criterion
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Simple analysis of approximate policy iteration

« Guarantee: cost of "V is V™(so) + T Enew[A”(S, a)]

* via performance difference lemma (simple proof: telescoping sum)
« improvement when Enew[A”(s, a)] < 0 (i.e., m improvable within hypothesis class, training succeeds)

+ Difficulty: expectation is under distribution of (s, a) from 7"V (not the distribution we

used to collect data)
« Can we develop algorithms that guarantee improvement (w/ assumptions) despite this

difficulty?

 Yes...
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DAgger

« Sample states according to expert policy
« Estimate A" for all actions in current state (error to gold label)
* Generate training examples: (s, a, A%(s, a))

* Train "W by no-regret cost-sensitive classification
 sadly, deep nets aren’t no-regret

Ross, Gordon, Bagnell. A Reduction of Imitation Learning and Structured
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AggreValeD

« Sample states according to expert policy
« Estimate A" for all actions in current state (error to gold label)

« Update "W by policy gradient (or natural gradient) to reduce cost
« works for any differentiable policy, including deep nets

Sun et al. Deeply AggreVaTeD: Differentiable Imitation
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Empirically, beats SGD w/ random init
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Bonus: our network can explicitly encode Bayes rule

Discrete observation x; (as 1-hot vector)

Choose future statistic ¢ of the form x; X gb(a:t+1:t+k)
 phi arbitrary, except should include a constant feature

When predicting  ++1 from E(v;) and x;:

« First layer: compute a:;rE(zpt)then renormalize (using constant in ;)
« Remaining layers arbitrary

* Now can implement HMM learning and forward inference

* use a single linear layer

* |f true model is an HMM, after learning, linear layer’s parameters encode transition, observation
probabilities
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Thank you!
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