
Systems | Fueling future disruptions

Research
Faculty Summit 2018

Neural networks
and Bayes Rule

Geoff Gordon
Research Director, MSR Montreal
Joint work with Wen Sun and others

The “right answer” for inference

•  Bayes rule
•  As implemented in graphical models
•  But, too expensive

•  If we could do it, benefit: each node/edge has semantics
•  Helps model design, interpretation

OTOH, deep nets

•  Efficient inference = simple matrix ops, fixed nonlinearities
•  Efficient training = SGD FTW
•  Not much semantics, but fast and successful

Can we get best of both worlds?

•  Design deep nets that look more like graphical models (or vice versa)
•  Want a model format that is both practical and “semantic”
•  Take advantage of semantics for interpretation, model design, expressiveness, …
•  Take advantage of SGD for performance on big problems

RNNs are Bayes nets already (sort of)

•  Any RNN has to do approximate Bayesian inference (if it wants low loss)
•  At each t, represents P(future | history) implicitly

•  E.g., can sample by rolling out

•  Update rule has to implement approximate conditioning

Make implicit representation explicit

•  In addition to predicting immediate next observation from latent state st,
•  Predict richer statistics of future
•  E.g., mean and covariance of observation features over next few steps
•  E.g., how many steps until we next see a 1
•  …

•  If we use enough features, predictions are a 1:1 map from latent state
•  And therefore from predicted P(future | history)

•  Called “predictive state”
•  A transformation of latent state to predictions about observables

Predictive state example

Predictive state example

E(x1 | s1) = Os1

E(x2 | s1) = OTs1

E(x3 | s1) = OT 2s1

E

0

@

2

4
x1

x2

x3

3

5
���� s1

1

A =

2

4
O
OT
OT 2

3

5 s1

If	this	matrix	has	
full	column	rank	

then	s1	is	
completely	
determined	so	this	vector	

is	a	state	

Adding predictive state to an RNN

•  … is an inductive bias
•  … empirically helps prediction accuracy
•  … but like all RNNs, serious worry about local optima

(a) Swimmer, N=30 (b) HalfCheetah, N=30 (c) Hopper, N=40

Figure 7: Top: Per-iteration average returns for TRPO and TRPO+PREDICTIVE-STATE DECODERS
vs. batch iteration, with 5e3 steps per iteration. Bottom: Sorted per-run mean average returns (across
iterations). Our method generally produces better models.

Table 1: Top: Mean Average Returns ± one standard deviation, with N = 15 for Walker2d† and
N = 30 otherwise. Bottom: Relative improvement of on the means. ⇤ indicates p < 0.05 and
⇤⇤ indicates p < 0.005 on Wilcoxon’s signed-rank test for significance of improvement. All runs
computed with 5e3 transitions per iteration, except Walker2d†, with 5e4.

Swimmer HalfCheetah Hopper Walker2d Walker2d†

[41] 91.3± 25.5 330± 158 1103± 264 383± 96 1396± 396

[41]+PSDs 97.0± 19.4 372± 143 1195± 272 416± 88 1611± 436

Rel. � 6.30%⇤ 13.0%⇤ 9.06%⇤ 8.59%⇤ 15.4%⇤⇤

our implementation of PSDs introduces parameters (those of the decoder) that are unaffected by the
constraint, as the decoder does not directly govern the agent’s actions.

In these experiments, results are highly stochastic due to both environment randomness and non-
deterministic parallelization of rllab [18]. We therefore repeat each experiment at least 15 times
with paired random seeds. We use k = 2 for most experiments (k = 4 for Hopper), the identity
featurization for �, and vary � in

�
101, 100, . . . , 10�6

, and employ the LSTM cell and other default

parameters of TRPO. We report the same metric as [18]: per-TRPO batch average return. Addition-
ally, we report per-run performance by plotting the sorted average TRPO batch returns (each item is a
number representing a method’s performance for a single seed).

Figs. 6 and 7 demonstrate that our method generally produces higher-quality results than the baseline.
These results are further summarized by their means and stds. in Table 1. In Figure 6, 40% of our
method’s models are better than the best baseline model. In Figure 7c, 25% of our method’s models
are better than the second-best (98th percentile) baseline model. We compare various RNN cells in
Table 2, and find our method can improve Basic (linear + tanh nonlinearity), GRU, and LSTM RNNs,
and usually reduces the performance variance. We used Tensorflow [1] and passed both the “hidden"
and “cell" components of an LSTM’s internal state to the decoder. We also conducted preliminary
additional experiments with second order featurization (�(x) = [x, vec(xxT)]). Corresponding
to Tab. 2, column 1 for the inverted pendulum, second order features yielded 861 ± 41, a 4.9%
improvement in the mean and a large reduction in variance.

8

TRPO	
TRPO	+	pred	

Venkatraman	et	al.	Predic?ve-State	Decoders:	Encoding	
the	Future	into	Recurrent	Networks.	arXiv,	2018	

Idea: bootstrap from supervised learning

•  Empirically, many fewer worries about local optima for supervised learning
•  And theoretically, in simple cases (e.g., linear)

•  We hope to borrow this property

•  Hope: solve some supervised learning problems, get good weights for our deep net
•  then we can also run SGD to fine-tune these weights

Bootstrap outline

1.  Predict future features directly from a fixed window of history
•  Supervised learning problem
•  But suboptimal: finite memory

2.  Add [predicted future at time t] as input when predicting future for t+1
•  Chaining predictions allows infinite memory
•  To avoid introducing recurrence, use (fixed) predictions from a previous training iteration
•  Problem: training distribution changes across iterations

3.  Fix the problem from step 2
•  imitation learning

Imitation for inference

•  Inference is an RL problem (state = predictions so far, action = make another
prediction conditioned on state, cost = sum of errors in predictions)

•  Learning to do inference = finding a good policy
•  Don’t need full RL: it’s much easier to imitate an “expert”

•  expert always gets its prediction from a labeled training set

•  Which is good: unlike full RL, we can reduce imitation learning to supervised learning
•  via approximate policy iteration

(Exact) policy iteration

•  Do at least once:
•  for all states s, actions a

•  calculate current total cost Q𝜋(s, a), value V𝜋(s) = Ea~𝜋(s)[Q𝜋(s, a)], and
(dis)advantage A𝜋(s, a) = Q𝜋(s, a) – V𝜋(s)

•  choose 𝜋new(s) = argmina A𝜋(s, a)

•  Doesn’t work in a real-size problem:
•  must sample (s, a) rather than iterating over all
•  can’t calculate A𝜋 exactly, must estimate somehow
•  can’t choose new policy freely, must work in some hypothesis class

//	evaluate	

//	improve	

Approximate policy iteration (meta-algorithm)

•  Do at least once:
•  estimate A𝜋(s, a)
•  update 𝜋new to reduce Enew[A𝜋(s, a)]

•  To instantiate: way to estimate A𝜋(s, a), way to update 𝜋new

•  also starting 𝜋, stopping criterion

//	evaluate	

//	improve	

Simple analysis of approximate policy iteration

•  Guarantee: cost of 𝜋new is V𝜋(s0) + T Enew[A𝜋(s, a)]
•  via performance difference lemma (simple proof: telescoping sum)
•  improvement when Enew[A𝜋(s, a)] < 0 (i.e., 𝜋 improvable within hypothesis class, training succeeds)

•  Difficulty: expectation is under distribution of (s, a) from 𝜋new (not the distribution we
used to collect data)

•  Can we develop algorithms that guarantee improvement (w/ assumptions) despite this
difficulty?
•  Yes…

DAgger

•  Sample states according to expert policy
•  Estimate A𝜋 for all actions in current state (error to gold label)
•  Generate training examples: (s, a, A𝜋(s, a))
•  Train 𝜋new by no-regret cost-sensitive classification

•  sadly, deep nets aren’t no-regret

Ross,	Gordon,	Bagnell.	A	Reduc?on	of	Imita?on	Learning	and	Structured	
Predic?on	to	No-Regret	Online	Learning.		AISTATS,	2011	

AggreVaTeD

•  Sample states according to expert policy
•  Estimate A𝜋 for all actions in current state (error to gold label)
•  Update 𝜋new by policy gradient (or natural gradient) to reduce cost

•  works for any differentiable policy, including deep nets

Sun	et	al.	Deeply	AggreVaTeD:	Differen?able	Imita?on	
Learning	for	Sequen?al	Predic?on.	arXiv,	2017.	

Empirically, beats SGD w/ random init
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

pert a small fraction of the time still allows to observe those
locations but also unstucks mario and makes it collect a
wider variety of useful data. A video available on YouTube
(Ross, 2010b) also shows a qualitative comparison of the
behavior obtained with each method.

5.3 Handwriting Recognition

Finally, we demonstrate the efficacy of our approach on a
structured prediction problem involving recognizing hand-
written words given the sequence of images of each charac-
ter in the word. We follow Daumé III et al. (2009) in adopt-
ing a view of structured prediction as a degenerate form of
imitation learning where the system dynamics are deter-
ministic and trivial in simply passing on earlier predictions
made as inputs for future predictions. We use the dataset
of Taskar et al. (2003) which has been used extensively in
the literature to compare several structured prediction ap-
proaches. This dataset contains roughly 6600 words (for
a total of over 52000 characters) partitioned in 10 folds.
We consider the large dataset experiment which consists of
training on 9 folds and testing on 1 fold and repeating this
over all folds. Performance is measured in terms of the
character accuracy on the test folds.

We consider predicting the word by predicting each charac-
ter in sequence in a left to right order, using the previously
predicted character to help predict the next and a linear
SVM7, following the greedy SEARN approach in Daumé
III et al. (2009). Here we compare our method to SMILe,
as well as SEARN (using the same approximations used
in Daumé III et al. (2009)). We also compare these ap-
proaches to two baseline, a non-structured approach which
simply predicts each character independently and the su-
pervised training approach where training is conducted
with the previous character always correctly labeled. Again
we try all choice of ↵ 2 {0.1, 0.2, . . . , 1} for SEARN, and
report results for ↵ = 0.1, ↵ = 1 (pure policy iteration)
and the best ↵ = 0.8, and run all approaches for 20 itera-
tions. Figure 5 shows the performance of each approach on
the test folds after each iteration as a function of training
data. The baseline result without structure achieves 82%
character accuracy by just using an SVM that predicts each
character independently. When adding the previous charac-
ter feature, but training with always the previous character
correctly labeled (supervised approach), performance in-
creases up to 83.6%. Using DAgger increases performance
further to 85.5%. Surprisingly, we observe SEARN with
↵ = 1, which is a pure policy iteration approach performs
very well on this experiment, similarly to the best ↵ = 0.8
and DAgger. Because there is only a small part of the in-
put that is influenced by the current policy (the previous

7Each character is 8x16 binary pixels (128 input features); 26
binary features are used to encode the previously predicted let-
ter in the word. We train the multiclass SVM using the all-pairs
reduction to binary classification (Beygelzimer et al., 2005).

0 2 4 6 8 10 12 14 16 18 20
0.81

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

Training Iteration

Te
st

 F
ol

ds
 C

ha
ra

ct
er

 A
cc

ur
ac

y

DAgger (βi=I(i=1))

SEARN (α=1)
SEARN (α=0.8)
SEARN (α=0.1)
SMILe (α=0.1)
Supervised
No Structure

Figure 5: Character accuracy as a function of iteration.

predicted character feature) this makes this approach not
as unstable as in general reinforcement/imitation learning
problems (as we saw in the previous experiment). SEARN
and SMILe with small ↵ = 0.1 performs similarly but sig-
nificantly worse than DAgger. Note that we chose the sim-
plest (greedy, one-pass) decoding to illustrate the benefits
of the DAGGER approach with respect to existing reduc-
tions. Similar techniques can be applied to multi-pass or
beam-search decoding leading to results that are competi-
tive with the state-of-the-art.

6 FUTURE WORK

We show that by batching over iterations of interaction
with a system, no-regret methods, including the presented
DAGGER approach can provide a learning reduction with
strong performance guarantees in both imitation learning
and structured prediction. In future work, we will consider
more sophisticated strategies than simple greedy forward
decoding for structured prediction, as well as using base
classifiers that rely on Inverse Optimal Control (Abbeel and
Ng, 2004; Ratliff et al., 2006) techniques to learn a cost
function for a planner to aid prediction in imitation learn-
ing. Further we believe techniques similar to those pre-
sented, by leveraging a cost-to-go estimate, may provide
an understanding of the success of online methods for rein-
forcement learning and suggest a similar data-aggregation
method that can guarantee performance in such settings.

Acknowledgements

This work is supported by the ONR MURI grant N00014-
09-1-1052, Reasoning in Reduced Information Spaces, and
by the National Sciences and Engineering Research Coun-
cil of Canada (NSERC).

Differential Imitation Learning for Sequential Prediction

(a) Cartpole (b) Acrobot (c) Acrobot (POMDP) (d) Walker (e) Hopper

Figure 2. Performance (cumulative reward R on y-axis) versus number of episodes (n on x-axis) of AggreVaTeD (blue and green),
experts (red), and RL algorithms (dotted) on different robotics simulators.

performance in the Hopper problem. After 100 iterations,
we see that by leveraging the help from experts, Aggre-
VaTeD can achieve much faster improvement rate than the
corresponding RL algorithms.

6.2. Dependency Parsing on Handwritten Algebra

We consider a sequential prediction problem: transition-
based dependency parsing for handwritten algebra with raw
image data (Duyck & Gordon, 2015). The parsing task
for algebra is similar to the classic dependency parsing
for natural language (Chang et al., 2015a) where the prob-
lem is modelled in the IL setting and the state-of-the-art is
achieved by AggreVaTe with FTRL (using Data Aggrega-
tion). The additional challenge here is that the inputs are
handwritten algebra symbols in raw images. We directly
learn to predict parse trees from low level image features
(Histogram of Gradient features (HoG)). During training,
the expert is constructed using the ground-truth dependen-
cies in training data. The full state s during parsing con-
sists of three data structures: Stack, Buffer and Arcs, which
store raw images of the algebraic symbols. Since the sizes
of stack, buffer and arcs change during parsing, a com-
mon approach is to featurize the state s by taking the fea-
tures of the latest three symbols from stack, buffer and arcs
(e.g., (Chang et al., 2015a)). Hence the problem falls into
the partially observable setting, where the feature o is ex-
tracted from state s and only contains partial information
about s. The dataset consists of 400 sets of handwritten
algebra equations. We use 80% for training, 10% for val-
idation, and 10% for testing. We include an example of
handwritten algebra equations and its dependency tree in
Appendix I. Note that different from robotics simulators
where at every episode one can get fresh data from the sim-
ulators, the dataset is fixed and sample efficiency is critical.

The RNN policy follows the design from (Sutskever et al.,
2014). It consists of two LSTMs. Given a sequence of al-
gebra symbols ⌧ , the first LSTM processes one symbol at
a time and at the end outputs its hidden states and mem-
ory (i.e., a summary of ⌧). The second LSTM initializes its
own hidden states and memory using the outputs of the first
LSTM. At every parsing step t, the second LSTM takes the
current partial observation ot (ot consists of features of the

(a) Validation (b) Test

Figure 3. UAS (y-axis) versus number of iterations (n on x-axis)
of AggreVaTeD with LSTM policy (blue and green), experts (red)
on validation set and test set for Arc-Eager Parsing.

most recent item from stack, buffer and arcs) as input, and
uses its internal hidden state and memory to compute the
action distribution ⇡(·|o

1

, ..., ot, ⌧) conditioned on history.
We also tested reactive policies constructed as fully con-
nected ReLu neural networks (NN) (one-layer with 1000
hidden states) that directly maps from observation ot to ac-
tion a, where ot uses the most three recent items. We use
variance reduced gradient estimations, which give better
performance in practice. The performance is summarised
in Table 1. Due to the partial observability of the prob-
lem, AggreVaTeD with a LSTM policy achieves signifi-
cantly better UAS scores compared to the NN reactive pol-
icy and DAgger with a Kernelized SVM (Duyck & Gordon,
2015). Also AggreVaTeD with a LSTM policy achieves
97% of optimal expert’s performance. Fig. 3 shows the im-
provement rate of regular gradient and natural gradient on
both validation set and test set. Overall we observe that
both methods have similar performance. Natural gradient
achieves a better UAS score in validation and converges
slightly faster on the test set but also achieves a lower UAS
score on test set.

7. Conclusion
We introduced AggreVaTeD, a differentiable imitation
learning algorithm which trains neural network policies for
sequential prediction tasks such as continuous robot control
and dependency parsing on raw image data. We showed
that in theory and in practice IL can learn much faster
than RL with access to optimal cost-to-go oracles. The IL
learned policies were able to achieve expert and sometimes
super-expert levels of performance in both fully observable

Bonus: our network can explicitly encode Bayes rule

• Discrete observation xt (as 1-hot vector)
• Choose future statistic of the form

• phi arbitrary, except should include a constant feature

• When predicting from and xt:
• First layer: compute then renormalize (using constant in)
• Remaining layers arbitrary

• Now can implement HMM learning and forward inference
• use a single linear layer
• If true model is an HMM, after learning, linear layer’s parameters encode transition, observation

probabilities

xt ⇥ �(xt+1:t+k)

x

T
t E(t)

t

t+1 E(t)
 t

Thank you!

	Research�Faculty Summit 2018
	Confidential Computing
	Slide palette info
	Text with bullet points—adjusting list levels
	Headline goes here
	Headline goes here
	Headline goes here
	Headline goes here
	Headline goes here
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

