

Research Faculty Summit 2018

Systems | Fueling future disruptions

Neural networks and Bayes Rule

Geoff Gordon
Research Director, MSR Montreal
Joint work with Wen Sun and others

The "right answer" for inference

- Bayes rule
 - As implemented in graphical models
 - But, too expensive
- If we could do it, benefit: each node/edge has semantics
 - Helps model design, interpretation

OTOH, deep nets

- Efficient inference = simple matrix ops, fixed nonlinearities
- Efficient training = SGD FTW
- Not much semantics, but fast and successful

Can we get best of both worlds?

- Design deep nets that look more like graphical models (or vice versa)
- Want a model format that is both practical and "semantic"
- Take advantage of semantics for interpretation, model design, expressiveness, ...
- Take advantage of SGD for performance on big problems

RNNs are Bayes nets already (sort of)

- Any RNN has to do approximate Bayesian inference (if it wants low loss)
- At each t, represents P(future | history) implicitly
 - E.g., can sample by rolling out
- Update rule has to implement approximate conditioning

Make implicit representation explicit

- In addition to predicting immediate next observation from latent state s_t ,
 - Predict richer statistics of future
 - E.g., mean and covariance of observation features over next few steps
 - E.g., how many steps until we next see a 1
 - •
- If we use enough features, predictions are a 1:1 map from latent state
 - And therefore from predicted P(future | history)
- Called "predictive state"
 - A transformation of latent state to predictions about observables

Predictive state example

Predictive state example

$$\mathbb{E}(x_1\mid s_1) = Os_1$$

$$\mathbb{E}(x_2\mid s_1) = OTs_1$$

$$\mathbb{E}(x_3\mid s_1) = OT^2s_1$$
 If this matrix has full column rank
$$\mathbb{E}\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] \middle| s_1\right) = \left[\begin{array}{c} O \\ OT \\ OT^2 \end{array}\right] s_1$$
 then s_1 is completely determined is a state

Adding predictive state to an RNN

- ... is an inductive bias
- ... empirically helps prediction accuracy
- ... but like all RNNs, serious worry about local optima

TRPO TRPO + pred

Swimmer	HalfCheetah	Hopper	Walker2d	Walker2d [†]
91.3 ± 25.5	330 ± 158	1103 ± 264	383 ± 96	1396 ± 396
97.0 ± 19.4	372 ± 143	$\boldsymbol{1195 \pm 272}$	416 ± 88	1611 ± 436
6.30%*	13.0%*	9.06%*	8.59%*	15.4%**

Venkatraman et al. Predictive-State Decoders: Encoding the Future into Recurrent Networks. arXiv, 2018

Idea: bootstrap from supervised learning

- Empirically, many fewer worries about local optima for supervised learning
 - And theoretically, in simple cases (e.g., linear)
- We hope to borrow this property
- Hope: solve some supervised learning problems, get good weights for our deep net
 - then we can also run SGD to fine-tune these weights

Bootstrap outline

- 1. Predict future features directly from a fixed window of history
 - Supervised learning problem
 - But suboptimal: finite memory
- 2. Add [predicted future at time t] as input when predicting future for t+1
 - Chaining predictions allows infinite memory
 - To avoid introducing recurrence, use (fixed) predictions from a previous training iteration
 - Problem: training distribution changes across iterations
- 3. Fix the problem from step 2
 - imitation learning

Imitation for inference

- Inference is an RL problem (state = predictions so far, action = make another prediction conditioned on state, cost = sum of errors in predictions)
- Learning to do inference = finding a good policy
- Don't need full RL: it's much easier to imitate an "expert"
 - expert always gets its prediction from a labeled training set
- Which is good: unlike full RL, we can reduce imitation learning to supervised learning
 - via approximate policy iteration

(Exact) policy iteration

Do at least once:

- for all states s, actions a
 - calculate current total cost $Q^{\pi}(s, a)$, value $V^{\pi}(s) = E_{a \sim \pi(s)}[Q^{\pi}(s, a)]$, and (dis)advantage $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$
- choose $\pi^{\text{new}}(s) = \operatorname{argmin}_a A^{\pi}(s, a)$

// evaluate

// improve

- Doesn't work in a real-size problem:
 - must sample (s, a) rather than iterating over all
 - can't calculate A^π exactly, must estimate somehow
 - can't choose new policy freely, must work in some hypothesis class

Approximate policy iteration (meta-algorithm)

- Do at least once:
 - estimate $A^{\pi}(s, a)$
 - update π^{new} to reduce $\mathsf{E}_{\text{new}}[\mathsf{A}^{\pi}(\mathsf{s},\,\mathsf{a})]$

- // evaluate
- // improve
- To instantiate: way to estimate $A^{\pi}(s, a)$, way to update π^{new}
 - also starting π , stopping criterion

Simple analysis of approximate policy iteration

- Guarantee: cost of π^{new} is $V^{\pi}(s_0) + T E_{\text{new}}[A^{\pi}(s, a)]$
 - via performance difference lemma (simple proof: telescoping sum)
 - improvement when $E_{new}[A^{\pi}(s, a)] < 0$ (i.e., π improvable within hypothesis class, training succeeds)
- Difficulty: expectation is under distribution of (s, a) from π^{new} (not the distribution we used to collect data)
- Can we develop algorithms that guarantee improvement (w/ assumptions) despite this difficulty?
 - Yes...

DAgger

- Sample states according to expert policy
- Estimate A^π for all actions in current state (error to gold label)
- Generate training examples: (s, a, A^{π} (s, a))
- Train π^{new} by no-regret cost-sensitive classification
 - sadly, deep nets aren't no-regret

Ross, Gordon, Bagnell. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. AISTATS, 2011

AggreVaTeD

- Sample states according to expert policy
- Estimate A^π for all actions in current state (error to gold label)
- Update π^{new} by policy gradient (or natural gradient) to reduce cost
 - works for any differentiable policy, including deep nets

Sun et al. Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction. <u>arXiv</u>, 2017.

Empirically, beats SGD w/ random init

80

100

20

40

60

0.45

Research Faculty Summit 2018

Bonus: our network can explicitly encode Bayes rule

- Discrete observation x_t (as 1-hot vector)
- Choose future statistic t of the form $x_t \times \phi(x_{t+1:t+k})$
 - phi arbitrary, except should include a constant feature
- When predicting t+1 from $\mathbb{E}(\psi_t)$ and x_t :
 - First layer: compute $x_t^T\mathbb{E}(\psi_t)$ then renormalize (using constant in ψ_t)
 - Remaining layers arbitrary
- Now can implement HMM learning and forward inference
 - use a single linear layer
 - If true model is an HMM, after learning, linear layer's parameters encode transition, observation probabilities

Thank you!

