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Using Synthetic 
DNA for Data 
Storage

Original idea  
from 1960s 

Revival in 2012 

Builds on the  
progress of the  
biotech industry 

  



1 Exabyte in 1 in3

Extremely Dense

1,000s of Years

Extremely Durable

Never Gets Obsolete

DNA Molecules 
for Digital Data

Making Copies Is Nearly Free
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Repeated Letters Are Bad: Avoid them with Randomization & Rotation.
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Synthetic DNA has limited length: Break it  into chunks.
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~20 Bytes per 150nt DNA sequence. Many sequences per file. ~1% (in, del, sub) error per base.
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Large array DNA synthesis
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A CG TA CC G A C A C C T

DNA Sequencing

Image credit: Oxford Nanopore
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work5,6, our approach employs concatenated codes with Reed–Solomon 
(RS) as the outer code (Fig. 2b). (However, unlike most earlier work, we 
used very long codes (length up to 65,536) to handle large variations in 
the number of errors between code words.) Input data are then rand-
omized by XOR with a pseudo-random sequence. Randomization facil-
itates coping with errors by breaking multi-bit repeats (e.g., 00000000) 
and ensures that the DNA sequences we produce are dissimilar, which 
makes decoding less computationally costly.

The encoder first partitions the randomized digital file into mul-
tiple blocks, up to a megabyte in size. We represent each block by a 
matrix M with up to ten rows and up to 55,000 columns, where every 
matrix cell carries a 16-bit value. Next, we encode each row of M with 
a Reed–Solomon code to obtain a larger matrix M` that extends M by 
appending redundant columns. Every column of M` is later converted 
into a DNA sequence of length 110 (114 for File 33; Supplementary 
Note 3 and Supplementary Table 3). When Reed–Solomon redun-
dancy is set to 15%, 87% of the DNA sequences carry raw input data 

(systematic RS coordinates), while 13% carry redundant data used for 
error correction (redundant RS coordinates).

The conversion of columns of M` to DNA sequences involves rep-
resenting a column in base 4, appending a prefix with address infor-
mation (block index and column index), breaking the column into 
consecutive fragments of size three each, treating the content of each 
fragment as a number between 0 and 63 written in base four, repre-
senting this number in base three to obtain a fragment of size four, 
putting the new fragments together, and applying a rotating code4 to 
turn a base-three representation into a base-four representation that 
eliminates homopolymers.

Finally, all DNA sequences are appended with 20-base PCR primer 
targets selected from the primer library on both ends to allow random 
access to the file (Supplementary Note 6 and Supplementary Figs. 3 
and 4). Resulting DNA sequences are synthesized into DNA strands, 
which can then be preserved using a variety of methods, and later 
selected via random access.
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Figure 2 Design of random access primers and coding algorithm. (a, i) We designed a primer library for our PCR-based random access method using 
an in silico process. Starting with a set of random 20-mers, the sequences keep mutating until they satisfy all the design criteria, which include their 
GC-content, the absence of long sequence-complementarities, absence of long stretches of homopolymers, and a minimum Hamming distance of 6 
bases from other primers. The preselected sequence set (19,480 sequences) is then filtered by melting temperature and a set that is as diverse as 
possible, that is, has low similarity between the sequences, is selected. (a, ii) The resulting set of candidate primers is then validated experimentally 
by synthesizing a pool of about 100,000 strands containing sets of size 1 to 200 DNA sequences each, surrounded by one of the 3,240 candidate 
primer pairs, and then randomly selecting 48 of those pairs for amplification. The product is sequenced, and sequences with each of the 48 primer 
pairs appear among sequencing reads, albeit at different relative proportions when normalized to the number of sequences in each set. (b) Our encoding 
process starts by randomizing data to reduce chances of secondary structures, primer–payload non-specific binding, and improved properties during 
decoding. It then breaks the data into fixed-size payloads, adds addressing information (Addr), and applies outer coding, which adds redundant 
sequences using a Reed–Solomon code to increase robustness to missing sequences and errors. The level of redundancy is determined by expected 
errors in sequencing and synthesis, as well as DNA degradation. Next, it applies inner coding, which ultimately converts the bits to DNA sequences. The 
resulting set of sequences is surrounded by a primer pair chosen from the library based on (low) level of overlap with payloads. (c) The decoding process 
starts by clustering reads based on similarity, and finding a consensus between the sequences in each cluster to reconstruct the original sequences, 
which are then decoded back to digital data.
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Putting it all together as (key, value) store

DNA storage 
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[Nature Biotechnology’18]

Over 700MB. 50M+ sequences. 9B+ Nucleotides,  
4B+ reads. Demonstrated random access w/ 40+ objects. 

Illumina and Nanopore sequencing readout.



10MBs/day           100GBs/second



Source: Robert Carlson
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•Data centers offer perfect abstraction for “exotic technologies” (Carmean)


•Large-scale fluidics for synthesis, manipulation and sequencing


•Throughput of ~1TB/s at the data-center level


•Computational cost significant 

•Today:~2.8KB/s encode, ~1KB/s decode on 16 core Xeon. 

Scalability



Beyond DNA Data Storage



DNA “computing" in the age of big data

~100TB per spot

275um

If DNA data storage succeeds, what if we 
could process data directly in DNA? 

Extremely parallel and energy efficient
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Slide credit: Kendall Stewart



Processing-in-Molecules

Slide credit: Kendall Stewart



Storage and Processing-in-Molecules (DNA)

Slide credit: Kendall Stewart
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Query Image: Query Image: All Queries

(a) Number of aigned reads vs. distance to query. Points indicate the mean across three

replicates, and error bars indicate standard error.

(b) Cumulative distribution of aligned reads as a function of increasing distance to the

query. Uniform distribution shown for reference.

Fig. 10: Selected results for two of the ten query images, and aggregated

results for all queries.

6 Discussion

In practice, the 10-dimensional image feature subspace used for our experiments
is insu�ciently selective. Referring back to Figure 1, the 100-dimensional space
was more e↵ective at relating distance to qualitative similarity. But it is di�cult
to train an encoder transform this already-compressed 100-dimensional subspace
onto a 30-nucleotide feature sequence.

We might be tempted to try longer feature regions, but this will likely ex-
perience more noise of the type seen in our results. Figure 11 illustrates this by
generalizing Figure 4 to feature regions of di↵erent sizes. These plots bin across
sequence length and target-query Hamming distance, and the color indicates ei-
ther the mean (on the left) or the standard deviation (on the right) of the yield
values in that bin, at our protocol temperature of 21�C. These plots tell us that
the average Hamming distance su�cient to reliably retrieve the target increases
as length increases, and that the variance in yield for targets past that Hamming
distance threshold increases as well. The increased su�cient Hamming distance
will make it harder for the encoder to push unrelated items apart in the sequence
space, and the additional noise will make the yield approximation used to train
our encoder less reliable.

These problems pose a di�cult challenge to scaling this system. One approach
is to use alternative probe designs that have less noise, such as the toehold-
exchange probes of Zhang et al. [24, 26], which use protector strands that are
complimentary to the query to increase the specificity of hybridization. In our
case, we want hybridization to be more specific, but not so specific that targets

Yottabyte-scale Associate Memories?







HD Video of OK Go’s This Too Shall Pass — watched 100M+ times



Photo:  Tara Brown /  UW

~10 mi l l ion copies of  the HD movie







Thank you!
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