
Systems | Fueling future disruptions

Research
Faculty Summit 2018

2

What Should You Do With Persistent
Memory?

Steven Swanson

Director, Non-Volatile Systems Lab
Computer Science and Engineering

UC San Diego

3

Non-volatile main memory (NVMM)

• Byte-addressable
• Denser than DRAM
• DRAM-comparable latency
• Higher bandwidth than SSD
• Ready for DMA / RDMA

Intel 3D XPoint NVDIMM

Memory
DRAM DIMM

DRAM DIMM

NVMM
NVDIMM

Memory
Controller

Memory
Controller

CPU

Last-level cache
L1/L2
Core

L1/L2
Core

NVDIMM

4

What Should You Do With NVMM?

1. Use files and a conventional
(distributed) file system

2. Use files and better file
(distributed) system

3. Build persistent data
structures

4. Use it as slow DRAM

EXT4

EXT4EXT4

EXT4EXT4

EXT4
CEPH
etc.Orion

NOVA NOVA

NOVA

NOVANOVA

NOVA

Log

5

What Should You Do With NVMM?

1. Use files and a conventional
(distributed) file system

2. Use files and better file
(distributed) system

3. Build persistent data
structures

4. Use it as slow DRAM

Orion

NOVA NOVA

NOVA

NOVANOVA

NOVA

6

File IO Atomicity Fault
Tolerance SpeedDirect

Access

DAX

7

NOVA: A File System for NVMM

• A NOVA FS is a tree of logs
• One log per inode

– Inode points to head and tail
– Logs are not contiguous

• Many Logs -> high concurrency
• Strong consistency guarantees
• Log-structured + journals + copy-

on-write

Head TailInode

Inode log

Committed entry

Uncommitted entry

Per-inode logging

8

Atomicity: Logging for Simple Metadata Operations

• Combines log-structuring,
journaling and copy-on-write

• Log-structuring for single log
update
– Write, msync, chmod, etc
– Lower overhead than journaling

and shadow paging

File log

Tail Tail

9

Atomicity: Lightweight Journaling for Complex
Metadata Operations

• Lightweight journaling for update
across logs
– Unlink, rename, etc
– Journal log tails instead of

metadata or data File log

Directory log

Tail

TailTail

Tail

Dir tail

File tail
Journal

10

Atomicity: Copy-on-write for file data

• Copy-on-write for file data
– Log only contains metadata
– Log is short
– Instant data GC

File log

Tail

Data 1 Data 2

Tail

Data 0 Data 1

11

Filebench throughput

0
50

100
150
200
250
300
350
400

Fileserver Varmail Webproxy Webserver

KO
ps

pe
r s

ec
on

d

Ext4-datajournal Ext4-DAX xfs-DAX NOVA

12

What Should You Do With NVMM?

1. Use files and a conventional
(distributed) file system

2. Use files and better file
(distributed) system

3. Build persistent data
structures

4. Use it as slow DRAM

???

NOVA NOVA

NOVA

NOVANOVA

NOVA

13

Existing Distributed File Systems are Slow

Local File
System

Distributed File System
Server

Network
Stack

Distributed File
System Client

Network
Stack

Application

Client FS

14

Orion: A Distributed Persistent Memory File
System

OrionFS

Application

OrionFS

RDMA

15

Orion: Key Features

• Based on NOVA
• Mirrored metadata on client

– Client keep local, NVMM copy of inode’s log
– Leases + simple arbitration for concurrent updates

• Mostly-local operation
– Local read cache
– CoW creates new, local copy

• Pervasive RDMA
– All addresses/pointers are RDMA-friendly
– Zero-copy IO for most transfers (NOVA data structures are RDMA targets)
– Single-ended remote data access

16

Application performance on Orion

17

What Should You Do With NVMM?

1. Use files and a conventional
(distributed) file system

2. Use files and better file
(distributed) system

3. Build persistent data
structures

4. Use it as slow DRAM
Log

18

Build NVMM Data Structures Is Hard

• All existing programming errors are still possible
– Memory leaks
– Multiple frees
– Locking errors

• There are new kinds of errors
– Pointers between NV memory pools
– Pointers from NVMM to DRAM

• Programmers get this stuff wrong
• Rebooting/restarting won’t help!
• Language + Compiler support will come, but slowly

19

Optimizing RocksDB

20

What Should You Do With NVMM?

1. Use files and a conventional
(distributed) file system

2. Use files and better file
(distributed) system

3. Build persistent data
structures

4. Use it as slow DRAM

Easy; ~5x gains

Pretty easy; ~10x gains

Really hard; ~30x gains
The NVMM Programmability Gap

21

Optimizing RocksDB

File Emulation

22

File Emulation

• Normal write-ahead logging
– open();
– write(); sync();

• Emulate read/write in user space
– open(); mmap();
– memcpy() + clwb + fence

• Almost POSIX semantics
– Minimal changes to app logic
– No complex logging, allocation, or

locking
• Almost persistent data structure

performance
– Just 10% slower.

23

File Emulation Speedups

0

10

20

30

40

50

60

SQLite KyotoCabinet RocksDB

Fi
le

 E
m

ul
at

io
n

Sp
ee

du
p

XFS-DAX Ext4-DAX NOVA

24

What Should You Do With NVMM?

• You should study it!
– Many interesting, open problems remain
– Lots of PhDs to come

• You should use it!
– Use a file system!
– Want more performance? Use file emulation!
– Want more performance? Build persistent data structures.

25

NOVA is open source.
We are preparing it for “upstreaming” in
to Linux.

To help or try it out:
https://github.com/NVSL/linux-nova

26

Thanks!

Thank you!

	Research�Faculty Summit 2018
	What Should You Do With Persistent Memory?
	Non-volatile main memory (NVMM)
	What Should You Do With NVMM?
	What Should You Do With NVMM?
	Slide Number 6
	NOVA: A File System for NVMM
	Atomicity: Logging for Simple Metadata Operations
	Atomicity: Lightweight Journaling for Complex Metadata Operations
	Atomicity: Copy-on-write for file data
	Filebench throughput
	What Should You Do With NVMM?
	Existing Distributed File Systems are Slow
	Orion: A Distributed Persistent Memory File System
	Orion: Key Features
	Application performance on Orion
	What Should You Do With NVMM?
	Build NVMM Data Structures Is Hard
	Optimizing RocksDB
	What Should You Do With NVMM?
	Optimizing RocksDB
	File Emulation
	File Emulation Speedups
	What Should You Do With NVMM?
	NOVA is open source.�We are preparing it for “upstreaming” in to Linux.
	Thanks!
	Slide Number 27
	Slide Number 28

