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Non-volatile main memory (NVMM)

• Byte-addressable
• Denser than DRAM
• DRAM-comparable latency
• Higher bandwidth than SSD
• Ready for DMA / RDMA
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What Should You Do With NVMM?

1. Use files and a conventional 
(distributed) file system

2. Use files and better file 
(distributed) system

3. Build persistent data 
structures

4. Use it as slow DRAM
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NOVA:  A File System for NVMM

• A NOVA FS is a tree of logs
• One log per inode

– Inode points to head and tail
– Logs are not contiguous

• Many Logs -> high concurrency
• Strong consistency guarantees
• Log-structured + journals + copy-

on-write
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Atomicity: Logging for Simple Metadata Operations

• Combines log-structuring, 
journaling and copy-on-write

• Log-structuring for single log 
update
– Write, msync, chmod, etc
– Lower overhead than journaling 

and shadow paging

File log
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Atomicity: Lightweight Journaling for Complex 
Metadata Operations

• Lightweight journaling for update 
across logs
– Unlink, rename, etc
– Journal log tails instead of 

metadata or data File log

Directory log
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Atomicity: Copy-on-write for file data

• Copy-on-write for file data
– Log only contains metadata
– Log is short
– Instant data GC
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Filebench throughput
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What Should You Do With NVMM?

1. Use files and a conventional 
(distributed) file system

2. Use files and better file 
(distributed) system

3. Build persistent data 
structures

4. Use it as slow DRAM
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Existing Distributed File Systems are Slow
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Orion:  A Distributed Persistent Memory File 
System

OrionFS
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Orion: Key Features

• Based on NOVA
• Mirrored metadata on client

– Client keep local, NVMM copy of inode’s log
– Leases + simple arbitration for concurrent updates

• Mostly-local operation
– Local read cache
– CoW creates new, local copy

• Pervasive RDMA
– All addresses/pointers are RDMA-friendly
– Zero-copy IO for most transfers (NOVA data structures are RDMA targets)
– Single-ended remote data access
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Application performance on Orion 
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What Should You Do With NVMM?

1. Use files and a conventional 
(distributed) file system

2. Use files and better file 
(distributed) system

3. Build persistent data 
structures

4. Use it as slow DRAM
Log
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Build NVMM Data Structures Is Hard

• All existing programming errors are still possible
– Memory leaks
– Multiple frees
– Locking errors

• There are new kinds of errors
– Pointers between NV memory pools
– Pointers from NVMM to DRAM

• Programmers get this stuff wrong
• Rebooting/restarting won’t help!
• Language + Compiler support will come, but slowly
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Optimizing RocksDB
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What Should You Do With NVMM?

1. Use files and a conventional 
(distributed) file system

2. Use files and better file 
(distributed) system

3. Build persistent data 
structures

4. Use it as slow DRAM

Easy; ~5x gains

Pretty easy; ~10x gains

Really hard; ~30x gains
The NVMM Programmability Gap
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Optimizing RocksDB

File Emulation
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File Emulation

• Normal write-ahead logging
– open();
– write(); sync();

• Emulate read/write in user space
– open(); mmap();
– memcpy() + clwb + fence

• Almost POSIX semantics
– Minimal changes to app logic
– No complex logging, allocation, or 

locking
• Almost persistent data structure 

performance
– Just 10% slower.
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File Emulation Speedups
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What Should You Do With NVMM?

• You should study it!
– Many interesting, open problems remain
– Lots of PhDs to come

• You should use it!
– Use a file system!
– Want more performance? Use file emulation!
– Want more performance? Build persistent data structures.
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NOVA is open source.
We are preparing it for “upstreaming” in 
to Linux.

To help or try it out:  
https://github.com/NVSL/linux-nova
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Thanks!



Thank you!
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