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Abstract

We propose to generalize language models
for conversational speech recognition to al-
low them to operate across utterance bound-
aries and speaker changes, thereby capturing
conversation-level phenomena such as adja-
cency pairs, lexical entrainment, and topical
coherence. The model consists of a long-short-
term memory (LSTM) recurrent network that
reads the entire word-level history of a conver-
sation, as well as information about turn taking
and speaker overlap, in order to predict each
next word. The model is applied in a rescor-
ing framework, where the word history prior to
the current utterance is approximated with pre-
liminary recognition results. In experiments
in the conversational telephone speech domain
(Switchboard) we find that such a model gives
substantial perplexity reductions over a stan-
dard LSTM-LM with utterance scope, as well
as improvements in word error rate.

1 Introduction

Over the past decade the state of the art in lan-
guage modeling has shifted from N-gram models
to feed-forward networks (Bengio et al., 2006),
and then to recurrent neural networks (RNNs) that
read a list of words sequentially and predict the
next word at each position. Starting with stan-
dard recurrent networks (Mikolov et al., 2010) the
sequential modeling approach was later improved
using the long-short-term memory (LSTM) archi-
tecture of (Hochreiter and Schmidhuber, 1997) for
further gains (Sundermeyer et al., 2012; Meden-
nikov et al., 2016; Xiong et al., 2017). RNN mod-
els give two fundamental advantages over the old
N-gram framework. First, the continuous-space
embedding of word identities allows word simi-
larities to be exploited for generalization (Bengio
et al., 2006; Mikolov et al., 2013). Second, the
recurrent architecture allows, in principle at least,

an unlimited history to condition the prediction of
next words.

The potential advantage of unlimited history,
however, is not commonly used to its full benefit,
since the language model (LM) is typically “re-
set” at the start of each utterance in current state-
of-the-art recognition systems (Saon et al., 2017;
Xiong et al., 2018). This presumes that each ut-
terance is independent of the others, and clearly
violates what we know about how language and
conversation works, as discussed in the next sec-
tion. Consequently, there have been many pro-
posals to inject information from a longer context
into standard LM architectures, going back to N-
gram models (Bellegarda, 2004), or to generalize
N-grams LMs to operate across utterance bound-
aries and speakers (Ji and Bilmes, 2004). Based on
the RNN framework, (Mikolov and Zweig, 2012)
proposed augmenting network inputs with a more
slowly varying context vector that would encode
longer-range properties of the history, such as a
latent semantic indexing vector. The problem with
these approaches is that the modeler has to make
design decisions about how to encapsulate contex-
tual information as network inputs. Therefore, our
approach here is to simply provide the entire con-
versation history as input to a standard LSTM-LM,
and let the network learn the information that is
relevant to next-word prediction.

We start by discussing linguistic phenomena
that could potentially help in conversational LM
(Section 2), followed by a description of the
LSTM model we propose to capture them (Sec-
tion 3). Section 4 describes the data and recogni-
tion system we used to test our models, with re-
sults reported in Section 5. We end with conclu-
sions and future directions.



2 Conversation-level Phenomena

Here we review a few of the conversation-level
phenomena that could be used for predicting
words from longer context. Perhaps the most
widely studied effect is topical coherence, or the
tendency of words that are semantically related to
one or more underlying topics to appear together
in the conversation. Consequently, topic-related
words are bound to re-occur across utterances, or
certain related words appear to trigger one another
(such as “children” and “school”). This should
be especially true for conversations in the Switch-
board (and Fischer) corpora, which were collected
by pairing up strangers to talk about a mutually
agreeable topic.

Another phenomenon that could lead to words
reoccurring is lexical entrainment (Brennan and
Clark, 1996), or the tendency of conversants to
adopt the same words and phrases. Entrainment
can also apply to speaking style, so the use of com-
mon discourse particles, syntactic patterns (like
question tags), or even disfluencies could be trig-
gered across speakers.

Other phenomena operate more locally, but
across speaker turn boundaries. Linguistic conver-
sation analysis has long noted that utterance types
come in adjacency pairs (Schegloff, 1968), with
preferences for certain pairs over others (like a
statement is preferentially followed by agreement
rather than disagreement). Therefore, words in an
utterance should be more predicable based on the
previous utterance. In the past, this has been mod-
eled by conditioning utterance words on an under-
lying dialog act label, which in turn is conditioned
on adjacent dialog act labels via a dialog act gram-
mar (Stolcke et al., 2000).

A good part of conversational behavior has to
do with how turn-taking is negotiated (Sacks et al.,
1974). Speakers use special discourse devices,
such as backchannel words and pause fillers, to
signal when they want to take the floor, or to signal
that the other party should keep the floor. Conver-
sants also anticipate the ends of turns and jump in
before the other speaker is completely done, mak-
ing for very efficient use of time. As a result of
all of these mechanisms, a good portion of con-
versations consists of overlapping (simultaneous)
speaking. It was shown (Shriberg et al., 2001) that
such overlap locations can be partly predicted by
word-based language models. This suggests re-
versing the modeling and using overlap (the tim-

Figure 1: Use of conversation-level context in session-
based LM. The utterance numbering shows how over-
lapping utterances are serialized (according to onset
times).

ing of utterances) to help predict the words.

3 Models

Our baseline language model is a standard LSTM
that models utterances independently from one an-
other, i.e., the history at the onset of each utterance
is the start-of-sentence token. In fact, we used two
version of this basic LSTM-LM:

• Word inputs encoded with one-hot vectors,
combined with a jointly trained embedding
layer

• Words encoded by multiple-hot vectors cor-
responding to the letter trigrams making up
the words.

Both types of LSTM-LMs use three 1000-
dimensional hidden layers with recurrence. The
word embedding layer is also of size 1000, and the
letter-trigram encoding has size 7190 (the number
of unique trigrams in our vocabulary).

The main addition for session-level modeling is
that the LSTM history consists of all the utterances
preceding the current utterance, followed by all
words in the current utterance preceding the word
to be predicted. The preceding utterances are se-
rialized in the order of their onset times, so that
the flow of words within an utterance is not dis-
rupted. The resulting total word history and next-
word prediction is depicted in Figure 1. Informa-
tion about utterance boundaries is encoded using
a boundary tag, similar to the start-of-sentence to-
ken that is commonly used in LMs.

Several of the conversational phenomena de-
scribed in Section 2 refer to turn-taking between
speakers; to capture this in the model we augment
the word input encoding with an extra bit that indi-
cates whether a speaker change occurred. This bit
is turned on only for the start-of-utterance token.

We also want to capture some information
about utterance overlap, since, as described earlier,



speech overlap interacts with word choice. Pos-
sible events to model would be overlap (exceed-
ings a time threshold) at the starts and ends of ut-
terances, or maybe a continuous measure of such
overlaps. As a first proof of concept we chose to
encode only one type of overlap, i.e., when the ut-
terance in question is completely overlapped tem-
porally by the other speaker’s turn. This is typi-
cal of backchannel acknowledgments (“uh-huh”)
and short utterances that attempt to grab the floor
(“um”, “but”). Complete utterance overlap is also
encoded by an additional input bit that is turned on
for the start-of-utterance token.

4 Experiments

4.1 Recognition system

We used a single bidirectional LSTM acoustic
model in experiments reported here, trained on the
commonly used conversational telephone speech
corpora (Switchboard, Fisher, CallHome English),
estimating frame-level posterior probabilities for
9000 context-dependent phone units. The sys-
tem decodes speech utterances using a 4-gram
language model, generating lattices. These are
then expanded to 500-best lists, which in turn are
rescored using the various LMs.

The recognition system and the N-gram LM
used in decoding have a vocabulary of 165k
words, but the LSTM-LMs are trained on only
the 38k words occurring at least twice in the in-
domain conversational training data. Words out-
side of the LSTM-LM vocabulary are penalized
in rescoring with a constant weight that is empiri-
cally optimized on the development set.

4.2 Data

Language model training uses the Switchboard-
1, BBN Switchboard-2, Fisher, and English Call-
Home transcripts (about 23 million words in to-
tal) as well as the UW conversational Web corpus
(Bulyko et al., 2003) for pre-training (see below).
The N-gram LM used for N-best generation also
includes the LDC Hub4 (Broadcast News) corpus.
The Switchboard-1 and Switchboard-2 portions of
the NIST 2002 CTS test set were used for tun-
ing and development. Evaluation is carried out on
the NIST 2000 CTS test set, consisting of Switch-
board (SWB) and CallHome (CH) subsets.

As an expedient, we refrained from reseg-
menting utterances based on forced alignments of
words, and instead use utterance boundaries as

Table 1: Perplexities with session-based LSTM-LMs.
The last two lines reflect use of errorful recognition
output for preceding utterances.

Model inputs devset test test
SWB SWB CH

Utterance words, letter-3grams 48.90 44.56 54.57
+ session history words 38.86 36.81 44.31

+ speaker change 37.25 35.33 42.23
+ speaker overlap 37.09 35.12 42.02

Using recognized word histories
single system 39.55 37.45 46.49
full system (Xiong et al., 2018) 39.41 37.29 45.99

given in the available transcripts (corresponding
to the audio segments used in acoustic training).
Similarly, in testing, we use the presegmented ut-
terances provided by NIST. No doubt there are in-
consistencies in how the different corpora define
utterance units, and a consistent, alignment-based
resegmentation of all training and test data based
on the durations nonspeech regions and/or lexical
tagging might give improved results.

4.3 Model training
All LSTM-LMs are trained using the Microsoft
Cognitive Toolkit, or CNTK (Yu et al., 2014; Mi-
crosoft Research, 2016) on a Linux-based multi-
GPU server farm. Training is parallelized using
CNTK’s distributed stochastic gradient descent
(SGD) with 1-bit gradient quantization (Seide
et al., 2014). We use the CNTK “FsAdaGrad”
learning algorithm, which is an implementation of
Adam (Kingma and Ba, 2015).

All LSTM-LMs are pretrained for one or two
epochs on a large corpus of “conversational Web”
data (Bulyko et al., 2003), followed by normal
training to convergence on the in-domain data.
Each utterance in the Web data is treated as a sin-
gle session for purposes of session-based LM, i.e.,
the extra bits for speaker change and overlap are
never turned on.

5 Results

When evaluating the session-based LMs on speech
test data, the true utterance contexts are not
known, and we must use hypothesized words for
word histories preceding the current utterance. In
our case, the histories were obtained using the out-
put of our best recognition system, which uses
a combination of acoustic models (Xiong et al.,
2018), but excluding the session-based LM.1 Per-

1We also omitted the final confusion network rescoring
stage described in (Xiong et al., 2018).



Table 2: Recognition results with standard and session-based LSTM-LMs, measured by word error rates (WER).
Word encoding Model WER WER test

devset SWB CH
Letter 3gram LSTM-LM 10.01 6.88 12.79

Session LSTM-LM 9.67 6.81 12.54
Session LSTM-LM, 2nd iteration 9.66 6.77 12.56

One-hot LSTM-LM 9.81 6.89 13.02
Session LSTM-LM 9.47 6.81 12.60
Session LSTM-LM, 2nd iteration 9.50 6.83 12.73

Letter 3gram LSTM-LM 9.66 6.63 12.77
+ One-hot Session LSTM-LM 9.28 6.52 12.34

LSTM-LM + Session LSTM-LM 9.22 6.45 12.11

plexity was evaluated on reference transcripts, as
is customary.

Table 1 shows the effect of session-level model-
ing and of optional model elements on perplexity,
based on LSTMs using letter-trigram encoding.
Baseline is the standard utterance-scope LSTM-
LM. We see a large perplexity reduction of 17-
21% by conditioning on session history words,
with smaller incremental reductions from adding
speaker change and overlap information.

The last two table rows show that some of the
perplexity gain over the baseline is negated by the
use of errorful recognition output for the conver-
sation history. It does not make much difference
whether the recognized word history is generated
by just the subsystem being rescored (“single sys-
tem”, with 6% word error on SWB) or the full
recognition system using multiple acoustic mod-
els (“full system”, with about 5% word error rate
on SWB and 10% on CH). Using recognition out-
put as history, the perplexity degrades about 6%
relative for SWB, and 11% on CH, relative to us-
ing the true word histories. Even with the more
errorful recognition on CH, the session-based LM
still gives a perplexity reduction of 14% relative to
the baseline.

Table 2 presents recognition results, compar-
ing baseline LSTM-LMs to the full session-based
LSTM-LMs. Both the letter-trigram and one-word
word encoding versions are reported. The differ-
ent models may also be used jointly, using log-
linear score combination in rescoring, shown in
the third section of the table. We also tried iterat-
ing the session LM rescoring, after the recognized
word histories were updated from the first rescor-
ing pass (shown as “2nd iteration” in the table).

Results show that the session-based LM yields
between 1% and 4% relative word error reduction
for the two word encodings, and test sets. When
the two word encoding types are combined by log-

linear combination of model scores, the gain from
session-based modeling is preserved. Iterating the
session LM rescoring to improve the word histo-
ries did not give consistent gains.

Even though the session-based LSTM sub-
sumes all the information used in the standard
LSTM, there is an additional gain to be had from
combining those two model types (last row in the
table). Thus, the overall gain from adding the
session-based models to the two baseline models
is 3-5% relative word error reduction.

6 Conclusion and Future Work

We have proposed a simple generalization of
utterance-level LSTM language models aimed at
capturing conversational phenomena that operate
across utterances and speakers, such as lexical en-
trainment, adjacency pairs, speech overlap, and
topical coherence. To capture non-local condition-
ing information, the LSTM-LM is trained to read
the entire sequence of utterances making up a con-
versation, along with side information encoding
speaker changes and overlap of utterances. This
is found to reduce perplexity by about 25%, most
of which is retained when errorful recognition out-
put is used to represent the word history in previ-
ous utterances. The session-based LM yields up
to 5% relative reduction in word error when the
utterance- and session-based LMs are combined.

It would be worthwhile to investigate which
conversational phenomena are actually being ex-
ploited by the session LSTM model. The ease
with which additional information can be input to
the LSTM-LM also suggests encoding other con-
ditioning information, such a more details about
utterance timing, as well as semantic features that
capture topical coherence.
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Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Studies in Fuzziness and Soft Computing, volume
194, pages 137–186.

Susan E. Brennan and Herbert H. Clark. 1996. Con-
ceptual pacts and lexical choice in conversation.
Journal of Experimental Psychology: Learning,
Memory, and Cognition, 22(6):1482–1493.

Ivan Bulyko, Mari Ostendorf, and Andreas Stolcke.
2003. Getting more mileage from web text sources
for conversational speech language modeling using
class-dependent mixtures. In Proceedings of HLT-
NAACL 2003, Conference of the North American
Chapter of the Association of Computational Lin-
guistics, volume 2, pages 7–9, Edmonton, Alberta,
Canada. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Gang Ji and Jeffrey Bilmes. 2004. Multi-speaker lan-
guage modeling. In Proceedings of HLT-NAACL
2004, Conference of the North American Chapter of
the Association of Computational Linguistics, vol-
ume Short Papers, pages 133–136, Boston. Associa-
tion for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. Proceedings 3rd
International Conference for Learning Representa-
tions, arXiv preprint arXiv:1703.02136.

Ivan Medennikov, Alexey Prudnikov, and Alexander
Zatvornitskiy. 2016. Improving English conversa-
tional telephone speech recognition. In Proc. Inter-
speech, pages 2–6.

Microsoft Research. 2016. The Microsoft Cognition
Toolkit (CNTK). https://cntk.ai.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
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