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ABSTRACT
Cloud customers require highly reliable and performant leased
datacenter infrastructure to deliver quality service for their users.
It is thus critical for cloud providers to quickly detect and mitigate
infrastructure faults. While much is known about managing faults
that arise in the datacenter physical infrastructure (i.e., network
and server equipment), comparatively little has been published
regarding management of the logical overlay networks frequently
employed to provide strong isolation in multi-tenant datacenters.

We present a first look into the nuances of monitoring these
“virtualized” networks through the lens of a large cloud provider.
We describe challenges to building cloud-based fault monitoring
systems, and use the output of a production system to illuminate
how virtualization impacts multi-tenant datacenter fault manage-
ment. We show that interactions between the virtualization, tenant
software, and lower layers of the network fabric both simplify and
complicate different aspects of fault detection and diagnosis efforts.
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1 INTRODUCTION
Web service operators and IT-dependent enterprises increasingly
rely on cloud providers to address their computational needs. Cloud
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tenants simultaneously expect high reliability and performance
while realizing cost and management advantages from leveraging
leased, shared infrastructure. To support potentially conflicting
customer use-cases in shared infrastructure, cloud providers employ
host virtualization to provide resource multiplexing and isolation.
Similarly, network virtualization allows tenants to operate within
cloud datacenters without undue complexity or contention. Rather
than sharing IP addresses and logical network topology with other
customers, tenants typically operate inside of virtual networks
(VNETs) within a software-defined network (SDN) overlay provided
by the datacenter operator.

To provide high performance, datacenter operators monitor net-
works to rapidly detect, localize, and mitigate faults as they in-
evitably occur [4, 7, 9, 12, 17, 18] and potentially harm application
performance [9, 14]. Datacenter monitoring has received much
recent attention in the context of physical network fabrics. Little
is yet known—in academic literature, at least—of the operational
realities of virtualized, multi-tenant networks. While the end goal is
the same, virtualized networks impart additional challenges in the
form of black-box tenants and increased infrastructure complexity.

Here, we provide a first look into cloud network fault manage-
ment, focusing on tenant VNET monitoring within Microsoft Azure
using VNET Pingmesh. We present some of our early operational
experiences over a period of several months (backed by collected
production data where relevant), allowing us to answer the follow-
ing high-level questions:

(1) How can cloud operators monitor VNET performance,
given black-box tenants? Can physical tools [9, 12, 18] be
usefully adapted to virtualized networks?

(2) How accurate are adapted monitors within virtualized envi-
ronments? Can they detect customer-impacting faults? Do
they exhibit high precision and recall?

(3) Beyond monitoring, how do virtual environments impact
fault management? How might we triage which layer of
the network is resposible for a fault? How are fault diagnosis,
root-causing and mitigation impacted?

While VNET Pingmesh demonstrates that physical-layer monitor-
ing tools can be successfully adapted to VNET overlays and deliver
monitoring wins, we find that the additional complexities of tenant
networks and virtualization create subtle challenges that can con-
found VNET monitoring. Our preliminary experience suggests two
takeaway lessons:

First, cross-layer aliasing can complicate monitoring measure-
ment interpretation compared to well-understood physical-layer
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monitors. Both compute-substrate and customer-driven effects have
complicated analysis by either raising alerts unrelated to customer
impact, or potentially overshadowing actual faults. Thus, cross-
layer aliasing can impact detection precision and recall. Furthermore,
while confounding effects can be accounted for when encountered,
the ever-increasing search space of cross-layer interactions coupled
with ever-expanding network feature sets suggests that handling
all possible effects a priori is infeasible.

Second, even after fault detection, diagnosing, root-causing and
mitigating network overlay faults are significantly harder than
at the physical layer. Since (baremetal) hosts serve as packet-
forwarding devices, we are subject both to performance impacts
caused by workloads we do not control—both customer applica-
tions and first-party host management—as well as occasional, hard
to diagnose server anomalies. While prior approaches to physical
layer faults can route around damage or reboot affected devices,
VNET architecture and tenant workloads can make overlay faults
comparatively sticky, since it is harder to route around the only
virtual switch providing tenant VM network access, or to reboot
servers hosting smaller tenant deployments.

2 PHYSICAL NETWORK MONITORING
Large-scale, multi-path datacenter network fabrics have been sub-
ject to considerable scrutiny; various studies have provided both tax-
onomies of common network failures [9, 13, 14, 16, 18], networked
application performance [11, 14], and methods for pinpointing the
cause and location of performance-sapping faults [3, 4, 12, 14].

Contemporary datacenter (physical-layer) monitoring often ac-
tively probes networks by injecting synthetic traffic to ascertain live-
ness and adequate performance [2, 8, 9, 15]. The Azure cloud uses
Pingmesh [9] (among other systems [5, 8, 18]) to do so. Pingmesh
maintains a (non-full due to scaling concerns) mesh of ping mea-
surements, allowing at-a-glance visualizations depicting latency
and connectivity between servers in a rack, between racks in a
datacenter and amongst datacenters. Two-dimensional heatmap
visualizations provide distinctive patterns depending on the various
kinds of switch failures encountered (e.g. rack failures are visually
distinct from core switch failures), while the measured latency pro-
vides insight into the quality of network performance. For example,
an increase in p50 latency might signify switch queue buildups in
the network core, while an increase only in p99 latency may signify
errors causing packet drops.

Pingmesh has provided several monitoring wins at Microsoft,
including detecting hard-to-find silent packet drops and black
holes [9]. Thus, a natural question to ask is whether Pingmesh
can be adapted to monitor VNETs, and how effective it would be
in this environment. Next, we discuss an uplifted version of this
system called VNET Pingmesh and examine its efficacy.

3 MONITORING AZURE VNETS
Microsoft Azure consists of datacenters across the world. A region
can contain several datacenters, each with several clusters. Clus-
ters contain racks aggregating servers that multiplex VMs that are
organized into non-interfering VNETs.

3.1 VNET addressing and packet handling
VNETs are topologically flat, L3-addressed IP network overlays
built atop the physical topology. VNETs can aggregate thousands
of individual VMs, each with one or more virtual NICs. Each NIC
has a customer-chosen virtualized “customer IP address” or “CA”.
Customer applications on a VM address other VMs in the VNET
using CAs; CAs can be reused without conflict in disjoint VNETs.

VM network access is provided via a bespoke physical-server-
based virtual switch (“VSwitch”) called VFP [5]. Each VFP instance
has several virtual ports; one is connected to a physical NIC and the
others to VM virtual NICs. An outbound VM NIC packet is trans-
formed by per-port processing layers, each with distinct tasks (like
metering traffic or implementing customer ACLs [5]). One layer
translates CAs to an IP “physical address” (“PA”) that is routable on
the underlying network, providing VNET isolation (VFP translates
PAs to CAs for received packets as well). CA⇒ PAmappings are dy-
namic; actions like creating or deleting a VNET or VM can change
mappings. Mappings reside in a reliable distributed directory. A
per-server userspace agent receives updated mappings from this
directory as network allocation state evolves. When a VM starts a
network flow to a given CA, the CA⇒ PA mapping for the flow is
queried from the userspace agent and cached in the kernel datap-
ath; subsequent packets leverage this cache. Cached mappings are
evicted after inactivity timeouts.

3.2 Monitoring via VNET Pingmesh
Baremetal monitoring alone does not account for VNET-specific
performance anomalies. To make a VNET-level Pingmesh-like sys-
tem, however, several cloud-specific challenges must be accounted
for. We divide these challenges into two categories—readily appar-
ent implementation hurdles that are foreseen and handled in the
design phase, and more subtle behaviours that only became appar-
ent once the system was deployed. Here, we discuss the former,
and defer examining subtle behaviours to Section 4.

(1) Black-box VMs. Privacy concerns mean we may not run
any software, nor collect statistics, within VMs.

(2) Avoiding customer impact. Probes must not be billed to,
visible to, impacted by or spoofable by tenants.

(3) Interactions with customer rulesets. Customer ACLs
supporting firewalls and gateways, or “User-Defined Routes”
(“UDRs”) supporting middlebox behavior, can both interfere
with VNET Pingmesh.

(4) Interactions with customer actions. Tenants can un-
predictably shutdown VMs, causing ping failures. If unac-
counted for, we suffer persistent false-positive loss indica-
tions within VNETs where tenants shut down VMs during
non-business hours to save costs.

To account for black-box VMs, VNET Pingmesh is implemented
via VSwitch interposition. VFP injects outbound TCP-based ping
packets after the tenant metering and ACLmanagement layers. Out-
bound packets are invisible (and not metered/billed) to the tenant
and avoid tenant ACL rules, while still being subject to the rest of
the VNET processing stack. On the remote end, VFP intercepts ping
packets before the tenant processes it, and sends a response. VFP
also installs rules to prevent tenants from spoofing pings, ensuring
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that they cannot interfere with monitoring infrastructure. To (phys-
ical) switches, probes are indistinguishable from VM-generated
traffic. VNET/VM churn is accounted for by post-processing col-
lected ping data with separate systems that track VM and VM-NIC
liveness. We are also investigating VSwitch mechanisms that can
disambiguate between failed and administratively disabled VMs.

Certain advantages apply over physical Pingmesh. Since VNETs
contain less nodes than the physical network, we maintain full-
mesh CA⇒CA VNET ping statistics. While physical Pingmesh
measures latency from userspace, VNET Pingmesh measures la-
tency from the kernel. Thus, VNET Pingmesh probes that hit the
mapping lookup cache are not subject to context switching and
scheduler variation, and can more accurately measure latency than
physical Pingmesh.

4 FAULT DETECTION
VNET Pingmesh indicates good overall performance, under nor-
mal circumstances; ≥ 94% of Azure VNETs meet or exceed latency
requirements ≥99.999% of the time when considering per-VM 5-
minute averages, and Azure achieves just under five-9’s connectiv-
ity across every VNET in a typical hour. Despite favorable high-
level metrics, large network scale makes faults inevitable, and so we
must be certain of monitoring accuracy. Thus, we examine VNET
Pingmesh’s fault detection effectiveness, focusing specifically on
precision and recall.

4.1 Fundamental blind spots impact recall
Like physical-layer Pingmesh, VNET Pingmesh has had a good track
record detecting customer-impacting network anomalies within
its purview. For example, in March 2017, a datacenter incident
prompted various clients to raise support requests complaining
about high VM-to-storage latency. While storage was investigated
initially, a correlated VNET Pingmesh latency spike suggested a
network cause, despite a lack of physical layer and VM-level mon-
itoring alarms. Later correlation with physical Pingmesh along
with address resolution failures during the affected time-period
confirmed a network fault, where the impact magnitude flew under
physical-layer monitoring detection thresholds. Investigations re-
vealed a congestion-causing linecard misconfiguration root cause.
Another incident involved customer VM connectivity issues, con-
firmed through a transient but significant VNET Pingmesh connec-
tivity drop. Correlation with other monitoring systems identified a
ToR reboot root cause.

Despite these successes, we cannot fully quantify recall since
VNET Pingmesh fundamentally includes coverage blind spots. First,
our system cannot fully monitor hybrid client networks contain-
ing VMs within Azure as well as client servers outside of Azure,
which necessarily cannot run VNET Pingmesh infrastructure. A
side effect of the inability to monitor the entire network is that
VNET Pingmesh cannot monitor routing tunnels (e.g. middleboxes).
Thus, rather than ascertaining the specific fate of customer traffic
by mimicking their routing behaviour exactly, we instead are lim-
ited to measuring the health of the virtualization infrastructure in
a point-to-point manner only. Second, while active probes can pro-
vide indications of queueing or widely-impacting network losses,
they can miss ‘gray faults’ that only impact unpredictable subsets of

traffic [3, 9, 12, 18]. For such cases, supplementing VNET Pingmesh
with passive monitoring techniques [6, 12] may prove useful.

4.2 Cross-layer aliasing impacts precision
In its early days, VNET Pingmesh frustrated operators due towasted
effort diagnosing alerts with no customer impact, potentially mask-
ing actual performance issues. This reduction in monitoring preci-
sion stemmed from difficulty interpreting collected data. We discuss
these cases and how we changed our usage of VNET pingmesh to
successfully account for them.

Effectively interpreting Pingmesh statistics can convey signifi-
cant insight into network health. Physical latency can be explained
by locality (inter-pod ≥ intra-pod), queuing delay (O(µ-seconds))
and packet loss (O(milliseconds)). Deviations from baseline per-
formance may reveal faults [2, 9, 12]; p99 latency ≥ TCP RTO
could indicate intermittent silent packet loss, while p50 latency of
O(milliseconds) could indicate persistent switch queues [9].

VNET Pingmesh also tracks latency and loss. However, we dis-
covered that different layers of the Azure stack impacted our mea-
surements in ways that were hard to tease apart. We call these inter-
actions cross-layer aliasing, where different actors (either in Azure,
or the tenants themselves) perform (possibly non-network) actions
that impact networking metrics and complicate their interpretation.
Until aliasing is accounted for, we can receive confusing outcomes
that both complicate determining if a problematic measurement
indicates an actual customer issue (and not a false positive) and
risk masking actual issues. As a case study, we consider latency.
Figure 1 depicts VNET latency in a cluster over 1 hour, projected
to physical ToR. Cells depict source (x-axis) to destination (y-axis)
ToR latency, measured as the average for all VMs in all VNETs in
all servers in the source. We see that:

(1) Latency ranges fromO(100s-1000) microseconds, higher than
expected for datacenters. Intra-rack latency is ≥ 2.5× inter-
rack latency on average.

(2) Some racks (darkly-colored intersecting horizontal/vertical
stripes) show ≥ 1.5×median rack latency. Conversely, others
exhibit ping latency averages an order-of-magnitude smaller
than other servers.

(3) Some servers (omitted for space) exhibit outbound latency
(pings generated by the server) ≥ 2× inbound.

While higher VNET latency can correlate with physical-layer
faults, queueing or locality, diagnosis revealed that VNET architec-
ture and large (≥ 30 VMs) tenant traffic patterns were responsible—
specifically, kernel CA⇒ PA mapping cache misses in large VNETs.
Since VNET Pingmesh iterates through CAs consecutively, large
VNETs with sparse traffic matrices may lead to cache misses for a
given ping, unless the VM was actively communicating with the
pinged VM (upon which measured latency would drop to the ex-
pected O(10s of microseconds) latency). High average latencies can
thus be explained by large VNETs—as a large fraction of measured
latencies are due to large VNETs, their performance dominates.
High intra-rack latency can also be explained by large VNETs; since
VM placement within a cluster is random, pinging a VM in the
same rack is more likely for large VNETs. Figure 2 reveals that large
VNET latency is higher, cluster-dependent, and noisier. Latencies
range from 100s of microseconds to a millisecond depending on
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cluster, with a deviation on par with the total latency for small
VNETs. Locality and latency trends vanish—instead, jitter from
mapping lookup context switches dominates.

Cold (dark green) stripes in the latency heatmap correspond
with either servers handling VMs within small VNETs exclusively
(if the VNET size is small enough, mappings will always be within
the cache due to VNET Pingmesh) or VMs in large VNETs that
constantly communicate with other VMs (keeping the mapping
cache hot). In other words, the tenant traffic pattern influenced the
measured latency as well, by driving it down for certain VM pairs
while mapping latency drove it up for other pairs.

In the initial VNET Pingmesh implementation, these two compet-
ing aliasing effects—neither signifying physical or VNET dataplane
latency—caused VNET Pingmesh to report high server-average
latencies that were heavily influenced by mapping latencies for
non-communicating VM pairs. While mapping latency is impor-
tant, especially for large-scale sparse/intermittent traffic [11], it
must be tracked separately from fast-path dataplane latency. By
overloading our latency signal with both modes of operation, we
risk both masking actual poor network performance (O(100s of
microseconds) congestion-based latency masked by millisecond-
plus mapping latencies) and yield false alerts on high latency that
do not correspond with tenant impact (since they are triggered by
non-communicating VM pairs).

Once the issue was identified, fixing monitoring was trivial—we
send multiple consecutive pings. The initial ping is saved as a (new)
mapping latency metric, while the average of the remainder is saved
as the (intended) dataplane latency metric. After accounting for
aliasing, VNET Pingmesh behaviour comports with physical, as
seen in the generally ≤ 100 microsecond and locality-correlated
small-VNET dataplane latency measurement in Figure 2.

Some takeaway lessons apply. First, cross-layer aliasing can re-
duce both monitoring precision (e.g. false-positive latency alarms)
and recall (e.g. congestion masked by mapping latency). Interpreta-
tion suffers when aliasing causesmeasurement cross-contamination
from non-network causes (we later see how server-based SDN vir-
tualization can cause such cross-contamination). Second, while
accounting for aliasing is easy post-diagnosis, diagnosis itself can
be complicated by cross-layer aliasing, as discussed next.

5 FAULT MANAGEMENT
Detected faults require management: triage (is the network or the
virtual overlay faulty?), diagnosis (e.g. is the network experiencing
packet loss?), root-causing (e.g. why is there packet loss?) and
mitigation (e.g. can I take another path?). Here, we show how VNET
Pingmesh can aid triage when used with cross-layer monitoring;
however, its effectiveness in aiding both diagnosis and root-causing
is impacted by cross-layer aliasing.

5.1 Cross-layer monitoring aids triage
At a high level, we seek to determine whether we can use VNET
Pingmesh and other (different layer) monitors in conjunction to
appropriately triage faults: Is a given fault due to the underlying
physical network, or is it a VNET specific ailment? We focus on the
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Figure 1: Rack-level latency heatmap (microseconds)

Table 1: Probability that physical layer Pingmesh ≥ 1.5×
cluster average if VNET latency ≥ 2× average for a VM.

Category % incidents % physical
anomalous

Total 100 40.90
Large VNETs only 59.00 23.50
Small VNETs only 22.60 55.00
Large and small VNETs 18.40 79.00
Server->ToR packet loss 2.20 92.60

minority of servers with higher than usual VNET latency, and the re-
lationship between concurrent VNET and physical-layer Pingmesh
measurements for these servers.

Over a randomly picked hour with no active network alerts,
we examined servers with ≥ 1 VM with average outbound ping
latencies of ≥ 2× their VNET average. Table 1 categorizes servers
depending on if their poor-latency VMs belong to large VNETs only,
small VNETs only, or a mix of large and small VNETs; specifically, it
depicts the probability that physical Pingmesh also reports latency
anomalies in each case. We call physical latency anomalous if the
average server ping latency is ≥ 1.5x the cluster average.

Large and small VNETs are concurrently impacted ≈20% of the
time; physical Pingmesh is also impacted in ≈80% of these cases.
Here, it seems reasonable to suspect a physical networking issue
impacting all monitoring layers at or above it. Conversely, ≈60%
of high latency indications impact large VNETs only; physical
Pingmesh is only impacted 23.5% of the time here. These statis-
tics are from the original VNET Pingmesh mechanism which tracks
mapping latency for large VNETs; thus, one may surmise that the
≈77% of servers with VNET-only latency increases may be subject
to CPU or IO contention slowing down map operations.

However, confounding factors remain, due to the generally
disjoint network coverage provided by VNET and physical-layer
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Figure 2: VNET latency vs. locality

Pingmesh at a given server. While VMs in a VNET can be spread
across datacenters in a region, a server only maintains a full physi-
cal Ping mesh with others in the same rack [9]. Additionally, ping
packets likely take different paths through the network core. Thus,
if a network fault that would impact physical and VNET pings
alike is several hops away from a server, it is possible that physical
Pingmesh may miss a problem that VNET Pingmesh notices, or
vice versa. Conversely, if a fault is located at the server to ToR
uplink (2.2% of examined incidents) we see that physical Pingmesh
is impacted 90+% of the time.

These results suggest that we can use a simple heuristic for
triaging latency anomalies—if only large VNET mapping latency
is impacted, we may investigate VNET infrastructure and server
metrics first; if multiple VNETs of differing sizes suffer, we may
suspect the physical network.

5.2 Cross-layer aliasing complicates diagnosis
While monitoring oddities may be visible at a glance from VNET
Pingmesh, cross-layer aliasing and tenant behaviours can compli-
cate anomaly diagnosis. In one instance, several VNETs (large and
small) revealed unpredictable but persistent and total ping losses
for certain VMs, split amongst subnet lines. While this may indi-
cate ToR or pod connectivity loss in the physical network, this is
unexpected at the VNET layer where VMs with adjacent addresses
are unlikely to be physically adjacent. Confusingly, while connec-
tivity failures were relatively long-term (hours to days), they were
unpredictable; only certain VMs in a VNET were afflicted, and
connectivity loss had a chance of spontaneously resolving. Further-
more, despite alarming connectivity statistics for these VNETs, no
customer issues were raised.

Investigations revealed that these losseswere due to amonitoring
bug affecting just probe packets. Specifically, ‘UDRs’ (Section 3.2)
were, for some VNETs, stealing Pingmesh responses—resulting in
subnet-level loss for VNETs with tunnels. While pings arrived at
the destination, ping responses were intercepted by tunnel rules
and redirected to an unrelated remote server that discarded them.

Infrequent problem incidence confounded diagnosis; a minority
of VNETs possess UDRs, a minority of which triggered ping loss.
Furthermore, UDRs are subject to tenant modification. Before we

diagnosed the bug, changing rule sets would resolve individual
faults, leaving us at the mercy of tenant behaviour to examine the
problem. Ultimately, a related bug (leaking ping packets between
paired VNETs) revealed a VSwitch rule priority bug that was also
the root cause for connectivity loss within non-paired VNETs.

Thus, cross-layer aliasing complicates VNET-Pingmesh-driven
diagnosis. Two takeaways emerge; (1) that cross-layer interactions
can complicate diagnosis in terms of timing and reproducibility
of bugs, and (2) that again, the mechanical effort required to fix
the bug was relatively simple, once diagnosis had occured. Here,
we simply modified VNET rulebase generation to prevent probes
from being processed by UDRs, thus ensuring that VNET Pingmesh
measured point-to-point non-tunneled latency.

5.3 More difficult root-causing and mitigation
We distinguish between diagnosing and root-causing faults; e.g.
a diagnosis may reveal that connection timeouts are caused by
lost packets for a subnet at a switch, while root-cause analysis
may reveal the causative ACL misconfiguration. For physical-layer
faults, this distinction may be unnecessary where simply rebooting
a device may clear the underlying error [14]. Alternatively, traffic
may be re-routed around a fault under examination [10].

However, VNETs and smaller tenant deployments can complicate
mitigation. Unlike a network core fault, we cannot route around the
only VSwitch providing VM network connectivity. While this may
be akin to ToR failures in traditional datacenters, large-scale ser-
vices in such networks may be more amenable to losing capacity or
migrating application workloads [1, 11] compared to smaller cloud
tenants. Similarly, rebooting physical servers to possibly clear faults
may inacceptably impact availability. While VM live migration may
provide respite to a tenant, it may not solve the underlying problem
and prevent another tenant from being impacted down the line.
Thus, effective root-cause analysis takes on greater importance
in cloud networks; unfortunately, it can also be complicated by
cross-layer aliasing.

We re-examine VNET mapping latency measurements in the
context of root-cause analysis. A small minority of servers exhibit
slow mapping lookups of ≥ 10 msec in length. As a userspace op-
eration, address mapping is subject to scheduler-variation effects
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and thus spikes in CPU utilization and (as we will discuss) IO bus
contention. To quantify this effect, we examine the prevalence of
high latency (specifically, the likelihood that the server-average
VNET latency ≥ 2 msec) as a function of server disk I/O and CPU
utilization in Figure 3. Both graphs are normalized to the baseline
probability at nominal utilization levels. We see a clear correlation
between utilization and latency; as average disk utility passes 10%,
we see a sharp increase in likelihood that latency is past acceptable
boundaries. CPU utilization is measured as a 5-minute average,
however, and so we cannot distinguish between a server CPU con-
stantly at 5% utilization (unlikely to impact VNET latency) or at
100% utilization ≈5% of the time—which would significantly impact
latency during that period. Even so, a (weaker) correlation between
CPU utilization and high latency emerges.

Since both CPU and IO utilization impact mapping latency, a
large variety of root causes can apply. In one case, a latency alert cor-
related with an internal OS-update roll-out. Investigations showed
that sustained disk I/O was interfering with userspace address map-
ping lookups due to a logging statement blocked on disk I/O. While
small VNETs and existing connections (both in-cache) were not
impacted, connections requiring a userspace mapping lookup were.
(Client disk traffic was not impacted due to storage disaggregation.)
Subsequent analysis across Azure showed a correlation between
server I/O utilization and high (false-positive) latency indications.
In another server, a pair of processes briefly spiked CPU utilization
every minute, periodically impacting mapping latency. Yet another
server had high disk utilization due to a mysteriously large num-
ber of sync operations. In other incidents, Azure-infrastructure
driven disk I/O caused synchronized latency spikes of ≤ 1 minute
spread across geographically-disparate clusters. Thus, a large va-
riety of root-causes impact the same monitoring signals, yielding
an aliasing problem where monitoring metrics may not provide
enough insight on the underlying problems. Since these incidents
have different and possibly invasive fixes (e.g. killing a service with
runaway CPU utilization), blindly and optimistically trying fixes is
inacceptable—we must accurately root cause the issue first. Thus,
tenant virtualized networks simultaneously increase the impor-
tance of, while simultaneously complicating, root-causing faults.

6 CONCLUSIONS
Several open problems remain. First, while we have dealt with
cross-layer aliasing in an ad-hoc manner—identifying measurement
oddities as they crop up, diagnosing and root-causing their source
and accounting for them—the ever increasing feature sets for tenant
virtualized networks both increases the future likelihood of such
interactions and complicates the task of searching the state space
of all possible interactions a priori. A systematic methodology for
avoiding such interactions or accounting for them during the design
phase would be ideal. Second, while characterizing precision and
recall are important for validating monitoring effectiveness, we
find it hard to characterize them in the absence of customer impact
ground truth. This is due both to the fundamentally incomplete
coverage that a system like VNET Pingmesh is capable of providing
in the presence of hybridized networks (networks split between
Azure and private customer resources) and due to the fact that
customers themselves may miss issues like gray faults, and that
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Figure 3: Multiplicative likelihood of high VNET Pingmesh
latency vs. server utilization.

probe traffic may not be susceptible to gray faults that do impact
tenant application traffic. Thus, evaluating passive methodologies
that infer customer VM network performance from the VSwitch
layer [6] in conjunction with active-probing monitoring systems
may be a productive line of inquiry. Third, we have thus far only
scratched the surface of usingmultiple layers of monitoring systems
to perform fault triage and attribution; a more longitudinal study
may reveal deeper insights.

ACKNOWLEDGEMENTS
N. Aggarwal, M. Dasgupta, A. E. Sreenath, A. Fu, D. Firestone, S.
Garg, D. Jagasia, A. Kumar, N. Motwani, J. Park, C. Raje, P. Shri-
vastava, A. Shukla, Q. Zuhair, M. Zygmunt, and the entire VNET
and VFP teams at Microsoft provided valuable insight into Azure
Networking.

REFERENCES
[1] Hadoop. http://hadoop.apache.org/.
[2] A. Adams, P. Lapukhov, and H. Zeng. https://code.facebook.com/posts/

1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-
probing/.

[3] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu, J. Padhye, B. T. Loo, and
G. Outhred. 007: Democratically finding the cause of packet drops. In 15th
USENIX Symposium on Networked Systems Design and Implementation, Renton,
WA, 2018.

[4] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred. Taking the blame
game out of data centers operations with NetPoirot. In Proceedings of the ACM
SIGCOMM Conference, Florianopolis, Brazil, 2016.

[5] D. Firestone. VFP: a virtual switch platform for host SDN in the public cloud.
In Proceedings of the 14th USENIX Conference on Networked Systems Design and
Implementation, Boston, MA, 2017.

[6] M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data plane performance diagnosis
of TCP. In Proceedings of the Symposium on SDN Research, Santa Clara, CA, 2017.

[7] M. Ghobadi and R. Mahajan. Optical layer failures in a large backbone. IMC ’16,
Santa Monica, California, USA, 2016. ACM.

[8] A. Greenberg. Pingmesh + NetBouncer: Fine-grained path and link monitoring
for data centers. https://atscaleconference.com/videos/pingmesh-netbouncer-
fine-grained-path-and-link-monitoring-for-data-centers/, 2016.

[9] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang,
H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh: A large-scale system for data
center network latency measurement and analysis. In Proceedings of the ACM
SIGCOMM Conference, Aug. 2015.

[10] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A fault-tolerant
engineered network. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, Apr. 2013.

http://hadoop.apache.org/
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://atscaleconference.com/videos/pingmesh-netbouncer-fine-grained-path-and-link-monitoring-for-data-centers/
https://atscaleconference.com/videos/pingmesh-netbouncer-fine-grained-path-and-link-monitoring-for-data-centers/


Cloud Datacenter SDN Monitoring IMC ’18, October 31-November 2, 2018, Boston, MA, USA

[11] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social network’s
(datacenter) network. In Proceedings of the ACM SIGCOMM Conference, London,
England, Aug. 2015.

[12] A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren. Passive realtime datacenter fault
detection and localization. In Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation, Boston, MA, 2017.

[13] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving,
G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda,
J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat. Jupiter rising: A decade of Clos
topologies and centralized control in Google’s datacenter network. In Proceedings
of the ACM SIGCOMM Conference, 2015.

[14] X. Wi, D. Turner, G. Chen, D. Maltz, X. Yang, L. Yuan, and M. Zhang. NetPilot:
Automating Datacenter Network Failure Mitigation. In Proceedings of the ACM

SIGCOMM Conference, Helsinki, Finland, Aug. 2012.
[15] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. Automatic test packet

generation. CoNEXT ’12, Nice, France, 2012. ACM.
[16] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy. High-resolution measurement

of data center microbursts. In Proceedings of the Internet Measurement Conference,
London, United Kingdom, 2017. ACM.

[17] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson, X. Yang, R. Yao, M. Chintalapati,
A. Krishnamurthy, and T. Anderson. Deepview: Virtual disk failure diagnosis and
pattern detection for azure. NSDI ’18, Renton, WA, 2018. USENIX Association.

[18] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz, L. Yuan,
M. Zhang, B. Y. Zhao, and H. Zheng. Packet-level telemetry in large datacenter
networks. In Proceedings of the ACM SIGCOMM Conference, London, United
Kingdom, 2015.


	Abstract
	1 Introduction
	2 Physical network monitoring
	3 Monitoring Azure VNETs
	3.1 VNET addressing and packet handling
	3.2 Monitoring via VNET Pingmesh

	4 Fault detection
	4.1 Fundamental blind spots impact recall
	4.2 Cross-layer aliasing impacts precision

	5 Fault management
	5.1 Cross-layer monitoring aids triage
	5.2 Cross-layer aliasing complicates diagnosis
	5.3 More difficult root-causing and mitigation

	6 Conclusions
	References

