Contents

Pr	eface		xvii
Ac	knov	vledgements	xxi
Li	st of (Contributors	xxiii
Li	st of I	ligures	xxvii
Li	st of]	fables	lxi
Li	st of A	Abbreviations	lxv
1	Opt	ical Interconnect Technologies for Datacenter Networks	1
		ngjin Xie	1
	1.1		1
	1.2	1.2.1 40C Optical Interconnects Tashnalasias	4
		1.2.1 40G Optical Interconnect Technologies	0
		1.2.2 100G Optical Interconnect Technologies	11
		Tashpologies	14
	13	Inter datacenter Interconnects	14
	1.5	1.3.1 Inter-datacenter Interconnects in Metro Networks	21
		1.3.2 Inter-datacenter Interconnects in WANs	21
	14	Summary	26
	Refe	erences	26
	11011		20
2	Vert	tical Cavity Surface Emitting Lasers	33
	Wen	bin Jiang	
	2.1	Introduction	33
	2.2	Technology Fundamentals	33
	2.3	VCSEL Device Structure	38

2.4	VCSE	L Material Growth	57
2.5	VCSE	L Fabrication Process	65
2.6	Conclu	usion	72
Refe	rences		73
Dire	ct Mod	ulation Laser Technology: Past, Present,	
and	Future		87
Yasu	hiro Ma	utsui	
3.1	Introd	uction	87
3.2	Intuiti	ve Picture of the Dynamics of Directly Modulated	
	Lasers		91
3.3	Progre	ess of High-Speed FP and DFB Lasers	97
	3.3.1	$1.55 \mu\mathrm{m}\mathrm{DML}$	97
	3.3.2	$1.3 \mu m DML$	101
	3.3.3	Short-Wavelength DML	103
3.4	Reach	Extension of DML for PON and Metro Applications .	104
	3.4.1	Principle of Reach Extension of DML by Tailoring	
		Chirp	104
	3.4.2	10 Git/s Transmission Performance of Adiabatic- and	
		Transient-Chirp Dominant DMLs	108
	3.4.3	Gain Compression Phenomena	110
	3.4.4	Experimental S21 Response and Transmission	
		Performance of a Highly-Damped DBR Laser	114
	3.4.5	Thermal Wavelength Drift Stabilization for the	
		Burst-Mode NGPON2 Application	116
3.5	Chirp	Managed Laser (CML)	121
	3.5.1	Principles of CML	122
	3.5.2	Experimental Demonstrations of CML	131
3.6	New E	Era of High-Speed DML Toward 100-GHz Bandwidth .	138
	3.6.1	Detuned-Loading Effect	139
	3.6.2	S21 High-Pass Filter Effect Due to In-Cavity	
		FM-AM Conversion by the DBR Mirror	145
	3.6.3	Photon-Photon Resonance Effect	149
	3.6.4	Co-Existence of Photon-Photon Resonance and	
		Detuned-Loading Effects	152
	3.6.5	55-GHz Bandwidth Short-Cavity DR Laser and	
		56 Gbaud PAM4 Generation	154
3.7	Conclu	usions	157
Refe	rences		158

4	PAM4 Modulation Using Electro-absorption				
	Mod	lulated	Lasers	173	
	Trev	or Chan	ı and Winston Way		
	4.1	Introdu	uction	173	
	4.2	Genera	al PAM4 Optical Transceiver and Link		
		Consid	derations	175	
		4.2.1	PAM4 Signal and Optical Link Characteristics	175	
		4.2.2	EML Biasing and Nonlinear Equalization	178	
		4.2.3	Forward Error Correction (FEC) and Data Rates for		
			PAM4 Links	179	
		4.2.4	Sampling Rate and Analog Bandwidth	180	
		4.2.5	FFE and DFE Equalization	182	
	4.3	28 Gb	aud PAM4 Transmission	183	
	4.4	56 Gba	aud PAM4 Transmission over 2 km Experiment	185	
	4.5	40 km	PAM4 Transmission	189	
		4.5.1	Avalanche Photodiode (APD)	189	
		4.5.2	Gain Clamped Semiconductor Optical Amplifier		
			(GC-SOA)	189	
	4.6	100 kr	n PAM4 Transmission	194	
		4.6.1	Experimental Setup	194	
		4.6.2	Single Channel Characteristics	195	
		4.6.3	Effect of Fiber Nonlinearities	195	
	4.7 Multipath Interference		bath Interference	197	
		4.7.1	Experimental Demonstration of the Upper Bound		
			MPI Scenario	199	
		4.7.2	Time-Domain Mixing Monte Carlo Simulation	201	
		4.7.3	MPI Experiment with Multiple Connectors	203	
	4.8	Summ	ary	207	
	Refe	rences		208	
5	Opti	ical Fib	er for Datacenter Connectivity	213	
	Yi Sı	Yi Sun and John Kamino			
	5.1	Introd	uction	213	
	5.2	Fiber 7	Type for Datacenters	218	
		5.2.1	Multimode Fiber Types for Datacenters	218	
		5.2.2	Single-mode Fiber Types for Datacenters	220	
		5.2.3	Optical Cabling for Datacenters	221	
		5.2.4	Multicore (MCF) and Few-Mode Fiber (FMF)		
			for SDM	223	

x Contents

	5.3	Waveguide Design, Modal Structure, and Time Response of	
		SMF and MMF for Datacenters	224
		5.3.1 Fundamentals of Waveguide Design and Mode	
		Structures of SMF and MMF	224
		5.3.2 Fundamentals of the Time Response of Optical Fiber	228
	5.4	Multimode Optical Fiber for High-Speed Short-Reach	
		Interconnect	235
		5.4.1 Laser-optimized MMF (OM3 and OM4)	235
		5.4.1.1 What is Laser-optimized MMF?	235
		5.4.1.2 Differential Modal Delay (DMD)	236
		5.4.1.3 Bandwidth of MMF Links	238
		5.4.2 Bend-optimized OM3/OM4 and Overfilled Effective	
		Modal Bandwidth	242
		5.4.3 Wideband MMF (OM5)	244
	5.5	High-Speed VCSEL-MMF Short-Reach Optical Interconnect	
		System	247
		5.5.1 System Evaluation Methodology	248
		5.5.2 High-Speed VCSEL-MMF System Transmission	
		Validation	251
		5.5.2.1 10GBASE-SR transmission over OM3 and	
		OM4 MMF	251
		5.5.2.2 40GBASE-eSR4 and 100G eSR4 extended	
		reach demonstration over OM4 MMF	253
		5.5.2.3 40/100 Gbps SWDM over OM5 MMF	256
		5.5.2.4 High-Speed PAM4 SWDM transmission	
		over OM5 MMF	260
	5.6	Datacom Transmission over Single-Mode Optical Fiber	263
	5.7	Conclusions	268
	Refe	erences	270
6	DAN	14 Signaling and its Applications	270
U	FAN Enge	A Signaling and its Applications	417
	rran	Introduction	270
	0.1 6.2		219
	0.2 6.2	A DHEI HIStory	200
	0.5	6.2.1 DAMA Transmit A rehitectures	201
		6.2.2 DAMA Pagaina Architectures	202
	61	0.3.2 I AIVIA RECEIVE AICHIECUUIES	204
	0.4	6/1 = Experimental Sature	201
		$6.4.2 = 1 \ 10$ G 10 km Transmission	201
			209

		6.4.3 2λ 100G 10 km and 40 km	Transmissions	290
		6.4.4 Technical Options for 200/	400G Over SMF	291
	6.5	PAM4 MMF Performance		293
		6.5.1 Experimental Setups		294
		6.5.2 1λ 40G Transmission Over	550m OM4	295
		6.5.3 2λ 100/200 Gbps 300 m Tr	ransmission	296
		6.5.4 Technical Options for 200/	400G Over VCSEL/MMF	297
	6.6	PAM4 for OSNR-limited Systems	at 1550 nm	299
		6.6.1 Experimental Setups		299
		6.6.2 OSNR and Dispersion Perf	formance	300
	6.7	PAM4 Compliance Tests		302
		6.7.1 Transmitter Dispersion H	Eye Closure for PAM4	
		(TDECQ)		306
		6.7.2 Optical Stressed Receiver S	Sensitivity	310
	6.8	Single Lambda PAM4		312
	6.9	Summary and Outlook		319
	Refe	erences		321
7	Disc	crete Multitone for Metro Datacent	ter Interconnect	327
	Gor	don Ning Liu Tianijan Zuo and Lian	o Zhano	
	7.1	Introduction		327
	7.2	A Brief History of DMT		328
	7.3	How DMT Works		329
		7.3.1 FFT/IFFT		330
		7.3.2 Cyclic Prefix		331
		7.3.3 Loading Algorithm		333
		7.3.4 PAPR Suppression		334
		7.3.5 Synchronization		336
		7.3.6 Channel Equalization		337
	7.4	Advanced DMT Techniques for Me	etro DCI	338
		7.4.1 The Principle of CD-induce	ed Power Fading	339
		7.4.2 Generations of SSB-DMT		340
		7.4.2.1 Optical filter-bas	ed SSB-DMT	340
		7.4.2.2 E/O modulator-b	ased SSB-DMT	342
		7.4.3 Generation of EDC-DSB-E	ОМТ	344
		7.4.4 Generation of Twin-SSB-D	ОМТ	345
		7.4.5 Generation of SSBI-free Ty	win-SSB-DMT	347
	7.5	Summary		349
	Refe	erences		350

••	~
V11	Contents
лп	Comenis

8	A Duobinary Approach Toward High-speed Short-reach		
	Opti		357
	Xin(Scott) Yin, Guy Torfs and Johan Bauwelinck	257
	8.1		357
	8.2	Three-Level Electrical Duobinary Modulation	358
		8.2.1 Nyquist Frequency	339
		8.2.2 Power Spectral Density	360
	0.0	8.2.3 Vertical and Horizontal Eye Openings	361
	8.3	100-Gbps EDB/NRZ Transmitter and Receiver Chipset	363
	8.4	EDB/NRZ Transmission with DFB-TWEAM	365
	8.5	NRZ-OOK Transmission with GeSi EAM	369
	8.6	SM LW-VCSEL EDB Links	371
	8.7	Conclusion	372
	Refe	rences	372
9	LiN	bO3 Mach-Zehnder Modulator	377
	Hiro	chika Nakajima and Yuya Yamaguchi	
	9.1	Introduction	377
	9.2	Physical Properties of LN (LiNbO ₃) Crystal	377
	9.3	Low-loss Ti-diffused Waveguides on LN Since 1974	381
	9.4	Mach-Zehnder (MZ) Guided-wave Circuit with Y-branches	
		on LN	382
	9.5	Velocity Matching Between Lightwave and Electric Signal .	387
	9.6	Stabilization of LN-MZM Operation	390
	9.7	External Modulation by LN-MZM Accompanied with EDFA	
		Repeating	392
	9.8	Vector Modulation with LN-MZM for Digital Coherent	
		Optical Communications	393
	9.9	Current Status of LN-MZM and Future Potential	396
	9.10	Summary	400
	Refe	rences	401
10	Silic	on Photonics Based PAM4, DWDM Datacenter	
	Inter	rconnects	405
	Radh	nakrishnan Nagarajan and Mark Filer	
	10.1	Introduction	405
	10.2	Datacenter Interconnect–Edge	409
	10.3	Switch Pluggable 100Gbit/s DWDM Module	412
	10.4	PAM4 DSP ASIC	413

	10.5 Silicon Photonics	. 415
	10.6 Module and Transmission Performance	. 417
	10.7 Live Datacenter Deployments	. 424
	10.8 Evolution to Switch Pluggable 400-Gbit/s DWDM Module	. 426
	10.9 Conclusion	. 427
	References	. 428
11	Low-Loss Photonic Integration: Applications in Datacenters	431
	Demis D. John, Grant Brodnik, Sarat Gundavarapu,	
	Renan L. Moreira, Michael Belt, Taran Huffman and	
	Daniel J. Blumenthal	
	11.1 Datacenters and Photonic Integrated Circuits	. 431
	11.2 InP, Si, and Si ₃ N ₄ Waveguide Platforms \ldots \ldots \ldots	. 432
	11.3 The Ultra-Low Loss Si_3N_4/SiO_2 Platform	. 434
	11.4 Integration Building Blocks on the ULL Silicon Nitric	le
	Platform	. 435
	11.4.1 Available PIC Platforms	. 437
	11.5 Ultra-Low Loss PIC Components for Datacom	. 439
	11.5.1 Low-Loss PICs and Optical Delays	. 439
	11.5.2 Integrated Dispersion Compensation	. 441
	11.5.2.1 Design of an Integrated Dispersion	
	Compensator	. 442
	11.5.2.2 Demonstration of 40 Gbps NRZ-OO	K
	Dispersion Compensation	. 446
	11.5.2.3 Demonstration of 40 Gbps PAM-4	
	Dispersion Compensation	. 447
	11.5.3 Grating Filters	. 450
	11.5.4 Ring Resonator Filters	. 453
	11.5.5 High-Extinction Filters	. 455
	11.5.6 C-band Lasers on the Si ₃ N ₄ Platform	. 458
	11.6 Silicon-Nitride Waveguide Design	. 465
	11.7 Summary	. 470
	References	. 471
12	Advanced Optical Measurements for Data Centers	481
	Steve Yao, Wajih Daab, Gang He and Daniel Gariépy	
	12.1 Introduction	. 481
	12.2 Polarization Related Tests	. 482
	12.2.1 Polarization Mode Dispersion (PMD) Measuremen	t 489

	12.2.2	Polarization Dependent Loss (PDL) Measurement .	494
	12.2.3	PDR Measurement of Receivers	498
	12.2.4	PDL Measurement of Fiber Optic Link	500
	12.2.5	Measuring In-band OSNR by DOP Measurement	502
	12.2.6	Polarization Emulation for Non-coherent and	
		Coherent Systems	504
	12.3 Optica	l Signal-to-Noise Ratio Measurement	509
	12.3.1	Measuring OSNR with an OSA	510
	12.4 Charac	cterization of Optical Vector-Modulated Signals	525
	12.4.1	Constellation and IQ Diagrams for Vector-Modulated	
		Signal	526
	12.4.2	Definitions of EVM, RMS-EVM and TR-EVM	528
	12.4.3	Relationships between EVM _{RMS} , Q-Factor, OSNR	
		and BER	533
	12.4.4	Characterization of Transmitter Impairments	536
	12.5 Conclu	usion	543
	References .		543
13	Digital Sign	al Processing for Short-reach Optical	
	Communica	ations	549
	Kangping Z	hong, Xian Zhou, Jiahao Huo, Alan Pak Tao Lau,	
	Chao Lu and	d Li Zeng	
	13.1 Introdu	uction	549
	13.1.1	Challenges for Short-reach Optical Systems	550
		13.1.1.1 Cost	550
		13.1.1.2 Form factor	551
		13.1.1.3 Latency	551
	13.1.2	Different Types of Short-reach Systems	551
		13.1.2.1 Server-to-server or Intra-data-center links .	551
		13.1.2.2 Inter data-center links	551
		13.1.2.2 Inter data-center links	551
		13.1.2.2 Inter data-center links	551 552
	13.2 Modul	13.1.2.2Inter data-center links13.1.2.3Extended Reach Inter-data-center, Access, and Metro Linksation Formats for Short-reach Systems	551 552 552
	13.2 Modul 13.2.1	13.1.2.2 Inter data-center links13.1.2.3 Extended Reach Inter-data-center, Access, and Metro Linksation Formats for Short-reach SystemsPulse Amplitude Modulation (PAM)	551 552 552 553
	13.2 Modul 13.2.1 13.2.2	 13.1.2.2 Inter data-center links	551 552 552 553 555
	13.2 Modul 13.2.1 13.2.2 13.2.3	 13.1.2.2 Inter data-center links	551 552 552 553 555 556
	13.2 Modul 13.2.1 13.2.2 13.2.3 13.2.4	 13.1.2.2 Inter data-center links	551 552 552 553 555 556 558
	13.2 Modul 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5	 13.1.2.2 Inter data-center links	551 552 553 555 556 558 561

		13.2.6	Recent Experiment on High-Speed Short-reach	
			Transmission Systems	563
	13.3	Digital	Signal Processing for Short-reach Systems	564
		13.3.1	Feed-forward Equalizer (FFE)	564
		13.3.2	Decision Feedback Equalizer (DFE)	566
		13.3.3	Direct Detection Faster-than Nyquist (DD-FTN)	567
		13.3.4	Volterra-series Based Nonlinear Equalizer (VNLE) .	569
	13.4	Polariz	ation Division Multiplexed Transmission	
		for Sho	ort-reach Systems	570
		13.4.1	Stokes-vector Direct Detection (SV-DD) Receiver	571
		13.4.2	2-Dimensional (2D) PDM-DD System Based	
			on SV-DD Receiver	573
		13.4.3	3-Dimensional (3D) PDM-DD System Based	
			on SV-DD Receiver	577
	13.5	Conclu	sion	578
	Refe	rences .		579
14	Mult	ti-dimer	nsional Polarization Modulation	585
	Di C	he, An L	i, Xi Chen, Qian Hu and William Shieh	
	14.1	Optical	Detection with Polarization Diversity	586
		14.1.1	The Need of Polarization-Diversity Detection	586
		14.1.2	Automatic Polarization Control	590
		14.1.3	Polarization-Diversity Detection in Jones Space	591
		14.1.4	The Barrier of Self-Polarization Diversity	591
		14.1.5	Polarization-Diversity Detection in Stokes Space	593
	14.2	Direct	Modulation with Coherent Receiver	594
		14.2.1	The Intensity-only POL-MUX-DM Coherent System	595
		14.2.2	Complex DM Model	596
		14.2.3	100-Gb/s CDM Transmission Over 1600-km SMF .	598
	14.3	Polariz	ation Modulation in Stokes Space	601
		14.3.1	Stokes-space Modulation	601
		14.3.2	Universal MIMO Equalization in Stokes Space	603
		14.3.3	Self-coherent SSM	605
		14.3.4	Multi-Dimensional IM in Stokes Space	607
	14.4	Noncol	herent Polarization Multiplexing	608
		14.4.1	Degree of Coherence in POL-MUX Transmitter	608
		14.4.2	Noncoherent POL-MUX Schemes	609
	14.5	Summa	ary	613
	Refe	rences.		613

15	High	n-speed Flexible Coherent Optical Transport Network	621
	Tieju	n J. Xia and Glenn A. Wellbrock	
	15.1	Introduction	621
	15.2	Why Optical Coherent Transmission?	626
	15.3	Optical Transport Network with Coherent Transmission	632
	15.4	What's Next for Optical Transport Network?	636
	15.5	Coherent Transport Technology Development by Network	
		Operators	639
	15.6	Datacenter Connections and Coherent Transport Networks .	644
	15.7	Conclusions	647
	Refe	rences	647
16	Ultra	a-low-power SiGe Driver-IC for High-speed	
	Elec	tro-absorption Modulated DFB Lasers	659
	Jung	Han Choi	
	16.1	Introduction	659
	16.2	IC Design for Low Power Consumption	660
		16.2.1 Design Requirements	660
		16.2.2 IC Architectures for Low Power Consumption	661
		16.2.3 Driver-IC Design	666
		16.2.3.1 Unit-cell design	666
		16.2.3.2 Circuit Simulations	668
	16.3	Co-design and Electro-optical Simulation	670
		16.3.1 Low-power CoC Design	670
		16.3.2 Co-simulation of Driver-IC with EML	672
		16.3.2.1 Electrical Time-domain Simulations	672
		16.3.2.2 Electro-optical Time-domain Simulations .	672
	16.4	Measurements	673
		16.4.1 EO Measurements	673
		16.4.2 Transmission Experiments	675
	16.5	Conclusion and Perspective	679
	Refe	rences	680
Inc	lex		681
Ab	out tl	he Editor	685

List of Contributors

Alan Pak Tao Lau, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

An Li, Futurewei Technologies, Santa Clara, CA, USA

Chao Lu, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

Chongjin Xie, Alibaba Infrastructure Service, Alibaba Group, Sunnyvale, CA, USA

Daniel J. Blumenthal, *University of California Santa Barbara, California, USA*

Daniel Gariépy, EXFO Inc., Quebec, Canada

Demis D. John, University of California Santa Barbara, California, USA

Di Che, The University of Melbourne, Melbourne, Australia

Frank Chang, Inphi Corp, California, USA

Gang He, EXFO Inc., Quebec, Canada

Grant Brodnik, University of California Santa Barbara, California, USA

Glenn A. Wellbrock, Verizon, Richardson, TX, USA

Gordon Ning Liu, Huawei Technologies Co., Ltd., Shenzhen, China

Guy Torfs, imec - Ghent University, IDLab, Gent, Belgium

Hirochika Nakajima, Waseda University, Tokyo, Japan

Jiahao Huo, University of Science and Technology Beijing, Beijing, China

Johan Bauwelinck, imec - Ghent University, IDLab, Gent, Belgium

John Kamino, OFS Fitel LLC, Norcross, GA, USA

Jung Han Choi, Fraunhofer Heinrich-Hertz-Institute, Berlin, Germany

Kangping Zhong, MACOM Technology Solutions Inc, Shenzhen, China

Li Zeng, Huawei Technology Ltd, Shenzhen, China

Liang Zhang, Huawei Technologies Co., Ltd., Shenzhen, China

Mark Filer, Microsoft Corporation, Redmond, WA, USA

Michael Belt, Honeywell Inc., California, USA

Qian Hu, Nokia Bell Labs, Stuttgart, Germany

Radhakrishnan Nagarajan, Inphi Corporation, Santa Clara, CA, USA

Renan L. Moreira, University of California Santa Barbara, California, USA

Sarat Gundavarapu, University of California Santa Barbara, California, USA

Steve Yao, General Photonics Corporation, California, USA

Taran Huffman, GenXComm Inc., Austin, TX, USA

Tianjian Zuo, Huawei Technologies Co., Ltd., Shenzhen, China

Trevor Chan, Neophotonics, California, USA

Tiejun J. Xia, Verizon, Richardson, TX, USA

Wajih Daab, General Photonics Corporation, California, USA

Wenbin Jiang, WJ Technologies LLC, California, USA

William Shieh, The University of Melbourne, Melbourne, Australia

Winston Way, Neophotonics, California, USA

Xi Chen, Nokia Bell Labs, Holmdel, New Jersey, USA

Xian Zhou, University of Science and Technology Beijing, Beijing, China

Xin (Scott) Yin, imec - Ghent University, IDLab, Gent, Belgium

Yasuhiro Matsui, Finisar Corporation, Fremont, CA, USA

Yi Sun, OFS Fitel LLC, Norcross, GA, USA

Yuya Yamaguchi, National Institute of Information and Communications Technology (NICT), Tokyo, Japan