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In artificial neural networks, learning from data is a computa-
tionally demanding task in which a large number of connection
weights are iteratively tuned through stochastic-gradient-based
heuristic processes over a cost function. It is not well under-
stood how learning occurs in these systems, in particular how
they avoid getting trapped in configurations with poor compu-
tational performance. Here, we study the difficult case of net-
works with discrete weights, where the optimization landscape is
very rough even for simple architectures, and provide theoretical
and numerical evidence of the existence of rare—but extremely
dense and accessible—regions of configurations in the network
weight space. We define a measure, the robust ensemble (RE),
which suppresses trapping by isolated configurations and ampli-
fies the role of these dense regions. We analytically compute the
RE in some exactly solvable models and also provide a general
algorithmic scheme that is straightforward to implement: define
a cost function given by a sum of a finite number of replicas of
the original cost function, with a constraint centering the replicas
around a driving assignment. To illustrate this, we derive several
powerful algorithms, ranging from Markov Chains to message
passing to gradient descent processes, where the algorithms tar-
get the robust dense states, resulting in substantial improve-
ments in performance. The weak dependence on the number of
precision bits of the weights leads us to conjecture that very
similar reasoning applies to more conventional neural networks.
Analogous algorithmic schemes can also be applied to other
optimization problems.

machine learning | neural networks | statistical physics | optimization

There is increasing evidence that artificial neural networks
perform exceptionally well in complex recognition tasks (1).

Despite huge numbers of parameters and strong nonlinearities,
learning often occurs without getting trapped in local minima
with poor prediction performance (2). The remarkable output
of these models has created unprecedented opportunities for
machine learning in a host of applications. However, these prac-
tical successes have been guided by intuition and experiments,
whereas obtaining a complete theoretical understanding of why
these techniques work seems currently out of reach, due to the
inherent complexity of the problem. In other words, in practi-
cal applications, large and complex architectures are trained on
big and rich datasets using an array of heuristic improvements
over basic stochastic gradient descent (SGD). These heuristic
enhancements over a stochastic process have the general purpose
of improving the convergence and robustness properties (and
therefore the generalization properties) of the networks, with
respect to what would be achieved with a pure gradient descent
(GD) on a cost function.

There are many parallels between the studies of algorithmic
stochastic processes and out-of-equilibrium processes in complex
systems. Examples include jamming processes in physics, local

search algorithms for optimization and inference problems in
computer science, regulatory processes in biological and social
sciences, and learning processes in real neural networks (see,
e.g., refs. 3–7). In all these problems, the underlying stochas-
tic dynamics are not guaranteed to reach states described by an
equilibrium probability measure, as would occur for ergodic sta-
tistical physics systems. Sets of configurations that are quite atypi-
cal for certain classes of algorithmic processes become typical for
other processes. Although this fact is unsurprising in a general
context, it is unexpected and potentially quite significant when
sets of relevant configurations that are typically inaccessible for a
broad class of search algorithms become extremely attractive to
other algorithms.

Here, we discuss how this phenomenon emerges in learning in
large-scale neural networks with low precision synaptic weights.
We further show how it is connected to an out-of-equilibrium sta-
tistical physics measure that suppresses the confounding role of
exponentially many deep and isolated configurations (local min-
ima of the error function) and also amplifies the statistical weight
of rare but extremely dense regions of minima. We call this mea-
sure the robust ensemble (RE). Moreover, we show that the RE
allows us to derive novel and exceptionally effective algorithms.

Significance

Artificial neural networks are some of the most widely used
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One of these algorithms is closely related to a recently proposed
stochastic learning protocol used in complex deep artificial neu-
ral networks (8), implying that the underlying geometrical struc-
ture of the RE may provide an explanation for its effectiveness.

In the present work, we consider discrete neural networks with
only one or two layers, which can be studied analytically. How-
ever, we believe that these results should extend to deep neural
networks of which the models studied here are building blocks,
and in fact to other learning problems as well.

Interacting Replicas As a Tool for Seeking Dense Regions
In statistical physics, the canonical ensemble describes the equi-
librium (i.e., long-time limit) properties of a stochastic process
in terms of a probability distribution over the configurations σ
of the system P (σ;β) = Z (β)−1 exp (−βE (σ)), where E (σ)
is the energy of the configuration, β an inverse temperature, and
the normalization factor Z (β) is called the partition function and
can be used to derive all thermodynamic properties. This distri-
bution is thus defined whenever a function E (σ) is provided, and
indeed it can be studied and provide insight even when the sys-
tem under consideration is not a physical system. In particular,
it can be used to describe interesting properties of optimization
problems, in which E (σ) has the role of a cost function that one
wishes to minimize; in these cases, one is interested in the limit
β → ∞, which corresponds to assigning a uniform weight over
the global minima of the energy function. This kind of descrip-
tion is at the core of the well-known simulated annealing (SA)
algorithm (9).

In the past few decades, equilibrium statistical physics descrip-
tions have emerged as fundamental frameworks for studying the
properties of a variety of systems that were previously squarely
in the domain of other disciplines. For example, the study of
the phase transitions of the random K -satisfiability problem
(K−SAT) was linked to the algorithmic difficulty of finding solu-
tions (10, 11). It was shown that the system can exhibit dif-
ferent phases, characterized by the arrangement of the space
of solutions in one, many, or a few connected clusters. Effi-
cient (polynomial-time) algorithms seem to exist only if the sys-
tem has so-called “unfrozen” clusters: extensive and connected
regions of solutions in which at most a sublinear number of
variables have a fixed value. If, on the contrary, all solutions
are “frozen” (belonging to clusters in which an extensive frac-
tion of the variables take a fixed value, thus confined to sub-
spaces of the space of configurations), no efficient algorithms
are known. In the limiting case in which all variables—except
at most a sublinear number of them—are fixed, the clusters
are isolated point-like regions, and the solutions are called
“locked” (12).

For learning problems with discrete synapses, numerical
experiments indicate that efficient algorithms also seek unfrozen
solutions. In ref. 13, we showed that the equilibrium description
in these problems is insufficient, in the sense that it predicts that
the problem is always in the completely frozen phase in which
all solutions are locked (14), despite the fact that efficient algo-
rithms seem to exist. This motivated us to introduce a different
measure, which ignores isolated solutions and enhances the sta-
tistical weight of large, accessible regions of solutions:

P (σ;β, y , γ) = Z (β, y , γ)−1ey Φ(σ,β,γ). [1]

Here, y is a parameter that has the formal role of an inverse
temperature and Φ (σ, γ, β) is a “local free entropy”:

Φ (σ, β, γ) = log
∑
{σ′}

e−βE(σ′)−γ d(σ,σ′), [2]

where d (·, ·) denotes some monotonically increasing function of
the distance between configurations, defined according to the

Fig. 1. Energy landscape compared with local entropy landscape in an illus-
trative toy example. The energy landscape (gray curve) can be very rugged,
with a large number of narrow local minima. Some isolated global minima
can also be observed on the right. On the left, there is a region of denser
minima that coalesce into a wide global optimum. The red curves show the
local entropy landscape (Eq. 2 with the opposite sign) computed at increas-
ing values of the interaction parameter γ (i.e., at progressively finer scales).
At low values of γ (dashed curve), the landscape is extremely smooth and
the dense region is identifiable on a coarse-grained scale. At intermediate
values of γ (dot-dashed curve) the global minimum is narrower and located
in a denser region, but it does not correspond to a global energy minimum
yet. At large values of γ (solid curve) finer-grain features appear as several
local minima, but the global minimum is now located inside a wide global
optimum of the energy. As a consequence of this general picture, a process
in which a local search algorithm driven by the local entropic landscape is
run at increasing values of γ will end up in such wide minima, even though
in the limit γ → ∞ the local entropy landscape tends to the energy land-
scape. Note that in a high-dimensional space the isolated global minima can
be exponentially more numerous and thus dominate the equilibrium mea-
sure, but they are “filtered out” in the local entropy description.

model under consideration. In the limit β→∞, this expression
reduces (up to an additive constant) to a “local entropy”: It
counts the number of minima of the energy, weighting them
(via the parameter γ) by the distance from a reference con-
figuration σ. Therefore, if y is large, only the configurations σ
that are surrounded by an exponential number of local min-
ima will have a nonnegligible weight. By increasing the value
of γ, it is possible to focus on narrower neighborhoods around
σ, and at large values of γ the reference σ will also with
high probability share the properties of the surrounding min-
ima. This is illustrated in Fig. 1. These large-deviation statistics
seem to capture very well the behavior of efficient algorithms
on discrete neural networks, which invariably find solutions
belonging to high-density regions when these regions exist, and
fail otherwise. These solutions therefore could be rare (i.e.,
not emerge in a standard equilibrium description), and yet be
accessible (i.e., there exist efficient algorithms that are able to
find them), and they are inherently robust (they are immersed
in regions of other “good” configurations). As discussed in
ref. 13, there is a relation between the robustness of solu-
tions in this sense and their good generalization ability: This
is intuitively understood in a Bayesian framework by consider-
ing that a robust solution acts as a representative of a whole
extensive region.

It is therefore natural to consider using our large-deviation
statistics as a starting point to design new algorithms, in much
the same way that SA uses equilibrium statistics. Indeed, this
was shown to work well in ref. 15. The main difficulty of that
approach was the need to estimate the local (free) entropy Φ,
which was addressed there using the belief propagation (BP)
algorithm (16).

Here, we demonstrate an alternative, general, and much
simpler approach. The key observation is that, when y is a
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nonnegative integer, we can rewrite the partition function of the
large deviation distribution Eq. 1 as

Z (β, y, γ) =
∑
{σ?}

eyΦ(σ?,β,γ)

=
∑
{σ?}

∑
{σa}

e−β
∑y

a=1 E(σa )−γ
∑y

a=1 d(σ?,σa) [3]

This partition function describes a system of y + 1 interacting
replicas of the system, one of which acts as reference while the
remaining y are identical, subject to the energy E (σa) and the
interaction with the reference σ?. Studying the equilibrium statis-
tics of this system and tracing out the replicas σa is equivalent to
studying the original large deviations model. This provides us with
a very simple and general scheme to direct algorithms to explore
robust, accessible regions of the energy landscape: replicating the
model, adding an interaction term with a reference configuration,
and running the algorithm over the resulting extended system.

In fact, in most cases, we can further improve on this scheme by
tracing out the reference instead, which leaves us with a system
of y identical interacting replicas describing what we call the RE:

Z (β, y , γ) =
∑
{σa}

e−β(
∑y

a=1 E(σa )+A({σa},β,γ)) [4]

A ({σa} , β, γ) = − 1

β
log
∑
σ?

e−γ
∑y

a=1 d(σ?,σa) [5]

In the following, we will demonstrate how this simple proce-
dure can be applied to a variety of different algorithms: SA, SGD,
and BP. To demonstrate the utility of the method, we will focus
on the problem of training neural network models.

Neural Network Models
Throughout this paper, we will consider for simplicity one main
kind of neural network model, composed of identical thresh-
old units arranged in a feed-forward architecture. Each unit has
many input channels and one output and is parameterized by a
vector of “synaptic weights” W . The output of each unit is given
by sgn (W · ξ), where ξ is the vector of inputs.

Because we are interested in connecting with analytical results,
for the sake of simplicity all our tests have been performed
using binary weights, W k

i ∈ {−1,+1}, where k denotes a hid-
den unit and i an input channel. We should, however, men-
tion that all of the results generalize to the case of weights with
multiple bits of precision (17). We denote by N the total num-
ber of synaptic weights in the network, which for simplicity is
assumed to be odd. We studied the random classification prob-
lem: Given a set of αN random input patterns {ξµ}αNµ=1, each
of which has a corresponding desired output σµD ∈ {−1,+1},
we want to find a set of parameters W such that the network
output equals σµD for all patterns µ. Thus, for a single-layer net-
work (also known as a perceptron), the condition could be writ-
ten as

∑αN
µ=1Θ (−σµD(W · ξµ)) = 0, where Θ (x ) = 1 if x > 0

and 0 otherwise. For a fully connected two-layer neural network
(also known as committee or consensus machine), the condi-
tion could be written as

∑αN
µ=1Θ

(
−σµD

∑
k sgn

(
W k · ξµ

))
= 0

(note that this assumes that all weights in the output unit are
1, because they are redundant in the case of binary W ’s).
A three-layer fully connected network would need to satisfy∑αN
µ=1Θ

(
−σµD

∑
lsgn

(∑
kW

2l
k sgn

(
W 1k · ξµ

)))
= 0, and so on.

In this work, we limited our tests to one- and two-layer networks.
In all tests, we extracted all inputs and outputs in {−1,+1}

from unbiased, identical, and independent distributions.
To use methods such as SA and gradient descent, we need to

associate an energy or cost to every configuration of the system

W . One natural choice is just to count the number of errors (mis-
classified patterns), but this is not a good choice for local search
algorithms because it hides the information about what direction
to move toward in case of error, except near the threshold. Better
results can be obtained by using the following general definition
instead: We define the energy Eµ (W ) associated to each pattern
µ as the minimum number of synapses that need to be switched
to classify the pattern correctly. The total energy is then given
by the sum of the energy for each pattern, E(W ) =

∑
µE

µ(W ).
In the single-layer case, the energy of a pattern is thus Eµ(W ) =
R (−σµD (W · ξµ)), where R(x ) = 1

2
(x + 1) Θ (x ). Despite the

simple definition, the expression for the two-layer case is more
involved and is provided in SI Appendix. For deeper networks,
the definition is conceptually too naive and computationally too
hard, and it should be amended to reflect the fact that more than
one layer is affected by training, but this is beyond the scope of
the present work.

We also need to define a distance function between replicas
of the system. In all our tests, we used the squared distance
d (W ,W ′) = 1

2

∑N
i=1(Wi −W ′

i )
2, which is proportional to the

Hamming distance in the binary case.

Replicated SA
We claim that there is a general strategy that can be used by a sys-
tem of y interacting replicas to seek dense regions of its configu-
ration space. The simplest example of this is by sampling the con-
figuration space with a Monte Carlo method (18), which uses the
objective functions given by Eqs. 3 or 4, and lowering the tempera-
ture via an SA procedure, until either a zero of the energy (“cost”)
or a “give-up condition” is reached. For simplicity, we use the RE,
in which the reference configuration is traced out (Eq. 4), and we
compare our method to the case in which the interaction between
the replicas is absent (i.e., γ = 0, which is equivalent to running
y parallel independent standard SA algorithms on the cost func-
tion). Besides the annealing procedure, in which the inverse tem-
perature β is gradually increased during the simulation, we also
use a “scoping” procedure, which consists of gradually increasing
the interaction γ, with the effect of reducing the average distance
between the replicas. Intuitively, this corresponds to exploring the
energy landscape on progressively finer scales (Fig. 1).

Additionally, we find that the effect of the interaction among
replicas can be almost entirely accounted for by adding a prior on
the choice of the moves within an otherwise standard Metropolis
scheme, while still maintaining the detailed balance condition (of
course, this reduces to the standard Metropolis rule for γ = 0).
The SA procedure is described in Materials and Methods and in
more detail in SI Appendix.

In Fig. 2, we show the results for the perceptron; an anal-
ogous figure for the committee machine, with similar results,
is shown in SI Appendix, Fig. S1. The analysis of the scaling
with N demonstrates that the interaction is crucial to finding a
solution in polynomial time: The noninteracting version scales
exponentially and it rapidly becomes impossible to find solu-
tions in reasonable times. Our tests also indicate that the differ-
ence in performance between the interacting and noninteracting
cases widens greatly with increasing the number of patterns per
synapse α. As mentioned above, this scheme bears strong sim-
ilarities to the entropy-driven Monte Carlo (EdMC) algorithm
that we proposed in ref. 15, which uses the BP algorithm to esti-
mate the local entropy around a given configuration. The main
advantage of using a replicated system is that it avoids the need
to use BP, which makes the procedure much simpler and more
general. However, in systems where BP is able to provide a rea-
sonable estimate of the local entropy, it can do so directly at a
given temperature, and thus avoids the need to thermalize the
replicas. Therefore, the landscapes explored by the replicated SA
and EdMC are in principle different, and it is possible that the
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Fig. 2. Replicated SA on the perceptron, comparison between the interact-
ing version (i.e., which seeks regions of high solution density) and the non-
interacting version (i.e., standard SA), at α = 0.3 patterns per synapse using
y = 3 replicas. With optimized annealing/scoping parameters, the minimum
number of iterations required to find a solution scales exponentially with N
for the standard case and polynomially for the interacting case. Ten sam-
ples were tested for each value of N (the same samples in both cases). The
bars represent averages and standard deviations (taken in logarithmic scale)
and the lines represent fits. The interacting case was fitted by a function
aNb with a ' 0.13, b ' 1.7, and the noninteracting case was fitted by a

function aNbecNd
with a ' 0.2, b ' 1.5, c ' 6.6 · 10−4, d ' 1.1. Data

are not available for the noninteracting case at N = 6401 because we could
not solve any of the problems in a reasonable time (the extrapolated value
according to the fit is∼ 3 ·109). The two datasets are slightly shifted relative
to each other for presentation purposes. All of the details are reported in
SI Appendix.

latter has fewer local minima; this, however, does not seem to be
an issue for the neural network systems considered here.

Replicated GD
Monte Carlo methods are computationally expensive and may
be infeasible for large systems. One simple alternative general
method for finding minima of the energy is using GD or one
of its many variants. All these algorithms are generically called
backpropagation algorithms in the neural networks context (19).
Indeed, GD—in particular SGD—is the basis of virtually all
recent successful “deep learning” techniques in machine learn-
ing. The two main issues with using GD are that it does not in
general offer any guarantee to find a global minimum and that
convergence may be slow [in particular for some of the variables;
cf. the “vanishing gradient” problem (20) that affects deep neu-
ral network architectures]. Additionally, when training a neural
network for the purpose of inferring (generalizing) a rule from a
set of examples, it is in general unclear how the properties of the
local minima of the energy on the training set are related to the
energy of the test set (i.e., to the generalization error).

GD is defined on differentiable systems, and thus it cannot
be applied directly to the case of systems with discrete vari-
ables considered here. One possible work-around is to intro-
duce a two-level scheme, consisting of using two sets of vari-
ables, a continuous one W and a discrete one W , related by a
discretization procedure W = discr(W), and in computing the
gradient ∂E (W ) over the discrete set but adding it to the con-
tinuous set:W←W− η∂E (W ) (where η is a gradient step, also
called learning rate in the machine learning context). For the
single-layer perceptron with binary synapses, using the energy
definition provided above, in the case when the gradient is com-
puted one pattern at a time (in machine learning parlance, using
SGD with a minibatch size of 1), this procedure leads to the
so-called clipped perceptron algorithm (CP). This algorithm is
not able to find a solution to the training problem in the case

of random patterns, but simple (although nontrivial) variants
of it are (SBPI and CP+R; see refs. 21 and 22). In particular,
CP+R was adapted to two-layer networks (using a simplified
version of the two-level SGD procedure described above) and
was shown in ref. 13 to be able to achieve near-state-of-the-art
performance on the MNIST database (23). The two-level SGD
approach was also more recently applied to multilayer binary net-
works with excellent results in refs. 24 and 25, along with an array
of additional heuristic modifications of the SGD algorithm that
have become standard in application-driven works (e.g., batch
renormalization). In those cases, however, the back-propagation
of the gradient was performed differently, either because the out-
put of each unit was not binary (24) or as a work-around for the
use of a different definition for the energy, which required the
introduction of additional heuristic mechanisms (25).

Almost all of the above-mentioned results are purely heuristic
(except in the online generalization setting, which is not consid-
ered in the present work). Indeed, even just using the two-level
SGD is heuristic in this context. Nevertheless, here we demon-
strate that, as in the case of SA of the previous section, repli-
cating the system and adding a time-dependent interaction term
(i.e., performing the GD over the RE energy defined in Eq. 5)
leads to a noticeable improvement in the performance of the
algorithm, and that when a solution is found it is indeed part of a
dense region, as expected (Materials and Methods). We showed in
ref. 13 that solutions belonging to maximally dense regions have
better generalization properties than other solutions; in other
words, they are less prone to overfitting.

It is also important to note here that the stochastic nature
of the SGD algorithm is essential in this case in providing an
entropic component that counters the purely attractive interac-
tion between replicas introduced by Eq. 5, because the absolute
minima of the replicated energy of Eq. 4 are always obtained by
collapsing all of the replicas in the minima of the original energy
function. Indeed, the existence of an entropic component allowed
us to derive the RE definition by using the interaction strength γ
to control the distance via a Legendre transform in the first place
in Eq. 2; to use this technique with a nonstochastic minimization
algorithm, the distance should be controlled explicitly instead.

In Fig. 3 we show the results for a fully connected committee
machine, demonstrating that the introduction of the interaction

Fig. 3. Replicated SGD on a fully connected committee machine with
N = 1,605 synapses and K = 5 units in the second layer, comparison between
the noninteracting (i.e., standard SGD) and interacting versions, using y = 7
replicas and a minibatch size of 80 patterns. Each point shows averages and
standard deviations on 10 samples with optimal choice of the parameters,
as a function of the training set size. (Top) Minimum training error rate
achieved after 104 epochs. (Bottom) Number of epochs required to find a
solution. Only the cases with 100% success rate are shown (note that the
interacting case at α= 0.6 has 50% success rate but an error rate of just
0.07%).
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term greatly improves the capacity of the network (from 0.3
to almost 0.6 patterns per synapse), finds configurations with a
lower error rate even when it fails to solve the problem, and gen-
erally requires fewer presentations of the dataset (epochs). The
graphs show the results for y = 7 replicas in which the gradi-
ent is computed for every 80 patterns (the so-called minibatch
size); we observed the same general trend for all cases, even
with minibatch sizes of 1 (in SI Appendix, Fig. S2 we show the
results for y = 3 and minibatch size 10). We also observed the
same effect in the perceptron, although with less extensive tests,
where this algorithm has a capacity of at least 0.7. All technical
details are provided in SI Appendix. These results are in perfect
agreement with the analysis of the next section, on BP, which
suggests that this replicated SGD algorithm has near-optimal
capacity.

It is interesting to note that a very similar approach—a
replicated system in which each replica is attracted toward a ref-
erence configuration, called elastic averaged SGD (EASGD)—
was proposed in ref. 8 (see also ref. 26) using deep convolu-
tional networks with continuous variables, as a heuristic way to
exploit parallel computing environments under communication
constraints. Although it is difficult in that case to fully disentan-
gle the effect of replicating the system from the other heuristics
(in particular the use of “momentum” in the GD update), their
results clearly demonstrate a benefit of introducing the replicas
in terms of training error, test error, and convergence time. It
seems therefore plausible that, despite the great difference in
complexity between their network and the simple models studied
in this paper, the general underlying reason for the effectiveness
of the method is the same (i.e., the existence of accessible robust
low-energy states in the space of configurations).

Replicated BP
BP, also known as sum-product, is an iterative message-passing
method that can be used to describe a probability distribution
over an instance described by a factor graph in the correlation
decay approximation (27, 28). The accuracy of the approximation
relies on the assumption that, when removing an interaction from
the network, the nodes involved in that interaction become effec-
tively independent, an assumption linked to so-called replica
symmetry (RS) in statistical physics.

Algorithmically, the method can be briefly summarized as fol-
lows. The goal is to solve a system of equations involving quan-
tities called messages. These messages represent single-variable
cavity marginal probabilities, where the term “cavity” refers to
the fact that these probabilities neglect the existence of a node
in the graph. For each edge of the graph there are two messages
going in opposite directions. Each equation in the system gives
the expression of one of the messages as a function of its neigh-
boring messages. The expressions for these functions are derived
from the form of the interactions between the variables of the
graph. The resulting system of equations is then solved itera-
tively, by initializing the messages in some arbitrary configuration
and updating them according to the equations until a fixed point
is eventually reached. If convergence is achieved, the messages
can be used to compute various quantities of interest; among
those, the most relevant in our case are the single-site marginals
and the thermodynamic quantities such as the entropy and the
free energy of the system. From single-site marginals, it is also
possible to extract a configuration by simply taking the argmax
of each marginal.

In the case of our learning problem, the variables are the
synaptic weights, and each pattern represents a constraint (i.e.,
an “interaction”) between all variables, and the form of these
interactions is such that BP messages updates can be computed
efficiently. Also note that, because our variables are binary, each
of the messages and marginals can be described with a single
quantity: We generally use the magnetization, that is, the dif-

ference between the probability associated to the states +1 and
−1. We thus generally speak of the messages as “cavity magne-
tizations” and the marginals as “total magnetizations.” The fac-
tor graph, the BP equations, and the procedure to perform the
updates efficiently are described in detail in SI Appendix, closely
following the work of ref. 29. Here, we give a short summary. We
use the notation mt

j→µ for the message going from the node rep-
resenting the weight variable j to the node representing pattern
µ at iteration step t , and mt

µ→j for the message going in the
opposite direction, related by the BP equation:

mt
j→µ = tanh

∑
ν∈∂j\µ

tanh−1mt
ν→j , [6]

where ∂j indicates the set of all factor nodes connected to j . The
expressions for the total magnetizations mt

j are identical except
that the summation index runs over the whole set ∂j . A con-
figuration of the weights is obtained from the total magnetiza-
tions simply as Wj = sgn (mj ). The expression for mt+1

ν→j as a

function of
{
mt

i→ν
}N
i=1

is more involved and it is reported in
SI Appendix.

As mentioned above, BP is an inference algorithm: When it
converges, it describes a probability distribution. One particu-
larly effective scheme to turn BP into a solver is the addition
of a “reinforcement” term (29): A time-dependent local field is
introduced for each variable, proportional to its own marginal
probability as computed in the previous iteration step, and is
gradually increased until the whole system is completely biased
toward one configuration. This admittedly heuristic scheme is
quite general, leads to very good results in a variety of differ-
ent problems, and can even be used in cases in which unmodified
BP would not converge or would provide a very poor approxima-
tion (see, e.g., ref. 30). In the case of the single-layer binary net-
work such as those considered in this paper, it can reach a capac-
ity of α ' 0.75 patterns per synapse (29), which is consistent
with the value at which the structure of solution-dense regions
breaks (13).

The reason for the effectiveness of reinforced BP has not been
clear. Intuitively, the process progressively focuses on smaller
and smaller regions of the configuration space, with these regions
determined from the current estimate of the distribution by look-
ing in the “most promising” direction. This process has thus
some qualitative similarities with the search for dense regions
described in the previous sections. This analogy can be made
precise by writing the BP equations for the system described by
Eq. 3. There are in this case two equivalent approaches. The first
is to use the local entropy as the energy function, using a second-
level BP to estimate the local entropy itself. This approach is
very similar to the so-called one-step replica-symmetry-breaking
(1RSB) cavity equations (see ref. 16 for a general introduction).
The second approach is to replicate the system, considering N
vector variables

{
W a

j

}y
a=1

of length y , and assuming an internal
symmetry for each variable, that is, that all marginals are invari-
ant under permutation of the replica indices, similarly to what
is done in ref. 31: Pj

({
W a

j

}y
a=1

)
=Pj

(∑y
a=1W

a
j

)
. The result

in the two cases is the same. Because BP assumes replica sym-
metry, the resulting message-passing algorithm reproduces quite
accurately the analytical results at the RS level. As explained in
ref. 13, these results can, however, become wrong, in particular
for high values of α, γ, and y , due to the onset of correlations [the
so-called replica-symmetry-breaking (RSB) effect (16)]. More
specifically, in this model the RS solution assumes that there is a
single dense region comprising the RE, whereas the occurrence
of RSB implies that there are several maximally dense regions.
As a consequence, this algorithm is not a very good candidate as
a solver. A more correct description—which could then lead to
a more controlled solver—would thus require a third level of BP
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equations, or equivalently an assumption of symmetry breaking
in the structure of the marginals Pj

({
W a

j

}y
a=1

)
.

Fortunately, it turns out that that there is a different way
of applying BP to the replicated system, leading to an efficient
solver that is both very similar to the reinforced BP algorithm
and reasonably well described by the theoretical results. Instead
of considering the joint distribution over all replicated variables
at a certain site j , we simply replicate the original factor graph
y times; then, for each site j , we add an extra variable W ?

j ,
and y interactions, between each variable W a

j and W ?
j . Finally,

because the problem is symmetric, we assume that each replica
of the system behaves in exactly the same way, and therefore that
the same messages are exchanged along the edges of the graph
regardless of the replica index. This assumption neglects some of
the correlations between the replicated variables but allows us to
work only with a single system, which is identical to the original
one except that each variable now also exchanges messages with
y−1 identical copies of itself through an auxiliary variable (which
we can just trace away at this point, as in Eq. 4). The procedure is
shown graphically in Fig. 4. At each iteration step t , each variable
receives an extra message of the form

mt+1
?→j = tanh

(
(y − 1) tanh−1 (mt

j→? tanh γ
))

tanh γ, [7]

where mt
j→? is the cavity magnetization resulting from the rest of

the factor graph at time t , and γ is the interaction strength. This
message simply enters as an additional term in the sum in the
right-hand side of Eq. 6. Note that even though we started from
a system of y replicas, after the transformation we are no longer
constrained to keep y in the integer domain. The reinforced BP
(29), in contrast, has a term of the form

mt+1
?→j = tanh

(
ρtanh−1mt

j

)
. [8]

The latter equation uses a single parameter 0 ≤ ρ ≤ 1 instead
of two and is expressed in terms of the total magnetization mt

j

instead of the cavity magnetization mt
j→?. Despite these differ-

ences, these two terms induce exactly the same BP fixed points
if we set γ = ∞ and y = (1− ρ)−1 (SI Appendix). This result

A B

Fig. 4. (A) Portion of a BP factor graph for a replicated variable Wj with
y = 3 replicas and a reference configuration W?

j . The dashed lines represent
edges with the rest of the factor graph. The squares represent the interac-
tions γW?

j Wa
j . All BP messages (arrows) are assumed to be the same in cor-

responding edges. (B) Transformed graph that represents the same graph
as in A but exploits the symmetry to reduce the number of nodes, keeping
only one representative per replica. The hexagon represents a pseudoself-
interaction, that is, it expresses the fact that m?→j depends on mj→? and is
parametrized by γ and y.

is somewhat incidental, because in the context of our analysis
the limit γ → ∞ should be reached gradually; otherwise, the
results should become trivial (Fig. 1), and the reason why this
does not happen when setting γ = ∞ in Eq. 7 is only related to
the approximations introduced by the simplified scheme of Fig. 4.
As it turns out, however, choosing slightly different mappings
with both γ and y diverging gradually (e.g., γ = tanh−1√ρ and
y = 2−ρ

1−ρ with ρ increasing from 0 to 1) can lead to update rules
with the same qualitative behavior and very similar quantitative
effects, such that the performances of the resulting algorithms
are hardly distinguishable, and such that the aforementioned
approximations do not thwart the consistency with the theoret-
ical analysis. This is shown and discussed in SI Appendix. Using a
protocol in which γ is increased gradually, rather than being set
directly at∞, also allows the algorithm to reach a fixed point of
the BP iterative scheme before proceeding to the following step,
which offers more control in terms of the comparison with ana-
lytical results, as discussed in the next paragraph. In this sense,
we therefore have derived a qualitative explanation of the effec-
tiveness of reinforced BP within a more general scheme for the
search of accessible dense states. We call this algorithm focusing
BP (fBP).

Apart from the possibility of using fBP as a solver, by gradually
increasing γ and y until a solution is found, it is also interesting
to compare its results at fixed values of y and γ with the ana-
lytical predictions for the perceptron case that were derived in
refs. 13 and 15, because at the fixed point we can use the fBP
messages—using the standard BP formulas—to compute such
values as the local entropy, the distance from the reference con-
figuration, and the average overlap between replicas (defined as
q = 1

N

∑
j

〈
W a

j

〉 〈
W b

j

〉
for any a and b, where 〈·〉 denotes the

thermal averaging). The expressions for these quantities are pro-
vided in SI Appendix. The results indicate that fBP is better than
the alternatives described above in overcoming the issues arising
from RSB effects. The 1RSB scheme describes a nonergodic sit-
uation that arises from the breakup of the space of configurations
into a collection of several separate equivalent ergodic clusters,
each representing a possible state of the system. These states are
characterized by the typical overlap inside the same state (the
intracluster overlap q1) and the typical overlap between configu-
rations from any two different states (the intercluster overlap q0).
Fig. 5 shows that the average overlap q between replicas com-
puted by the fBP algorithm transitions from q0 to q1 when γ is
increased (and the distance with the reference is decreased as a
result). This suggests that the algorithm has spontaneously cho-
sen one of the possible states of high local entropy in the RE,
achieving an effect akin to the spontaneous symmetry breaking
of the 1RSB description. Within the state, RS holds, so that the
algorithm is able to eventually find a solution to the problem.
Furthermore, the resulting estimate of the local entropy is in very
good agreement with the 1RSB predictions up to at least α = 0.6
(SI Appendix, Fig. S5).

Therefore, although this algorithm is not fully understood
from the theoretical point of view, it offers a valuable insight
into the reason for the effectiveness of adding a reinforcement
term to the BP equations. It is interesting in this context to
observe that the existence of a link between the reinforcement
term and the RE seems consistent with some recent results on
random bicoloring constraint satisfaction problems (32), which
showed that reinforced BP finds solutions with shorter “whiten-
ing times” with respect to other solvers: This could be inter-
preted as meaning they belong to a region of higher solution
density, or are more central in the cluster they belong to. Fur-
thermore, our algorithm can be used to estimate the point up to
which accessible dense states exist, even in cases, such as mul-
tilayer networks, where analytical calculations are prohibitively
complex.
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Fig. 5. fBP spontaneously breaks replica symmetry: The overlap order
parameter q (black thick curves) gradually transitions from the intercluster
overlap q0 and the intracluster overlap q1 of the replica theory (red thin
curves, q0 < q1) as the distance to the reference W? goes to 0 (i.e., as
γ → ∞). (Insets) An alternative visualization of this phenomenon, plotting
(q− q0) / (q1 − q0) against the distance. These results were obtained on a
perceptron with N = 1,001 at α = 0.6, averaging over 50 samples. The two
panels shows that the transition occurs at larger distances (i.e., at smaller γ)
at larger y.

Fig. 6 shows the result of experiments performed on a com-
mittee machine with the same architecture and same y of Fig. 3
(Materials and Methods). The figure shows that fBP finds that
dense states (where the local entropy curves approach the upper
bound at small distances) exist up to nearly α = 0.6 patterns
per synapse, and that when it finds those dense states it is corre-
spondingly able to find a solution, in perfect agreement with the
results of the replicated GD algorithm.

Finally, we also performed some exploratory tests applying
fBP on the random K -satisfiability problem, and we found clear
indications that the performance of this algorithm is similar to
that of survey-propagation-based algorithms (10, 33), although a
more detailed analysis is required to draw a more precise com-
parison. The results are reported in SI Appendix.

Discussion
In this paper, we have presented a general scheme that can be
used to bias the search for low-energy configurations, enhanc-
ing the statistical weight of large, accessible states. Although the
underlying theoretical description is based on a nontrivial large
deviation measure, its concrete implementation is very simple—
replicate the system and introduce an interaction between the
replicas—and versatile, in that it can be generally applied to a
number of different optimization algorithms or stochastic pro-
cesses. We demonstrated this by applying the method to SA, GD,
and BP, but it is clear that the list of possible applications may
be much longer. The intuitive interpretation of the method is
also quite straightforward: A set of coupled systems is less likely
to get trapped in narrow minima, and will instead be attracted
to wide regions of good (and mostly equivalent) configurations,
thus naturally implementing a kind of robustness to details of the
configurations.

The utility of this kind of search depends on the details of the
problem under study. Here we have mainly focused on the prob-
lem of training neural networks, for a number of reasons. The
first is that, at least in the case of single-layer networks with dis-
crete synapses, we had analytical and numerical evidence that
dense, accessible states exist and are crucial for learning and
improving the generalization performance, and we could com-
pare our findings with analytical results. The second is that the
general problem of training neural networks has been addressed
in recent years via a sort of collective search in the space of

heuristics, fueled by impressive results in practical applications
and mainly guided by intuition; heuristics are evaluated based on
their effectiveness in finding accessible states with good general-
ization properties. It seems reasonable to describe these acces-
sible states as regions of high local entropy (i.e., wide, very
robust energy minima): The center of such a region can act as a
Bayesian estimator for the whole extensive neighborhood. Here
we showed a simple way to exploit the existence of such states
efficiently, whatever the optimization algorithm used. This not
only sheds light on previously known algorithms but also suggests
improvements or even entirely new algorithms. Further work is
required to determine whether the same type of phenomenon
that we observed here in simple models actually generalizes to
the deep and complex networks currently used in machine learn-
ing applications (the performance boost obtained by the EASGD
algorithm of ref. 8 being a first indication in this direction), and
to investigate further ways to improve the performance of learn-
ing algorithms, or to overcome constraints (such as being limited
to very-low-precision computations).

It is also natural to consider other classes of problems in which
this analysis may be relevant. One application would be solving
other constraint satisfaction problems. For example, in ref. 15
we demonstrated that the EdMC algorithm can be successfully
applied to the random K -satisfiability problem, even though we

Fig. 6. Results of fBP on a committee machine with N = 1,605, K = 5, y = 7,
increasing the interaction γ from 0 to 2.5, averages on 10 samples. (Top)
Local entropy versus distance to the reference W? for various α (error bars
not shown for clarity). The topmost gray curve (α = 0) is an upper bound,
representing the case where all configurations within some distance are
solutions. (Inset) Enlargement of the region near the origin indicated by the
rectangle in the main plot. This shows that dense states exist up to almost
α = 0.6 patterns per synapse: At this value of α, dense states are only found
for a subset of the samples (in which case a solution is also found). Nega-
tive local entropies (curve at α = 0.7) are unphysical, and fBP fails shortly
after finding such values. (Bottom) Error rates as a function of tanh (γ). For
α ≤ 0.6, all curves eventually get to 0. However, only 7 out of 10 samples
reached a sufficiently high γ at α = 0.6, whereas in three cases the fBP
equations failed. The curve for α = 0.7 is interrupted because fBP failed
for all samples, in each case shortly after reaching a negative local entropy.
The plateaus at α = 0.4 and α = 0.5 are regions where the solution to
the equations are symmetric with respect to the permutation of the hidden
units: fBP spontaneously breaks that symmetry as well.
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had to resort to a rough estimate of the local entropy due to RS
breaking effects. We have shown here that the fBP algorithm pre-
sented above is also effective and efficient on the same problem.
It is also interesting to note here that large-deviation analyses—
although different from the one of the present paper—of a simi-
lar problem, the random bicoloring constraint satisfaction prob-
lem, have shown that atypical “unfrozen” solutions exist (and
can be found with the reinforced BP algorithm) well beyond the
point in the phase diagram where the overwhelming majority of
solutions have become “frozen” (32, 34). Finally, an intriguing
problem is the development of a general scheme for a class of
out-of-equilibrium processes attracted to accessible states: Even
when describing a system that is unable to reach equilibrium in
the usual thermodynamic sense or is driven by some stochastic
perturbation, it is still likely that its stationary state can be char-
acterized by a large local entropy.

Materials and Methods
Replicated SA. The SA procedure used an elementary Metropolis–Hastings
Monte Carlo iteration step that can be summarized as follows: i) We choose
a replica uniformly at random; ii) we choose a candidate weight to flip for
that replica according to a prior computed from the state of all of the repli-
cas; and iii) we estimate the single-replica energy cost of the flip and accept it
according to a standard Metropolis rule with a (usually very small) extra term.

The sampling technique (step ii above) uses a prior to choose which spin
to flip. The prior for a spin that, if flipped, would result in a contribution c to
the interaction energy, Eq. 5, is computed from the number of spins in the
same replica that would produce the same contribution, nc, and the number
of those which would either produce the same contribution or its opposite,
qc = nc + n−c. For c > 0, the prior is

Pc (nc, qc) =
qc

N

(
φ
(

nc, qc, e
−2c
)

(1− δnc,qc ) + δnc,qc

)
, [9]

where φ (n, q, λ) = λ n
q−n+1 2F1 (1, 1− n; q− n + 2;λ), with 2F1 the hyper-

geometric function, and δ is the Kronecker delta symbol. The prior for the
case c < 0 is qc

N − P−c (n−c, qc). The move is accepted (step iii above)

with probability min (1, e−β∆E)(1 − δnc,qc (1− e−2 max(c,0))
qc ), where ∆E is

the single-replica energy shift (without the interaction). This procedure is
derived and explained in more detail in SI Appendix.

The annealing procedure consisted of starting from a given inverse tem-
perature β and interaction strength γ and increasing them both by a con-
stant factor after a certain number of accepted moves, until either a solution
was found (by any one of the replicas or by the center, computed as their
spinwise mode) or a give-up criterion was met. The details are provided in
SI Appendix.

Replicated GD. Our replicated SGD scheme uses continuous internal vari-
ables Wa

i and associated binary variables Wa
i = sgn (Wa

i ), where i is a synap-
tic index and a is a replica index. The gradient is used in the update of the
continuous variables, but it is computed using the discrete variables; the for-
mula for the update of a given weight Wa

i is simply the usual SGD formula
plus an extra term that comes from the RE interaction, Eq. 5, with an addi-
tional step parameter η′:

η
′
(

tanh

(
γ

y∑
b=1

Wb
i

)
−Wa

i

)
. [10]

This formula is derived and discussed in more detail in SI Appendix.
We used a standard SGD protocol with fixed minibatch size. During the

training process, we kept the gradient steps fixed but increased γ in regular
steps after each epoch. The training was stopped whenever a solution was
found (by any one of the replicas or by their spinwise mode), or after 104

epochs. The details are provided in SI Appendix.

Replicated BP. Our implementation of the fBP algorithm closely follows
ref. 29 with the addition of the self-interaction Eq. 7, except that great care
is required to correctly estimate the local entropy at large γ, due to numer-
ical issues. The formulas and the numerical issues are discussed in detail in
SI Appendix.
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12. Zdeborová L, Mézard M (2008) Locked constraint satisfaction problems. Phys Rev Lett
101:078702.

13. Baldassi C, Ingrosso A, Lucibello C, Saglietti L, Zecchina R (2015) Subdominant dense
clusters allow for simple learning and high computational performance in neural
networks with discrete synapses. Phys Rev Lett 115(12):128101.

14. Huang H, Kabashima Y (2014) Origin of the computational hardness for learning with
binary synapses. Phys Rev E Stat Nonlin Soft Matter Phys. 90(5):052813.

15. Baldassi C, Ingrosso A, Lucibello C, Saglietti L, Zecchina R (2016) Local entropy as a
measure for sampling solutions in constraint satisfaction problems. J Stat Mech Theor
Exp 2016(2):P023301.
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