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ABSTRACT
Affect recognition plays an important role in human com-
puter interaction (HCI). Speech is one of the primary forms
of expression and is an important modality for emotion
recognition. While multiple recognition systems exist, the
most common ones identify discrete categories such as
happiness, sadness, from distinct utterances that are a few
seconds long. In many cases the datasets, used for training
and evaluation, are imbalanced across the emotion labels.
This leads to big discrepancies between the unweighted
accuracy (UA) and weighted accuracy (WA). Recently Deep
Neural Networks have shown increased performance for
the emotion classification task. In particular Convolutional
Neural Networks capture contextual information from speech
feature frames. In this paper we analyze various convo-
lutional architectures for speech emotion recognition. We
report performance on different frame level features. Further
we analyze various pooling techniques, on top of convolu-
tional layers, to get a utterance level representation for the
emotion. Our best system provides a performance of UA+WA
of 121.15 compared to the baseline algorithm performance
of 118.10.

Index Terms— speech emotion recognition, deep neural
networks, convolutional neural networks, pyramidal pooling.

I. INTRODUCTION

Affective computing is the art of recognizing emotions from
various modalities. It is widely growing within the field of
Human Computer Interaction. Speech remains a primary
form of expressive communication. Predominantly, speech
emotion recognition systems are built to either classify
speech utterances, which typically range a few seconds in
duration, into discrete categories such as sadness, anger, hap-
piness [1], or emotional attributes such as arousal (passive vs
active), and valence (negative vs positive) [2]. Complex emo-
tions can be expressed with emotional attributes and lately,
systems that recognize emotional attributes have been gain-
ing popularity. But systems that classify utterances into a few
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categories remain popular due to the ease of understanding
the categories. A typical framework for such system is shown
in Figure 1. The entire framework can be divided into the
following steps consisting a feature representation stage and
a classification stage. First, low level features are extracted
for every speech frame (typically 10− 20 milliseconds), or
speech segment (typically 10 − 25 frames). Then, a global
high level feature representation, typically statistic, is learnt
for the entire utterance. While the classifier could be trained
to map every speech frame or segment to the emotional class,
this might not be underlying case. Therefore, the high level
representation provides a many to one mapping for emotion
classification. Further, feature representations are modified
using various algorithms. Finally, a classifier is built on top
to learn the underlying emotional state. The two stages are
mostly trained independently.

Recently, Deep Neural Networks (DNNs) [3] have shown
promising performance for the emotion classification task.
The simplest DNN systems for emotion recognition are
feedforward networks that are built on top of the utterance
level feature representations [4]. Recurrent Neural Networks
(RNN) [5] are a class of neural networks that have cyclic
connections between nodes in the same layer. These net-
works capture the inherent temporal context in emotions
and have shown improved performance for classification
task [6]. Another class of DNNs, Convolutional Neural Net-
works (CNN) [7], capture locally present context, patterns,
working on frame level features. CNNs enable the training
of end to end systems where the feature representations and
classification are trained together using a single optimization.

Few works have analyzed the performance of CNNs for
speech emotion classification [8], [9], [10]. Cummins et
al. [11] further built image-based CNNs on spectrograms
features. In this paper we experiment with different CNN
architectures for solving the emotion classification problem
by varying the number of convolutional layers, kernel sizes,
and analyzing their effect on the accuracy. We also re-
port performance with different combinations of low level
features. First, we perform experiments with a baseline
feature set including log-Mel spectrum features, F0, energy,
speech presence probability. We extend the study to include
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Fig. 1. Typical framework for emotion classification system.

only different log Mel-spectrum bands as well as linear
spectrograms. We also report performance with different
pooling layers to attain utterance level statistics.

The contributions of the paper are chiefly (1) the analysis
of various CNN architectures for emotion classification,
(2) the analysis of pooling layers, especially the pyramidal
pooling layers, for attaining utterance level representation,
(3) using UA+WA as a metric for optimizing and evaluating
the system, and finally (4) using the annotation distribution
rather than one hot vectors as ground truth labels to train
our emotional systems.

II. BACKGROUND WORK
II-A. Database
For this study we use a dataset which contains 17, 048
sentences in Mandarin from Microsoft spoken dialogue sys-
tem XiaoIce [12]. Each utterance is annotated for emotional
content by five human judges. Labelers chose from four main
categories: happy, angry, sad, and neutral. The perceptual
annotation process is fuzzy with many ways to construct
the ground-truth label. Most studies use a majority vote as
ground-truth, i.e. a distribution such as AAAAB or AAABC
would be labeled as A. Wang and Tashev [12] only retained
utterances with at least three labeler majority i.e. classes
distributions such as AAABB would not get a label and
used. For the rest they used a majority label as the true label.
Doing so would increase the human labelers accuracy from
75% to 82.18% but at the cost of decreasing the number
of available utterances to 10, 527. Note that in both cases
the ground-truth label is used as a one-hot vector with the
majority class. Figure 2 shows the distribution of emotion
labels in this dataset. Note that there is an imbalance in the
dataset as users are chat predominantly happy talking to the
chatbot.
II-B. Baseline
For baseline we use the algorithm proposed in [12]. The
speech signal is split into 25 ms frames at a frame rate of
100 Hz. For each frame 29 low-level features are extracted,
which include 26-band log Mel-spectrum, fundamental fre-
quency (F0), energy, and speech presence probability. Along
with these the deltas were also used for each frame totaling
58 features per frame. A voice activity detector [13] was
used to identify the frames with speech within the utterance.
Only these frames are used for classification. A context
window of 25 frames is used to final the segment level
feature representation, totaling 1, 450 features per segment.
Each segment is processed by a feed forward DNN with 4
hidden layers and 512 nodes at each layer. On top of this a
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Fig. 2. Distribution of the emotion labels in XiaoIce dataset.

mean pooling layer is used to get the utterance level feature
representation. Finally a softmax classifier is used to train
the system. Given the relatively small size of the training
data, an extreme learning machine (ELM) was fitted on the
final utterance level features replacing the softmax classifier.
The ReLU function is used for activation. For the baseline
the authors split the XiaoIce dataset into training, validation,
and test sets with 70% of the data for training, 15% for
validation, and 15% for testing. As a performance metric
authors use weighted accuracy (WA). Given the imbalance in
the dataset, the authors justify the use of WA as metric from
the user standpoint as they want the majority of utterances
to be better classified. III-A

III. EXPERIMENTS
III-A. Preliminary experiments
In this study we propose to use the true annotator distribution
rather than one hot vector to represent the ground truth.
Steidl et al. [14] hypothesised that clasification performance
should be evaluated considering the confusion between la-
belers. Few studies have considered methods to consider
annotator distribution as soft labels [15], [16]. In our work
the annotator distribution is represented as a probability
vector with the probability for each class. This we believe
is a better representation of the fuzzy labels. There are two
main advantages of doing this. First, we capture the true
variability in the emotional content. Second, we gain the
use of extra samples for training, which were discarded
in the baseline model. Note that to make comparisons to
baseline model we have to keep the test and validation
sets fixed. Therefore the gained samples are only added
to the training set. We performed preliminary experiment
with the baseline architecture, described in Section II-B,
and true annotator distribution as ground-truth. We used 2
hidden layers and retained the traditional softmax layer for
classification. Additionally, given the imbalance in classes
in the dataset, we realize that both the UWA and WA are
important. While UWA captures the true performance of the
classifier the WA captures performance in terms of the true
standpoint. Therefore we use WA+UWA as our evaluation
metric for all experiments in this study.

III-B. Experiments with Convolutional Neural Networks
For all experiments with CNNs the framework for classi-
fication is as follows. First, we extract low level features

2



Table I. Architectures for emotion detection with CNNs ∗ signifies a corresponding note for the architecture
Architecture log Mel-bands CNNs Dense layer Pooling FC layer Note
CNN-BS1 26 1 no mean no
CNN-BS2 26 1 no mean yes
CNN-BS3 26 3 yes mean no
CNN-BS4 26 1∗ no mean no multiresolution
CNN-BS5 40 3 yes mean no

CNN-SPECT1 26 1 no mean no
CNN-SPECT2 26 1∗ yes mean yes multiresolution
CNN-SPECT3 256∗ 1 no mean no spectrum
CNN-SPECT4 512∗ 1 no mean no spectrum

CNN-PP1 26 3 yes pyramidal no 4x1,3x1,2x1,1x1
CNN-PP2 26 3 yes pyramidal no 6x1,3x1,2x1,1x1

per frame. Then we build convolutional layer(s) on top of
the low level features to extract patterns from the individual
frames. We may, or may not, have a dense layer on top of
the convolutional layers. Next, a pooling layer is added to
acquire an utterance level feature representation for emo-
tion classification. While theoretically a classifier could be
trained to learn all frames in an utterance to a particular
emotional label, practically this fails as not all frames in
an utterance correspond to the particular emotion, especially
silence within an utterance. Therefore, the pooling layer
consolidates features from all the frames within an utterance
and provides a utterance level representation. In some cases
we insert a fully connected layer after the pooling layer. A
softmax layer is then added to provide the final classification.
All systems are trained with mini-batch statistical gradient
descent (SGD) with batch size of 128 utterances, using
an ADAM optimizer [17] with learning rate 1e−4. The
explored CNN architectures for emotion recognition task are
summarized in Table I.

Baseline features + CNN: In our first set of architectures
we use the same set of 58 per frame low level features as
used in the baseline and preliminary framework. First we use
one convolutional layer on top of the low level feature frame
(CNN-BS1). Since the low level features are of different
dimensions, the convolutional kernel height is fixed as 58,
resulting in 1-D convolution operations. The convolutional
kernels are of size (58×T×K), where T corresponds to the
width of the kernel in the time axis, and K corresponds
to depth, or number of feature maps. The width of the
kernel T corresponds to the context window used in the
baseline architecture and preliminary experiments. It is fixed
to 24, which corresponds to a 240 ms context window for
emotion classification. We shift the filter by one frame with
padding, therefore width of the frames is maintained. We
fix the number of feature maps K to match the number of
parameters in the baseline model. In the second architecture
(CNN-BS2) we introduce a fully connected layer on top
of the convolutional layer after the mean pooling layer. In
our third architecture (CNN-BS3) we use a deeper model
by placing three convolutional layers. Each layer uses a
kernel of width (58×24×K) as before. We also add a dense

layer of size (512×K) before the pooling layer at each time
frame. With our next architecture (CNN-BS4) we explore
convolutional operations with kernels of different widths
to capture feature patterns with varying temporal context.
We use 3 convolutional kernels with size (58 × 16×K),
(58×24×K), (58×32×K) respectively. We expect to capture
short and longer temporal patterns using these kernels.
We also experimented with higher frequency resolution by
increasing the number of log Mel-spectrum bands from 26
in CNN-BS3 to 40 in CNN-BS5.

Spectral features only + CNN: In another set of archi-
tectures we consider only the spectral features as low level
features. In addition to evaluating the effect of the spectral
features only, we can also study the effect of 2-D convo-
lutional operations on the low level features. First we use
the 26 band log Mel-spectrum features as low level features
(CNN-SPECT1). We treat all frequencies independently and
perform 1-D convolution on the low level features with a
kernel of size (26 × 24×K). In our second architecture we
use 3 different kernels to perform the convolutions (CNN-
SPECT2). With the first kernel (1× 32×K) we capture the
temporal information without any frequency information.
The second kernel (26× 1×K) captures the broadband fre-
quency information without the temporal information. This
operation is similar to the non-negative matrix factorization.
The third kernel (8 × 24×K) captures information from
short time window, in sub-bands. We use a stride of one
in time and frequency directions. A second convolutional
layer with only 1-D temporal convolution is added on top
of the first layer. Finally we also perform convolutions on
linear spectrograms rather than log Mel-frequency scale. We
use two window sizes (256 for CNN-SPECT3, and 512
for CNN-SPECT4) for calculating the spectrograms. We
perform 1-D temporal convolutions, treating each frequency
independently, similar to the baseline architecture CNN-BS1.
Note that in the case of linear scale spectrograms we use all
frames of the utterance irrespective of speech or non speech
frames, which may lead to lower accuracy.

Pyramidal pooling: In this group of architectures we
replace the pooling layer. Rather than doing one mean
pooling we adopt the concept of pyramidal pooling [18].
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Fig. 3. Experimental results.

Here, the input signal is partitioned into smaller regions
and the pooling operation is repeated on each region. The
pyramidal pooling layer is invariant to the dimensions of its
input as well. The number of partitions that form the pyramid
stay constant and only the dimension of the partition varies
with the input dimension. Further, the coarsest representation
of the pyramidal layer is the single mean pooling done with
the earlier experiments. The pyramidal layer also captures
the statistics from features from different regions in the
utterance which we believe is suited for emotion recognition.
We experiment with two pyramidal mean pooling layers. The
first one (PP1) has 4 pyramidal levels (4× 1, 3× 1, 2× 1,
1×1) and the second one (PP2) has pyramidal levels (6×1,
3 × 1, 2 × 1, 1 × 1). Both pyramidal layers are tested on
the convolutional architecture with baseline features which
contain 1-D convolutional filters. The pooling layers are
therefore done in the time domain.

IV. RESULTS

The results are summarized in Figure 3. As declared in
section III-A the evaluation criterion is the sum of UWA
and WA. Note that the results show the absolute value of the
accuracies and the best value possible is 200. Performance
of UWA and WA is highlighted in blue and red respectively.
The baseline architecture, described in section II-B and
denoted BS1, shows performance of 118.1. The performance
of the baseline architecture and true annotator distribution
as ground-truth, described in section III-A, is denoted (BS2)
with overall UWA+WA of 116.5. We notice that although
the UWA+WA is lower than that of the baseline system, we
achieve better UWA, without hurting much the WA. Thus,
even with smaller number of nodes (2 instead of 3 layers),
we achieve similar performance to BS1 with the help of the
true annotator distribution.

For the first CNN architecture with baseline features
CNN-BS1 we notice a drop in performance for both the
WA and UWA. The shallow convolutional layer might not be

able to capture the feature representations needed to classify
the emotions. The introduced fully connected layer after the
mean pooling in CNN-BS2 brings more destruction which
decreases performance. Adding a dense layer in CNN-BS3
works quite well and the deeper network is able to extract
better features and we see an increase in performance with
results comparable to our baseline. Multiresolution CNN-
BS4 shows performance that is comparable to BS1. In both
these cases we increase UWA without a big decrease in WA.
Increasing the number of log Mel-filters in CNN-BS5 did not
produce better results compared to CNN-BS3.

For CNN-SPECT1 the UWA+WA is smaller than the
baseline features which shows that energy, F0, and speech
presence probability features add value to the CNN archi-
tectures. CNN-SPECT2 shows better performance and it is
comparable with, but lower than the CNN-BS4 architecture.
Comparing CNN-SPECT3 and CNN-SPECT4 we see better
performance with 256 window than with 512, and the former
performs slightly better than CNN-SPECT1.

The two pyramidal pooling architectures produce the best
results. They make significant gains in terms of UWA, while
maintaining the WA, which was a drawback with previous
works.

V. CONCLUSIONS

In this paper we analyzed the performance of various CNN-
based architectures for the task of emotion recognition from
speech. Overall these architectures outperform the architec-
tures with fully connected networks, used as baseline. Crit-
ical for the success is the pooling approach, with pyramidal
pooling bringing the highest accuracy. In the feature set the
frame energy, F0, and speech presence probability contribute
to the better accuracy. For training and evaluation we used
UWA+WA as a metric, which brought good results even with
imbalanced datasets. Using the annotation distribution rather
than one hot vectors as a ground-truth labels increased the
accuracy and led to better utilization of the labeled dataset.
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