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Abstract

Soil Moisture and Soil Electrical Conductivity (EC) are im-
portant parameters for data-driven farming. This knowledge
can help a farmer improve crop yield, reduce input costs, and
adopt sustainable agriculture practices. However, the high
cost of commercial soil moisture and EC sensors has lim-
ited their adoption. In this paper, we present the design and
implementation of a system, called SMURF, that senses soil
moisture and soil EC using RF propagation in existing Wi-Fi
bands. It overcomes the key challenge of limited bandwidth
availability in the 2.4 GHz unlicensed spectrum using a novel
multi-antenna technique that maps the propagation time and
amplitude of Wi-Fi to the different antennas as a function of
the refractivity and permittivity of soil, and uses them to infer
soil moisture and EC. Our experiments with software defined
radios (USRP and WARP), and two commodity Wi-Fi cards
show that SMURF can accurately estimate soil moisture and
EC using Wi-Fi, thereby enabling a future in which a farmer
with a smartphone that has a Wi-Fi radio can sense soil in her
farm without investing 100s of dollars in soil sensing equip-
ment.

1 Introduction

Several agricultural applications rely on soil moisture and
soil EC measurements. For example, precision irrigation,
which refers to the variable application of water in differ-
ent regions of the farm, depends on accurate soil moisture
values at different depths. This helps reduce the amount of
water use, and also reduces the leeching of ground water by
the contaminants used in fertilizers and other agricultural in-
puts. Soil EC is another key indicator of soil health. It has
been shown to correlate very well with crop yield and plant
nutrient availability, and farmers are recommended by the
USDA to measure soil EC to determine soil treatment plans
and management zones for Precision Agriculture [1].

Several techniques have been invented over the last few
decades to measure soil moisture and EC. These methods

include direct sensing techniques, that require soil to be ex-
tracted and dried out, as well as indirect sensing methods that
measure surrogate properties of soil moisture and EC, such
as capacitance, electrical, and nuclear response. Researchers
have also explored the use of radar based technologies to
measure soil moisture and EC.

However, one of the key challenges in the adoption of soil
moisture and EC sensing technologies is the cost of existing
sensor solutions. Although hobbyist soil moisture sensors
are available for less than 10 dollars, they are not reliable
and degrade quickly, and are consequently not used by agri-
cultural experts [2]. We are not aware of any low cost soil
EC sensor. The lowest cost, commercial grade, soil mois-
ture or soil EC sensing solutions still cost over a 100 dollars.
They use ruggedized components that typically measure the
resistance, capacitance, or conductivity change of the sen-
sor (discussed in Section 2). The cost of the sensor package
is further increased by the need for additional components,
such as the microprocessor, ADC, cables, packaging, etc.

At these price points for soil sensors, it is unaffordable for
most farmers to adopt moisture or EC sensing technologies.
Most farmers in developing regions don’t make enough to
afford sensors that cost a few hundred dollars. In fact, even
in the developed world, the cost of these sensors has limited
the adoption of precision irrigation technologies [3].

In this paper we present a low-cost soil sensing technique
called SMURF, for Soil Measurements Using RF, that esti-
mates soil moisture and soil EC without the need for a spe-
cialized sensor. Instead, SMURF leverages the phenomenon
that RF waves travel slower in soil with higher permittivity.
With just a few antennas in soil, SMURF can estimate the
permittivity, and the corresponding moisture and EC levels
of soil at the location of the antennas.

Even though prior work on Ground Penetrating Radars
(GPRs) has considered using RF for measuring soil prop-
erties, these systems are specialized, wideband (a few GHz
in the lower UHF spectrum), and hence cost several 1000s of
dollars. In contrast, SMURF uses Wi-Fi devices in the unli-
censed 2.4 GHz of spectrum, with multiple antennas placed



at different depths in the soil. A wireless transmitter, e.g.
Wi-Fi, from the soil surveying device, emits signals that are
received by these antennas in soil. The receiver uses signals
on multiple antennas to compute soil permittivity. The re-
sults are then transmitted back to the soil surveying device,
which then computes the soil moisture and soil EC values at
the location of the antenna.

This capability of SMURF enables several new scenarios.
For example, a farmer with a Wi-Fi enabled smartphone will
be able to learn about the soil in their farm. A tractor or a
UAV (unmanned aerial vehicle) can create new up to date
maps of the soil every time they traverse the farm. An EC
map can help a farmer build management zones. A sprinkler
system can dynamically learn of moisture maps of the farm,
and adapt the time of irrigation, and the amount of water that
it uses in different regions. And there are many more.

Previous GPR techniques use time of flight (ToF) to mea-
sure the speed of the RF signal, and consequently the per-
mittivity of soil. They use wideband spectrum from 100s
of MHz to few GHz of spectrum to measure ToF. However,
such a wide contiguous bandwidth is not available in the un-
licensed spectrum. Furthermore, time of flight measures the
average moisture level from the surface of soil, but doesn’t
measure the absolute moisture levels, such as the soil mois-
ture 8 inches below surface level.

SMURF addresses the above challenges by proposing a
new technique to estimate the moisture and EC level from
Wi-Fi signals. Due to poor propagation in 5 GHz of spec-
trum, SMURF only uses the 70 MHz of available spectrum
in 2.4 GHz. Instead of measuring the absolute ToF, which
would require a wide bandwidth, SMURF uses a technique
to measure the relative ToF of the received signal between
multiple antennas. The relative ToF is used to determine the
permittivity and soil moisture. We then propose a new tech-
nique to measure soil EC using the ratio of signal amplitudes
on the different antennas.

To the best of our knowledge, SMURF is the first work
to demonstrate how Wi-Fi transmissions in the unlicensed
spectrum can be used to sense soil moisture and soil EC.
We have implemented SMURF in the 2.4 GHz unlicensed
bands over various hardware, including USRP, WARP, and
Intel and Qualcomm Atheros based Wi-Fi cards, and shown
the system to perform as well as the more expensive soil sen-
sors.

Furthermore, through this design, this paper makes the fol-
lowing contributions:

• It shows how average soil moisture from the surface
of soil to the antenna can be estimated using a nar-
row bandwidth in the unlicensed spectrum by leverag-
ing machine learning models trained on CSI, along with
a combination of other RF parameters.

• It presents a new technique to estimate soil moisture
at a given depth by mapping it to the permittivity and

refractive index of soil, and approximating it using the
time difference of arrival between antennas.

• It presents a new technique to estimate soil EC using
relative amplitudes of signals received by multiple an-
tennas.

• It solves systems challenges related to antenna place-
ment in soil, and fast (joint) estimation of average mois-
ture from surface level to the antenna, along with mois-
ture level at the location of the antenna.

• It demonstrates how the system can be implemented in
the 2.4 GHz unlicensed bands, and over various hard-
ware, such as USRP, WARP, and Intel and Qualcomm
Atheros based Wi-Fi cards.

2 Background

We first provide some background on the state of the art in
soil moisture and EC sensing, and then show how GPR based
techniques have used RF for estimating soil moisture.

2.1 Sensing Soil Moisture and EC

The most accurate method for soil sensing is the direct gravi-
metric method [4]: of sampling soil, drying it out, and
weighing the amount of moisture that is lost from the soil.
However, this technique is expensive, manual, requires oven
drying, and disturbs the soil.

Several lower-cost surrogate sensing approaches have
been proposed in the literature that estimate soil moisture
based on the indirect properties of soil that are affected by
moisture. For example, electrical resistance based sensors
measure the resistance of soil when current is passed through
two electrodes [5]. Capacitive sensors measure the time to
charge the capacitor. A calibration chart is then used to con-
vert the resistance to the corresponding soil moisture value.
Heat-diffusion sensors measure the rate of increase of tem-
perature when applying a heat source [6]. Wet soil dissipates
heat much faster than dry soil. Tensiometers [7] measure
the tension created by soil absorbing the water kept in a ce-
ramic cup connected through a tube. Radioactive sensors [8]
measure the slowing of neutrons in soil after being emitted
into the soil from a fast-neutron source. Most ”commercial”
grade soil moisture sensors, such as the ones from Decagon,
Campbell Scientific, or Sensoterra, typically cost over a 100
dollars.

To measure EC, the resistance to current is measured
through electrodes in soil. The most inexpensive sensors we
are aware of cost over a 100 dollars. They have to be to con-
nected to a microprocessor and RF modules, and hence are
even more expensive.
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2.2 Soil Sensing Using RF
ToF-based RF sensing techniques, such as GPRs and TDRs,
exploit the relationship between electromagnetic (EM) wave
characteristics and material properties. Two key material
properties that enable RF-based sensing are dielectric per-
mittivity and electrical conductivity (EC). Compared with
wave propagation in free space, larger permittivity and EC
values in soils add attenuation to the signal strength and
slows down the wave propagation speed. Conversely, know-
ing the attenuation and velocity of a signal traveling in a
soil can help to figure out the permittivity and EC of that
soil. Next, we will mathematically explain the relationship
between material properties and wave propagation.

Permittivity, ε∗ = ε
′
+ jε

′′
, is a complex value, where ε

′

and ε
′′

are its real and complex components. It is usually
represented by the the term relative permittivity given as:

ε
∗
r =

ε∗

ε0
=

ε
′

ε0
+ j

ε
′′

ε0
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′
r + jε

′′
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where ε0 is the permittivity of free space (8.854× 10−12

F/m). EC is usually represented by a real value, σ , since its
imaginary component is insignificant at radio frequencies.
Permittivity (in F/m) and EC (in S/m) affect attenuation and
phase rotation for a signal that propagates in a conducting
dielectric medium at frequency f and travels a distance of d
in the following form:
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are the attenuation coefficient that determines signal atten-
uation and phase coefficient that determines phase variation
during propagation. c is the speed of light and A is the signal
amplitude determined by wavelength in the medium and sys-
tem parameters including antenna beam pattern, gain settings
at transmitter and receiver, and antenna gains. For isotropic
antennas, A is given as follows from the Friis equation [9]:

A =

√
PrGtGrλ

4π
(5)

where Pr is the transmit power, Gt and Gr are the transmit
and receive antenna gains. Compared with wave propagation
in free space, which is given as:

E0( f ,d) =
A0

d
e

j2π f d
c =

λ0A
λd

e−(α0+ jβ0)d (6)

where α0 = 0 and β0 = 2π f/c, we can see that the dielec-
tric medium basically adds an extra attenuation due to the
change of wavelength λ0/λ and the transmission loss eαd ,
and slows down the speed of wave by a factor of β/β0. The
propagation velocity can be expressed as follows:

v =
c

β/β0
=

c√
Ka

(7)
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is known as the apparent permittivity of a material, which
is often adopted in ToF-based RF techniques to describe the
permittivity estimated from ToF. When ε

′′
r and σ/2π f ε0 are

small compared with ε
′
r, the above equation reduces to:

Ka = ε
′
r (9)

The typical range of
√

Ka in soil is 2-6, corresponding to 2-6
times slow down of wave speed in soil compared with the
speed of light [10].

2.2.1 Water Content Estimation from ToF

ToF-based RF techniques measure ToF to estimate wave ve-
locity v and then determine the apparent permittivity Ka of
soil. The relationship between Ka and ToF of a signal travel-
ing through a known distance d is given as follows:

Ka =
(cτ

d

)2
(10)

Soil is considered as a mixture of soil particles, water and
air. The permittivity of soil strongly depends on the wa-
ter content in it since water has a much larger permittiv-
ity than air and soil particles. The permittivity of water is
around 80, while the permittivity of air is 1 and the permit-
tivity of soil particles is from 3 to 10. The water content-
permittivity relationship of soils has been well studied and
modeled [11, 12, 13]. Once the permittivity value of a soil is
obtained, it can be fit into existing water content-permittivity
models for that soil type to estimate the water content. An
example model, which is widely used for mineral soils [11],
is as follows:

θ =−5.3×10−2 +2.92×10−2Ka−5.5×10−4K2
a

+4.3×10−6K3
a

(11)

where θ is the volumetric water content in soil and Ka is
the soil apparent permittivity given in Eq. 8.
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2.2.2 EC estimation from Attenuation

RF techniques measure the signal attenuation eαd through a
known distance d to estimate the attenuation coefficient α

and then use α to estimate EC. In attenuation-based EC esti-
mation methods, since both the imaginary component of per-
mittivity ε

′′
r and electrical conductivity σ contribute to the at-

tenuation, a term apparent conductivity or effective conduc-
tivity is used for the EC estimated by such methods, which
is given as:

σa = σ +2π f ε0ε
′′
r (12)

which can be calculated from Eq. 3. When σa/2π f ε0ε
′
r is

a small value, the calculation of σa can be simplified to

σa =
α
√

ε
′
r

60π
(13)

2.2.3 Limitations of Existing RF Sensing Techniques

Accurate ToF and signal attenuation measurements are the
key factors for the accuracy of soil moisture and EC esti-
mation, which imposes a need of special system design to
give reliable results. The cost of RF sensing systems is thus
usually very high, of the order of several thousand dollars.
ToF estimation requires ultra-wide bandwidth to obtain good
performance. The bandwidth of systems like GPRs usually
spans multiple GHz. Such systems also require specially de-
signed hardware to allow operation on a wide bandwidth.
The FCC-imposed power limit for ultra-wideband systems,
which is -41.3 dBm/MHz, gives rise to higher power effi-
ciency requirement in designing these systems.

Since EC estimation requires absolute amplitude measure-
ments, it makes the system complex. One needs to know
system parameters both during design and in operation. For
TDR systems that use transmission line to estimate permit-
tivity and EC, tradeoff exists when choosing probe design
parameters for ToF and EC [14]. In antenna-based systems
like GPRs, besides the system parameters given in Eq. 5, the
whole propagation path from transmitter to receiver, which
includes multiple reflections and refractions, also needs to be
carefully modeled.

3 SMURF Design

SMURF measures soil moisture and EC only using Wi-Fi
signals. A Wi-Fi transmitter, such as a phone or on a tractor,
transmits packets which are received by multiple antennas in
soil, as shown in Figure 1. All antennas are connected to
a single radio. The received signal is used to estimate the
permittivity of soil, which is then used to determine the soil
moisture and soil EC.

We describe these techniques in detail in the rest of this
section.

Figure 1: Overview of SMURF

3.1 Estimating Permittivity with Wi-Fi

Overcoming bandwidth limitation using multiple anten-
nas: Antennas and RF chains on a MIMO capable Wi-Fi
device are synchronized in time and frequency. Previous
work [15, 16, 17] has shown that such antennas can be uti-
lized to estimate angle of arrival (AoA) based on path differ-
ence across antennas on an array. In air, this path difference,
∆l, corresponds to a delay of ∆τ = ∆l/c, where c is the speed
of light.

Our insight here is: if the path difference happens in soil,
this delay will be longer due to slower wave velocity. Sim-
ilar to our previous analysis, permittivity can be calculated
from Eq. 10. The difference is that the ToF τ in Eq. 10 is
no longer the absolute ToF of a signal that travels from the
transmit antenna to the receive antenna, but the ToF differ-
ence from between multiple receive antennas. In the follow-
ing discussion, we use the term of relative ToF to refer to the
delay caused by the path difference between two adjacent
antennas on the array.

Unlike absolute ToF, the accuracy of relative ToF is dom-
inated by the carrier frequency instead of bandwidth. Hence
it is possible to get better resolution for relative ToF than ab-
solute ToF.

Mapping relative ToF to soil permittivity: The other
key insight in SMURF is that the multiple antennas can be
placed to create a path difference in soil, such that the rel-
ative ToF maps to permittivity. Typically, we are interested
in a scenario where the transmitter is in air and the receiver
antenna array is in soil. Since commodity Wi-Fi devices usu-
ally have three antennas, we consider using three antennas as
the receive array. Next we will show how to estimate permit-
tivity based on relative ToF estimation in this setup.

We use the air-to-soil wave propagation model as shown in
Figure 2 to help explain the relationship between relative ToF
and path difference in soil. For simplicity, we introduce the
concept refractive index n to describe the slow down effect
of soil, which relates to the permittivity as follows:

n =
√

Ka (14)
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Figure 2: Model of plane wave propagating through air-to-soil sur-
face. Transmit and receive antennas are oriented perpendicular to
the plane of the paper. The wave travels to antenna B has a delay of
n∆l2/c+n∆l3/c−∆l1/c relative to the wave travels to antenna A.

When signal travels from the transmitter to the receive an-
tennas, the wave is refracted at the air-to-soil surface. There-
fore, the path length difference of two adjacent antennas now
consists of three parts: ∆l1, ∆l2, ∆l3. ∆l1 and ∆l2 are near the
surface, while ∆l3 is near the antenna array. Since the speed
of wave in soil is c/n, the additional time it takes to travel
these path length differences, i.e., relative ToF, is

∆τ =
∆l1
c
− n∆l2

c
+

n∆l3
c

=
∆l
c

(15)

where ∆l = ∆l1− n∆l2 + n∆l3 is the equivalent total dis-
tance difference. As we can see, ∆l contains information of
soil refraction index, n. Next, we calculate ∆l to find out its
relationship with n, and then soil permittivity ε .

∆l1, ∆l2 and ∆l3 are given as

∆l1 = d1sinθ1,∆l2 = d1sinθ2,∆l3 = dsinθ3 (16)

where d is the distance between antennas on the antenna
array, d1 is the distance between waves going to the antenna
array at the air-to-soil surface, θ1 is the angle of incidence,
θ2 is the angle of refraction, θ3 is the angle of incident wave
at the antenna array.

The refraction at air-to-soil surface follows Snell’s law, so
θ1 and θ2 have the following relationship

sinθ1 = nsinθ2 (17)

Therefore, we have ∆l1 = n∆l2 so that ∆l = n∆l3 =
ndsinθ3. θ3 is a function of the angle of refraction and the
angle of antenna array, θ4

θ3 = θ4−θ2 (18)

We can then rewrite ∆l as

∆l = ndsin(θ4−θ2) = ndsin(θ4−arcsin(
sinθ1

n
)) (19)

In the above equation, d and θ4 are parameters we can
control during the deployment of the antenna array, which
are independent of soil moisture. θ1 depends on the location
of transmit antenna and n. Note that in the case of normal
incidence, θ1 is 0 and is independent of n. If we can further
know ∆l or the corresponding relative ToF τ = ∆l/c, we can
estimate n and Ka.

3.2 Estimating EC from Relative Amplitude

As discussed in Section 2, measuring EC from absolute RF
amplitude measurements is prone to errors, and difficult to
implement and calibrate. Instead we propose a new tech-
nique that uses the ratio of amplitudes across multiple an-
tennas, which we call the relative amplitude, to estimate the
EC. This avoids the need to calibrate several other parame-
ters, such as antenna gains, impedance, etc.

Reducing model complexity by exploiting relative am-
plitude: When wave travels from air into soil, the signal
power attenuation is modeled as follows [18]:

Pt

Pr
= T︸︷︷︸

refraction

1
GtGr︸ ︷︷ ︸

antenna gains

(
4π(ds

√
Ka +da) f
c

)2

︸ ︷︷ ︸
spreading loss

e2αds︸︷︷︸
transmission loss

(20)
where ds and da are the distances the wave travels in soil

and air. T is the transmission coefficient caused by the re-
fraction at air-to-soil interface, which is a function of inci-
dent angle and soil permittivity. We notice that for three
closely-located and orientation-aligned antennas, their val-
ues of T are similar. Furthermore, since soil moisture does
not vary much within a small area, the three antennas ex-
perience similar impedance change and hence have similar
receive gains Gr. Gt is the same for the three antennas since
they simultaneously receive the same packet from the same
transmitter.

Therefore instead of looking at the absolute amplitude, we
propose to use the difference between attenuation of two an-
tennas at different depths, i.e., relative attenuation:

Pr(ds1 ,da1)

Pr(ds2 ,da2)
=

(
ds2

√
Ka +da2

ds1

√
Ka +da1

)2

e2α(ds2−ds1 ) (21)

Comparing the above equation with Eq. 20, the relative
amplitude eliminates a lot of system parameters and is less
vulnerable to the transmit antenna’s location change. In the
case of normal incident where da1 = da2 and far field, the
above equation can be reduced to Prel(∆d) = e2α∆d .

Recall that in Eq. 17, the large values of n in soil limit the
angle of refraction to be small. This indicates that dsi can be
approximated to the depth of the ith antenna, which is known
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during the deployment of the receive antenna array. There-
fore, we can use the relative amplitude or relative power at
two antennas at different depths to estimate the attenuation
coefficient and then figure out the EC value from Eq. 3 or
Eq. 13.

3.3 Soil-Specific Antenna Array Design
To make a good estimation of soil moisture from the relative
ToF, we need to carefully choose antenna array parameters
that are included in (19). Specifically, these parameters are:
(i) antenna distance, d, (ii) antenna array rotation θ4, and (iii)
angle of incident wave, θ1. Additionally, we need to choose
a proper frequency band as the wave’s carrier frequency.

Figure 3: A typical antenna array setup in soil. The three antennas
are at put different depths and the distance between two adjacent
antennas in the horizontal plane is small.

3.3.1 Array Parameters Selection

In practice, the refractive index of soil, n, is usually a value
between 2 and 6, which makes θ2 a small value (usually be-
low 10 degrees) according to Snell’s law. This implies that
when the wave is incident on the soil surface, the incident
point of the shortest path is usually around the area right
above the receiver antennas. Given an antenna distance of
d, the distance between the incident points of waves that go
to different antennas is around dcosθ4.

All the equations in Section 3.1 are based on the assump-
tion that soil is a homogeneous medium and the surface is
totally flat. However, the real world soil surface is always
rough and soil moisture can vary even within a small area. A
depth variation of ∆d will lead to a ToF variation of n∆d/c.
Consider ∆d = 0.01m and n = 3, the ToF variation is 0.1 ns.
If we use a carrier frequency of 2.4 GHz, the phase differ-
ence caused by this variation is 0.48π . To reduce the effect
of soil non-homogeneity, ideally we want dcosθ4 to be as
small as possible, i.e., either d or cosθ4 needs to be small.
In practice, d needs to be a relatively big value to tolerate
variations caused by soil heterogeneity and reduce possible
reflections from nearby antennas. Since θ2 is a small value in

soil, setting θ4 to be 90 degrees is likely to cause blockage of
the bottom two antennas’ line-of-sight (LoS) paths. There-
fore, we choose θ4 to be a value around 90 degrees that does
not cause blockage.

Figure 3 shows a real world example of an antenna setup
in soil. Antenna distances in the x-axis are set to be the same
so that ∆x = x3− x2 = x2− x1. Additionally, ∆x is set to be
a small value to reduce the effect of soil non-homogeneity.
Antenna distances in the z -axis are also set to be the same
so that ∆z = z3− z2 = z2− z1. The depth difference, ∆z, is
set to be a relative big value to tolerate possible variations in
soil structure.

3.3.2 Frequency Band Selection

As we can see from Eq. 20, signal attenuation in soil is
frequency-dependent. Higher frequency signals have higher
attenuation. Therefore, we should choose a frequency that
can at least penetrate to the bottom antenna in our setup.

To understand how Wi-Fi frequency bands perform in soil
at different moisture levels, we conducted measurements
with a network analyzer in potting soil. Since frequency
below 1 GHz is known to have good performance in GPR
applications, here our main focus is to look at signal atten-
uation at Wi-Fi frequency bands, i.e., 2.4 GHz and 5 GHz.
Figure 4 plots the signal attenuation in soil for the three re-
ceive antennas at depths of 5 cm, 10 cm and 15 cm in soil.
With a transmission power of 15 dBm, the channels mea-
sured with smaller than -90 dB log magnitude do not contain
useful phase information. We can see that the attenuation at
2.4 GHz channels maintain larger than -80 dB log magni-
tude at all moisture levels while 5 GHz channels do not have
good signal strength for the bottom antenna even when soil
is very dry. Therefore, although 5 GHz channels have a total
bandwidth span of about 665 MHz, the attenuation problem
makes most of the data measured at 5 GHz invalid. These
results indicate that we should focus on using 2.4 GHz chan-
nels, which have about 70 MHz of available bandwidth.

3.4 Dealing with Multipath

The equations derived in Section 3.1 only consider the short-
est path from the transmit to the receive antennas. In prac-
tice, channels always consist of multiple paths. In our mea-
surement setup, the shortest path is also the strongest path in
most cases. Therefore, we use the MUSIC algorithm to ac-
curately recover the shortest path from a multipath channel.

In multipath environment, the CSI of mth antenna and nth

frequency can be written as the sum of L paths

hm,n =
L

∑
l=1

al,me− j2π( f0+∆ f n)τl,m (22)

where al,m is the complex amplitude of lth path, τl is the
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Figure 4: Channel attenuation in soil at different depths measured by network analyzer. Generally, signal attenuation increases as frequency,
depth, or soil moisture increases.

absolute ToF of lth path and ∆ f is the frequency spacing be-
tween two adjacent frequency samples.

If there is no time and frequency synchronization between
the transmitter and the receiver, the measured CSI is cor-
rupted with packet detection delay (PDD), sampling fre-
quency offset (SFO), and carrier frequency offset (CFO) in-
troduced by hardware, so the CSI becomes

ĥm,n =
L

∑
l=1

al,me− jθ0e− j2π( f0+∆ f n)(τl,m+τ0) (23)

where θ0 is the phase shift caused by CFO and τ0 is the
ToF shift caused by PDD, SFO, and other possible delays in
hardware. θ0 and τ0 are the same across all the paths, sub-
carriers in a single channel, and antennas when the samples
are measured at the same time.

Note that although we do not know what τ0 is, we are still
able to get the relative ToF between two antennas, τl,i−τl, j =
(τl,i + τ0)− (τl, j + τ0). For a uniform linear antenna array,
the path difference remains the same for all adjacent antenna
pairs under far-field assumption so that the relative ToF also
remains the same, i.e., ∆τl = τl,i − τl,i+1 = τl,i+1 − τl,i+2.
Therefore, we can use MUSIC to jointly estimate absolute
ToF (τl,m− τ0) and relative ToF (τl,i− τl, j) in a similar way
as Spotfi [15] did. Here the absolute ToF refers to the to-
tal ToF consisting of PDD, SFO, and delays in hardware.
However, Spotfi assumes the phase difference caused by the
additional path difference is the the same for all subcarriers,
which requires 2πB∆τ to be a small value, where B is the to-
tal bandwidth of N subcarriers. This is not true in our system
since we use a larger bandwidth and look at a longer relative
ToF. Considering an antenna array with 3 antennas, we con-
struct a modified smoothed CSI matrix without smoothing
CSIs of different antennas as follows:



h1,1 h1,2 h1,3 . . . h1,K
...

...
...

. . .
...

h1,N−K+1 h1,N−K+2 h1,N−K+3 . . . h1,N
h2,1 h2,2 h2,3 . . . h2,K

...
...

...
. . .

...
h2,N−K+1 h2,N−K+2 h2,N−K+3 . . . h2,N

h3,1 h3,2 h3,3 . . . h3,K
...

...
...

. . .
...

h3,N−K+1 h3,N−K+2 h3,N−K+3 . . . h3,N


(24)

Resolving Ambiguity in Relative ToF: We first ex-
plain the reason for the ambiguity issue and then discuss the
method to remove it. When wave propagates at a carrier fre-
quency of f , its phase variation is given by

θ =−2π f τ (25)

where τ is the ToF. The time it takes the phase to rotate
2π is τ0 = 1/ f . Assuming that the relative ToF of antennas
at different depths is ∆, we get the phase of the three receive
antennas at three depths as: θ1 = −2π f τ , θ2 = −2π f (τ +
∆τ) and θ3 = −2π f (τ +2∆τ). Due to phase ambiguity, we
have:

θ1 =−2π f τ

θ2 =−2π f (τ +∆τ) =−2π f (τ +(∆τ + τ0))

=−2π f (τ +(∆τ +2τ0)) = . . .

θ3 =−2π f (τ +2∆τ) =−2π f (τ +2(∆τ + τ0))

=−2π f (τ +2(∆τ +2τ0)) = . . .

(26)

From the above equation, we can see that a delay of ∆τ is
equivalent to ∆τ+τ0, ∆τ+2τ0 , . . . . Thus we will get an infi-
nite number of possible relative ToF values with a separation
of τ0. In 2.4 GHz channels, τ0 is about 0.4 ns.

Next we show how SMURF leverages the knowledge of
soil properties to remove this ambiguity. First, we know that
the refraction index in soil is usually between 2 and 6. There-
fore, when we set the antenna depth distance at a known
value, e.g., 4.5 cm, we know the relative ToF range is 0.3-
0.9 ns. In 2.4 GHz, if the relative ToF falls in 0.3-0.5 ns or

7



0.7-0.9 ns, ambiguity occurs. Now recall that in Figure 4, we
have observed a big channel attenuation gap between the two
permittivity ranges corresponding to the two ambiguity val-
ues. Although multipath and the rotation of transmit antenna
may affect the signal strength, we use the signal strength of
the three antennas and the data collected at different transmit
antenna locations to make a correct choice of antenna pairs
to use for relative ToF.

4 Implementation

We implemented SMURF on multiple platforms including
USRP, WARP, Intel Wi-Fi Link 5300 NIC, and Atheros
AR9590 Wi-Fi NIC to measure soil moisture and EC at
2.4 GHz. USRP allows us to do wideband experiments for
ground truthing. The WARP board allows us to replicate CSI
measurements similar to Wi-Fi cards, and microbenchmark
the performance of SMURF. We validate our results by im-
plementing SMURF on two off-the-shelf Wi-Fi cards.

USRP N200 devices with SBX daughterboards can oper-
ate on 400-4400 MHz, however, we observe that the trans-
mission power of the SBX daughterboards drops as fre-
quency increases. Therefore, we only use a bandwidth that
spans from 400 MHz to 1400 MHz in our measurements.
We use one USRP device as transmitter and the other as re-
ceiver. To emulate a MIMO capable receiver equipped with
multiple antennas as described in Section 3, we switched an-
tennas during the measurements. For each antenna, the sys-
tem sweeps through the 400-1400 MHz bandwidth with a
step size of 5MHz. To allow such an emulation, PLL offsets,
CFO, SFO, and PDD should be consistent for all the receiver
antennas. We employ two features on USRP to eliminate
PLL offsets, CFO and SFO: (i) SBX daughterboards have
a PLL phase offset resync feature to synchonize PLL phase
offsets on two USRPs after each frequency retune; (ii) Two
devices can be connected with a MIMO cable to get time and
frequency synchronization. To reduce the effect of PDD, we
use a narrowband sinusoid to estimate CSI.

WARP boards and the Wi-Fi cards are both MIMO ca-
pable and can operate on 2.4 GHz and 5 GHz. With these
two types of devices, we consider a more general case that
the transmitter and receiver do not share oscillators. How to
extract valid CSI information from PLL offsets, CFO, SFO,
and PDD corrupted CSI data is the key challenge here. The
Intel Wi-Fi cards have a well known issue of random phase
jumps at 2.4 GHz [17] while WARP boards and the Atheros
cards do not have such an issue. Since WARP has better sup-
port for manual configuration, especially gain settings, we
evaluated SMURF’s performance mainly with WARP. We
use a fixed transmit power of 8 dBm in all the experiments,
which is much lower than the FCC-imposed power limit for
2.4 GHz channels. To investigate the possibility of using
Wi-Fi cards to achieve the same performance as WARP, we
set the Wi-Fi cards into monitor mode using the open-source

CSI tools[19, 20] on Linux.
We use the entire 70 MHz bandwidth at 2.4 GHz spectrum

to cope with potential multipath and amplitude variations
that occur due to soil heterogeneity and antenna impedance
change. To use the entire bandwidth, we switch across
the channels. Therefore, we need to compensate for hard-
ware impairments that lead to inconsist measurements across
channels. The calibration on WARP has two procedures.
First, we calibrate the PLL phase offsets across channels by
leveraging a key observation: although PLL phase offsets
are different at different channels, they are constant after a
frequency retune. Therefore, the PLL phase offsets at all
the channels can be calibrated at the same time and do not
need re-calibration unless nodes are reset. Then we adopt
the phase sanitization algorithm in SpotFi [15] to equalize
the impact of PDD and SFO on channel phase slopes across
multiple channel measurements. For Wi-Fi cards, since the
RF chains share the same PLL, their random phase behaviour
is simpler than WARP, which only has two possible states
separated by π .

(a) (b) (c)

Figure 5: Soil measurement setup for multi-antenna system. An-
tennas are at different depths in soil while there is a rod coming out
from soil surface to indicate the location of antenna array in soil. (a)
Antennas protected by a waterproof box. (b) Tent with soil boxes.
(c) Measurement setup on a farm.

As depicted in Figure 5, we use a waterproof box to pro-
tect the connectors of antennas as well as hold antennas at
different depths in soil, and there is a rod coming out from
soil surface to tell the farmers where the antennas are buried.
We setup potting soil boxes in a tent to conduct measure-
ments with controlled salinity and moisture levels, and test
real soils in outdoor environments.

5 Performance Evaluation

We first show the accuracy of SMURF in measuring relative
ToF, and then evaluate its performance in measuring soil per-
mittivity, EC, and moisture. We use wideband USRP to mea-
sure ground truth, and Wi-Fi based measurements on WARP
to microbenchmark SMURF. We also present results using
Intel and Atheros Wi-Fi cards.

5.1 Relative ToF Estimation Accuracy
SMURF is able to accurately estimate soil moisture and EC
with limited bandwidth in 2.4 GHz Wi-Fi. Here we show that
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Figure 6: Performance of the multi-antenna system in estimating relative ToF. (a) Joint relative ToF estimation. Using 3 antennas to jointly
estimate relative ToF and absolute ToF give very accurate results even with small bandwidth.(b) Joint absolute ToF estimation for the antenna
closest to the transmit antenna. Smaller bandwidth deviates more in estimating absolute ToF. (c) MSE of relative ToF estimation with different
bandwidth. The joint estimation method outperforms separate estimation at small bandwidth.
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Figure 7: Soil dielectric permittivity estimation based on relative ToF. (a) Permittivity estimation from USRPs with different antenna depth
differences. A small depth difference results in large estimation error. (b) Permittivity estimation with USRPs at different moisture levels.
The system can accurately estimate soil moisture value at all soil moisture levels. Even a small bandwidth performs well in distinguishing
soil moisture levels. (c) Permittivity estimation with WARPs at different moisture levels. Permittivity estimated from 2.4 GHz channels is
generally smaller than the sensor data.

with a few antennas at the receiver, the relative ToF estima-
tion is very accurate even with a very small bandwidth. We
first use USRP over a large bandwidth to micro-benchmark,
and then use WARP to evaluate the performance at 2.4 GHz
channels.

5.1.1 Time-of-Flight Accuracy over the Air

Soil is not a homogeneous medium, and its variations can
introduce shifts in estimated ToF. Therefore, we use over-
the-air measurements to evaluate the system’s performance
in estimating absolute ToF. The ground truth ToF is the dis-
tance of antennas measured by tape measure and divided by
speed of light. We conducted measurements with USRPs by
varying the distance between adjacent receive antennas from
0.1 m to 0.5 m. The distance between the transmit antenna
and the receive antenna closest to it is 1.2 m and remains the
same across all the measurements.

Figure 6 plots the relative ToF and absolute ToF estimation
results given by the joint estimation method and the separate
estimation method. Relative ToF refers to the ToF differ-
ence between two adjacent antennas. The separate estima-
tion method refers to first estimating absolute ToFs at the

three antennas separately from the CSI collected by the three
receive antennas and then calculating the relative ToF from
the average difference of absolute ToFs. The joint estima-
tion method estimates relative ToF and absolute ToF at the
same time for the three antennas. Surprisingly, with the joint
estimation method, even a bandwidth of 50 MHz gives accu-
rate relative ToF results, although its absolute ToF estimation
can deviate more from the ground truth. Furthermore, the
joint estimation method has a much smaller MSE of relative
ToF and absolute ToF estimation than the separate estimation
with small bandwidth.

5.1.2 Relative Time-of-Flight Accuracy in soil

Here we examine the relative ToF estimation performance of
the multi-antenna system in soil. We conducted the exper-
iments in potting soil in indoor environment. In the USRP
experiments, the transmit antenna is set at a height of 1.08m
above soil surface, the receive antennas are put at different
depths in soil. In the WARP experiments, the transmit an-
tenna is 0.36m above soil surface. We compare our results
with the permittivity measured by a Decagon GS3 soil sen-
sor, which can simultaneous measure permittivity, EC and
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temperature. In each experiment, we use the soil sensor
to measure moisture at more than 10 locations in the area
around the antenna array to account for heterogeneity of soil.

Impact of antenna depth separation: As discussed
in 3.3.1, the choice of antenna depth separation is the key
factor that affects the relative ToF estimation accuracy in our
antenna array design. We conducted experiments with US-
RPs to examine the impact of depth difference. Figure 7(a)
plots the permittivity estimated from relative ToF when an-
tennas have different depth separation. Sensor data shows
that soil moisture can vary within a certain range in an area.
With a depth separation of 1.5 cm, the estimated permittivity
can deviate a lot from sensor data. The reason is the depth
separation of 1.5 cm is relatively small compared to possible
path length variations that exist in soil due to the heteroge-
neous nature of soil. With larger antenna depth separation,
the permittivity values estimated by different bandwidth are
more converged.Based on the results shown in Figure 7(a),
we choose an antenna depth separation of 4.5 cm to evalu-
ate the performance of USRP and WARP in the following
discussions.

(a) Potting mix (b) Sandy loam (c) Silt loam

Figure 8: Soils used in experiments

Relative ToF at different moisture levels: We vary the
soil moisture by adding water, and measure the accuracy of
SMURF in determining different soil moisture levels. In
each trial, we stir the soil thoroughly to mix water into soil
before burying the antenna array. Figure 7(b) shows USRP’s
performance at different moisture levels and with different
bandwidths. The estimated ToF does not deviate too much
from sensor data at all moisture levels even with a small
bandwidth. We can see the results at the highest moisture
level diverge more than the others. This is because larger
soil permittivity causes more attenuation of received signal
strength, so that the CSIs are less accurate due to low SNRs.

Figure 7(c) shows the estimated permittivity at 2.4 GHz
measured by WARP with a bandwidth of 70 MHz. Estimated
permittivity increases as moisture level increases. However,
the estimated permittivity values are slightly smaller than
sensor measurements. This is because of the frequency de-
pendence of soil permittivity. We will discuss this variation
later in this section.

5.2 Joint Permittivity and EC Estimation

We now evaluate SMURF’s performance in estimating EC.
Since SMURF’s EC estimation method requires us to first es-
timate permittivity, here we look at the overall performance
including both EC and permittivity. Since controlling EC of
soil is non-trivial, we measure the performance of SMURF
at different salinity levels of soil, for different soil types. We
conduct experiments in potting soil with three different salin-
ity levels and also evaluate SMURF’s performance in two
types of real soil – sandy loam and silt loam. The sandy
loam soil we test is located in a landscaping area near office
buildings and the silt load soil is in a real farm. The three
types of soils are shown in Figure 8.

We conduct measurements with WARP at 2.4 GHz and the
Decagon GS3 soil sensor. For each data point in Figure 9,
we average the results of WARP at multiple heights of the
transmit antenna from 0.15 m to 0.6 m and the results of
the soil sensor at more than 10 locations around the antenna
array. Soil moisture, soil solution, and soil type are three
major factors that affect EC. We analyze their impacts on
EC separately in the following discussion.

EC at different moisture levels: EC has a strong cor-
relation with soil water content. Previous studies [21] have
observed a linear relationship between permittivity and EC.
Here we examine whether this relationship holds true in our
system by varying soil moisture. The tap water we add into
soil has a EC value of 0.006 S/m, which is measured by the
Decagon GS3 soil sensor. Figure 9(a) plots EC versus per-
mittivity measured by SMURF at 2.4 GHz. EC of all tested
soil types tends to increase as permittivity increases. We ob-
served similar trends in permittivity and EC values measured
by the soil sensor as shown in Figure 9(b).

In practice, EC readings need to be normalized for differ-
ent soil moisture values, to make EC maps reliable and re-
peatable [22]. To enable normalization, the EC-permittivity
relationship needs to be a one-to-one function. From this
perspective, SMURF outperforms the soil sensor. As shown
in 9(b), the curves overlap in the high permittivity region,
which means, that the same point in the high permittivity re-
gion can map to multiple EC values in the low permittivity
region. In contrast, the one-to-one mapping is consistent in
SMURF even in the high permittivity region. The poor per-
formance of the soil sensor at high permittivity range is be-
cause it is a capacitance sensor and its capacitance measure-
ment is affected by its resistive part while its EC measure-
ment that relies on resistance is accurate. When resistance or
EC of soil is high, the sensor will measure a higher capaci-
tance and hence a higher permittivity than the true value.

EC at different salinity levels: EC isolated from mois-
ture variation can be converted to salinity, which has cru-
cial meanings in precision agriculture. Here we evaluate
SMURF’s capability of detecting different salinity levels of
soil. We create three salinity levels by adding different
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Figure 9: Soil permittivity and EC estimation for different soil types and salinity levels. (a) Permittivity and EC measured by WARP with 2.4
GHz channels. EC increases as moisture level increases and salinity level increases. (b) Permittivity and EC measured by soil sensor at 70
MHz. EC level affects the soil sensor’s permittivity estimation accuracy. (c) Comparison between EC measured by soil sensor and WARP. EC
measured at 2.4 GHz is higher than EC measured by soil sensor. (d) Comparison between permittivity measured by soil sensor and WARP.
WARP results of different soil types deviate from the soil sensor differently. The deviation is larger at higher salinity levels.
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Figure 10: Permittivity and EC measured by soil sensor, USRP and WARP at different frequencies. (a) Apparent permittivty drops as
frequency increases. (b) EC increases as frequency increases. (c) Imaginary effective permittivity converted from EC.

amount of salt into three boxes with the same type of pot-
ting soil. By looking at EC values vertically with the same
permittivity in Figure 9(a) and Figure 9(b), we observe that
SMURF can successfully detect the increase of salinity lev-
els from EC readings at all permittivity regions while the soil
sensor can only tell the difference of salinity levels when per-
mittivity is smaller than 20.

EC in different soils: Different soil types may have dif-
ferent EC-permittivity and EC-salinity relationships due to
dielectric property change [23]. Previously, we conducted
most of our experiments with potting soil since it is more ac-
cessible and hence easier to set up controlled experiments.
Here we test two typical types of real soils to show the ac-
curacy of SMURF in detecting permittivity and EC of real
world soils. As shown in Figure 9(a) and Figure 9(b), the
three types of soils have quite different salinity levels. Gen-
erally, SMURF can detect the permittivity increase as water
content increases and EC increase as salinity level increases
in different types of soils. The rate of increase in EC over
permittivity is different for different soil types and even for
the same soil type with different salinity levels. In practice,
SMURF will need to be calibrated for different soil types,
just as the existing soil sensors have to be calibrated before
use.

Comparing SMURF with soil sensor: We plot EC mea-
sured by SMURF and the soil sensor in Figure 9(c), and

permittivity measured by SMURF and the soil sensor in
Figure 9(d). Overall, SMURF measures a larger EC value
and a smaller permittivity value than the soil sensor. The
EC-EC slopes decrease as salinity level increases while the
permittivity-permittivity slopes do not have a clear trend.
The permittivity deviation is larger at larger moisture levels.

Comparing WARP with Atheros Wi-Fi card: To com-
pare the performance of WARP and Atheros Wi-Fi card, we
conduct experiments with the same transmit and receive an-
tenna locations for same soil. Basically, we just change the
data transmit and record devices from WARPs to Atheros
WiFi cards. We see very similar CSI phase results measured
by WARP and Wi-Fi cards. While the Atheros Wi-Fi cards
do not give reliable amplitude measurements, we can use its
RSSI reported for each channel for EC estimation. We ob-
serve that the EC measured by Wi-Fi cards using RSSIs are
similar to the EC measured by WARP. One example set of
results is: permittivity and EC measured by WARP is 8.8
and 0.24 S/m, while permittivity and EC measured by Wi-Fi
is 9.2 and 0.21 S/m.

5.2.1 Understanding Permittivity and EC Deviations
between SMURF and Soil Sensor

Previous studies [8, 23, 24, 25] show that both the real and
imaginary parts of permittivity of soil are frequency depen-
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dent and affected by salinity, where the imaginary permit-
tivity refers to the effective imaginary permittivity given as
ε
′′
re = ε

′′
r + σ/2π f ε0. In the frequency range from a few

MHz to Wi-Fi frequency bands at 2.4 GHz, the real and
imaginary parts of permittivity both drop over frequency
while the imaginary drops more significantly at lower fre-
quencies. As salinity increases, the real permittivity slightly
drops while the imaginary permittivity increases and the in-
crease is significant at lower frequencies. The difference of
imaginary permittivity at lower frequencies and higher fre-
quencies is due to the EC component σ/2π f ε0. To evalu-
ate how SMURF’s relative ToF and relative amplitude based
permittivity and EC estimation match with existing studies,
we conduct experiments with the soil sensor operating at 70
MHz, USRP operating at 400-1400 MHz, and WARP op-
erating at 2.402-2.472 GHz. Both USRP and WARP use the
multi-antenna system to measure relative ToF and amplitude.
Since USRP measures a wide bandwidth, we are able to get
multiple data points by selecting subsets of frequency ranges
within 400-1400 MHz.

Figure 10 shows the results of potting soil at two differ-
ent moisture levels. As frequency increases, the estimated
permittivity decreases and EC increases, which agree with
the deviations we observe earlier. Note that effective imag-
inary and effective EC, which is the EC value we measure,
are two interchangeable concepts and has a relationship of
ε
′′
re = σa/2π f ε0. We convert our EC results to imaginary

permittivity in Figure 10(c) for a more intuitive comparison
with exiting studies. The trends and scale of values of our
estimated real and imaginary permittivity match with results
reported in [25].

Implications for calibration requirements: The above
analysis provides implications about how we should cali-
brate our system. (i) Getting real part of permittivity from
apparent permittivity measurement: as we can see from Fig-
ure 10(c), the imaginary permittivity at 2.4 GHz is a small
value compared with the real part of permittivity so the mea-
sured apparent permittivity is equal to the real part of permit-
tivity and there is no need for calibration. (ii) Estimating soil
water content from permittivity: the drop of real permittiv-
ity over frequency needs to be calibrated to use the existing
water content-permittivity models which are mainly devel-
oped for lower frequencies. Fortunately, the dependence of
real and imaginary permittivity on frequency has been mod-
eled for different soil types, although measurements are still
required to validate those models. (iii) Estimating salinity
from measured EC: to get the true EC component, the imag-
inary permittivity component needs to be removed from the
measured apparent EC. On the one hand, we can refer to ex-
isting studies of soil dielectric properties to get the imaginary
permittivity values for different soil types; on the other hand,
our results in Figure 9(a) and 9(c) indicate that it is possible
to directly convert our measured EC to salinity.

6 Related Work

While soil sensing using RF has been well studied, our work
is the first that makes it possible to use off-the-shelf low-
cost Wi-Fi devices for detecting soil properties. We discuss
related work in three main categories:

Soil moisture sensing using RF: The well-established
RF sensing techniques can be classified into three types. (i)
Remote sensing techniques[26, 27, 28] use the dependence
of soil reflectivity on soil moisture to sense soil moisture.
These approaches have low spatial resolution from 1 m to
10s of km and can only detect soil moisture on shallow soil
surface with a depth of a few centimeters. (ii) ToF-based
techniques such as GPR [29] and time domain reflectometry
(TDR) [30] provides good spatial resolution. However, these
approaches rely on specialized ultra-wideband systems to get
accurate ToF estimation, thus are very expensive. (iii) A few
studies [31, 32, 33, 34] have proposed to use a moisture or
EC sensitive sensing element together with a low-cost com-
munication node, e.g., RFID or backscatter, to sense soil.
However, low-cost sensing elements like a capacitive sensor
can only sensor moisture, not EC, and its accuracy will not
be comparable to the more reliable but higher-cost commod-
ity sensors. A specialized probe that is sensitive to moisture
and salinity change is used in [32] to detect moisture and
salinity, which could potentially increase cost.

AoA and ToF estimation on Wi-Fi devices: We build
SMURF on existing AoA and ToF estimation technologies
developed for commodity Wi-Fi devices [15, 35, 36, 20, 16,
37]. However, these technologies do not work for wave prop-
agation in soil due to different reasons. The sub-nanosecond
accuracy achieved in Chronos [35] is unlikely in soil due to
the high attenuation of 5 GHz signals. SpotFi’s [35] accuracy
benefits from 40 MHz bandwidth and the carrier frequency
of 5 GHz. To combat signal attenuation in soil, we instead
use 20 MHz channels at 2.4GHz. To deal with multipath in
soil and amplitude variations due to impedance change or
soil heterogeneity, we spliced all 2.4 GHz channels. How-
ever, existing work on channel splicing only works for a
single antenna [20, 37]. We utilize our observations about
hardware to eliminate exhaustive search for both PLL phase
offset calibration [17] and channel splicing [20, 37]

Other low-cost techniques: Other than ultra-wideband
systems and Wi-Fi devices, there are some other commer-
cially available RF devices that can provide ToF estimation,
such as global positioning system (GPS) receivers [38]. GPS
relies on ToF between satellites and the receiver for localiza-
tion. However, its ToF resolution and penetration depth limit
its usage in ToF-based soil moisture sensing. Ranging tech-
niques using ultrasound [39, 40] have been well studied for
over the air wave propagation. However, ultrasound is not
appropriate for ToF-based soil moisture estimation since it
does not correlate very with moisture, which limits its appli-
cations of soil sensing to rely on reflectivity[41, 42].
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Although there exist hobbyist soil sensors that cost lower
than 30 dollars, they are not recommended by agriculture
experts for irrigation management on farms [2]. The cheap-
est suggested soil moisture sensors still cost over 50 dollars.
Actually, the higher accuracy of expensive sensors can po-
tentially help to save more water resources in the long term.
We note that we are not aware of any commercially available
EC sensor below 100 dollars.

7 Discussion & Future Work

SMURF takes the first step in leveraging Wi-Fi communica-
tion for estimating soil properties. However, for it to achieve
its true potential, where a farmer with any Wi-Fi enabled de-
vice can infer soil properties, we plan to take SMURF in the
following directions.

Integration with commercial Wi-Fi devices: The Wi-Fi
chip vendors in off-the-shelf phones have started to expose
CSI information. The Intel and Atheros 11n chipsets have
shown the feasibility of providing this information to the user
level, and we will work with other chip vendors to expose
these values. We note that SMURF only requires a single
antenna at the smartphone. Furthermore, since 2.4 GHz of
the spectrum is available in nearly all countries, we expect
SMURF to be universally usable.

Profiling overhead: In its current implementation
SMURF relies on an offline profiling of the ToF and relative
ToF values for different soil types. This is similar to how sur-
rogate soil sensing methods are currently used. We however
realize that this is an overhead when using these sensors, and
could potentially be a source of inaccuracy in unknown soil
conditions. We are investigating ways in which the multiple
antennas in soil can be used to self calibrate, especially since
each pair of antennas can be used as a different measurement
to estimate the corresponding soil type.

Sensing deeper in soil: The technique might not work
over 2.4 GHz of spectrum for fruit orchards, where the roots
might be up to 1 meter deep, and the Wi-Fi signals might not
have good SNR at those depths. TV white space spectrum
can be used to sense soil at depths deeper than 1 m, which
is sufficient for most broadacre crops and for horticulture.
While one could still use SMURF over the TV White Space
spectrum, we are investigating ways in which Wi-Fi over the
2.4 GHz spectrum could be used as well. Our key insight
is to use beamforming to increase the SNR in the direction
of the antennas in soil. The challenge of course is that the
direction of the beamformed signal will have to change based
on the moisture level of soil. We are actively investigating
solutions to this problem.

Price: We note that SMURF does not require a special-
ized reader. Only a Wi-Fi device is needed to communicate
with the device embedded in soil. For the device in soil, it
is recommended to use a chipset with 3 antennas, although
a 2-antenna radio can work as well. The price of a typical

IoT board with a Wi-Fi chipset with an onboard ARM pro-
cessor and batteries is similar to a Vocore2, or C.H.I.P., both
of which cost less than 10 dollars.

Battery Life: The device in soil only needs to wake up
when the surveying device is closeby. Else, it should operate
in deep sleep mode. One way to accomplish this is using
the Network List Offload (NLO) feature of Wi-Fi that turns
the radio into very low power mode until it hears a beacon
with the expected BSSID. In this case, the surveyor can be
programmed to pretend like a Wi-Fi Access Point and emit a
beacon with a SMURF BSSID.

8 Summary

In this paper we present a new technique, called SMURF,
for estimating soil moisture and EC using Wi-Fi signals. The
system estimates soil moisture by measuring the relative time
of flight of Wi-Fi between multiple antennas, and the soil
EC by measuring the ratios of the amplitudes of the signals
across different antennas. We have implemented SMURF
on two different SDR platforms, and on two Wi-Fi cards.
Our results show that SMURF can accurately estimate soil
moisture and EC at various depths.

Our vision is to enable a future in which a farmer can take
her smartphone, which has a Wi-Fi radio, close to soil and
learns about the soil conditions, such as soil moisture and
soil EC. By avoiding use of sensors that cost more than 100s
of dollars each, SMURF reduces the price for sensing these
parameters, thereby taking a big step in enabling the adop-
tion of data-driven agriculture techniques by small holder
farmers.
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