CHET: Compiler and Runtime for Homomorphic Evaluation of Tensor Programs

Roshan Dathathri*, Olli Saarikivi ${ }^{\dagger}$, Hao Chen ${ }^{\dagger}$, Kim Laine ${ }^{\dagger}$, Kristin Lauter ${ }^{\dagger}$, Saeed Maleki ${ }^{\dagger}$, Madanlal Musuvathi ${ }^{\dagger}$, Todd Mytkowicz ${ }^{\dagger}$
*Department of Computer Science, University of Texas at Austin, USA ${ }^{\dagger}$ Microsoft Research, USA

Introduction

Building efficient and correct applications with leveled integer FHE schemes is tedious and error-prone:

- Incorrect encryption parameters will compromise either security or performance.
- Best performance requires efficient use of batching.
- For the CKKS family of schemes correctness requires careful precision selection.
CHET is a compiler and runtime that automates many parts of this process for neural network inference tasks. The compiler applies transformations based on a framework of symbolic analysis passes.

The resulting Optimized Homomorphic Tensor Circuit is used by the runtime to evaluate the network on encrypted data.

Data Layout Selection

CHET selects one of four layout policies for the runtime:
HW and CHW use the corresponding layout throughout. HW-conv switches to HW for convolutions, CHW otherwise. CHW-fc uses CHW starting from the first fully connected layer.

The selection uses a cost analysis pass, which accounts for:

- Relative costs of operations.
- Required encryption parameters.
- Degree of parallelism in the model vs. available execution units.
- Cost of switching between layouts.

Parameter Selection
CHET supports parameter selection for both HEAAN's CKKS and SEAL's RNS-CKKS. The analysis passes simulate scaling behavior while measuring modulus consumed by rescale operations.

Rotation Key Selection
Using a network specific set of rotation keys can provide up to 2 X performance improvement. This transformation uses a pass that records the necessary rotation keys.

Data Layouts for Vectorized Kernels

CHET includes kernels optimized for low-latency inference of CNNs, which operate on strided layouts of values into batched ciphertexts. We have considered two classes of layouts:

HW Each channel of an image is in a separate ciphertext. CHW Each ciphertext holds multiple channels.

Consider the 2D-convolution of an image tensor of shape (IC, H, W) with a filter of shape (FH, FW, IC, OC):

$$
\text { output }_{o c, h, w}=\sum_{i c=0}^{c} \sum_{f h=0}^{F H} \sum_{f w=0}^{F W} \text { input }_{i c, h+f h-\left\lfloor\frac{\lfloor H}{2}\right\rfloor, w+f w-\left\lfloor\frac{f W}{2}\right\rfloor} \cdot \text { filter }_{f h, f w, i c, o c}
$$

For the HW layout the kernel is:

```
for oc in indices(OC):
    output[oc] = zeroCipher
    for ic,fh,fw in indices(IC,FH,FW):
        weight = encode(filter[fh,fw,ic,oc], scalarScale)
        rotated = leftRotate(input[ic], fh *W + fw)
        output[oc] = multiplyPlain(rotated, weight)
    tryRescale(output[oc], cipherScale)
```

The kernel for CHW is similar, but includes extra rotations and additions to handle multiple channels in a ciphertext. Compared to HW, the kernel may perform fewer multiplications. However, HW has a lower depth, because with CKKS encoding a uniform value into all slots is exact. These kinds of trade-offs make it challenging to choose the best layout manually.

Evaluation

We have evaluated CHET on a set of CNNs. To our knowledge, SqueezeNet-CIFAR is the largest network evaluated on FHE to date.

Network	Layers	CHET best	Hand-written
LeNet-5-small	4	8 s	14 s
LeNet-5-medium	4	51 s	140 s
LeNet-5-large	4	265 s	
Industrial	7	312 s	2413 s
SqueezeNet-CIFAR	10	1342 s	

The following figure compares latencies for each network with different layout policies. No single policy is best for all networks.

