
Improving Optimistic Concurrency Control Through
Transaction Batching and Operation Reordering

Bailu Ding
Microsoft Research

badin@microsoft.com

Lucja Kot
∗

GrammaTech, Inc
lkot@grammatech.com

Johannes Gehrke
Microsoft Corporation

johannes@microsoft.com

ABSTRACT
OLTP systems can often improve throughput by batching
transactions and processing them as a group. Batching has
been used for optimizations such as message packing and
group commits; however, there is little research on the ben-
efits of a holistic approach to batching across a transaction’s
entire life cycle.

In this paper, we present a framework to incorporate batch-
ing at multiple stages of transaction execution for OLTP
systems based on optimistic concurrency control. Storage
batching enables reordering of transaction reads and writes
at the storage layer, reducing conflicts on the same object.
Validator batching enables reordering of transactions before
validation, reducing conflicts between transactions. Depen-
dencies between transactions make transaction reordering
a non-trivial problem, and we propose several efficient and
practical algorithms that can be customized to various trans-
action precedence policies such as reducing tail latency. We
also show how to reorder transactions with a thread-aware
policy in multi-threaded OLTP architecture without a cen-
tralized validator.

In-depth experiments on a research prototype, an open-
source OLTP system, and a production OLTP system show
that our techniques increase transaction throughput by up
to 2.2x and reduce their tail latency by up to 71% compared
with the state-of-the-art systems on workloads with high
data contention.

PVLDB Reference Format:
Bailu Ding, Lucja Kot, Johannes Gehrke. Improving Optimistic
Concurrency Control Through Transaction Batching and Opera-
tion Reordering. PVLDB, 12(2): 169-182, 2018.
DOI: https://doi.org/10.14778/3282495.3282502

1. INTRODUCTION
Transaction processing is a fundamental aspect of database

functionality, and improving OLTP system performance is a
key research goal. The throughput of OLTP systems can be

∗Work performed while at Cornell University.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 2
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3282495.3282502

increased through batching of operations; specifically, some
component can buffer a number of operations as they arrive
then process them as a group [22, 15, 25]. Batching can im-
prove system performance for several reasons. First, at the
networking layer, it increases the communication efficiency
by packing messages [16, 22]. Second, it amortizes the cost
of system calls by condensing multiple requests into a sin-
gle one, as in group commit [15, 25]. Third, it reduces the
number of requests by discarding duplicate or stale requests,
such as writes to the same record [19]. All of those are op-
timizations based on low-level techniques, and they do not
take the semantics of the system into account.

We propose to embrace semantic batching as a core de-
sign principle throughout transaction execution for OLTP
systems with optimistic concurrency control (OCC) [34].
OCC is a popular concurrency control protocol due to its
low overhead in low-contention settings [2, 6, 8, 9, 10, 13,
17, 42, 43, 36]. However, it has been shown that OCC wastes
resources when conflicts are frequent [3]. We show how se-
mantic batching (and associated reordering of transactions)
can reduce conflicts, improve throughput and latency, and
allow us to use OCC with higher-contention workloads.

Figure 1 shows a prototypical architecture of a modern,
loosely coupled OCC-based transaction processing system
with a separation of compute and storage such as Centi-
man [16]. The system consists of three components: proces-
sors, storage, and one or more validators. External clients
issue transactions to the system. On arrival into the sys-
tem, each transaction is assigned to a processor and enters
its read phase. The processor sends read requests to the
storage, executes the transaction, and performs writes to a
local workspace. After it has processed the transaction, it
sends information about the transaction’s reads and writes
to the validator. The transaction now enters the validation
phase, where the validator checks if there are conflicts with
previously committed transactions. One example of a con-
flict that would fail validation is a stale read. Suppose a
transaction t reads an object x, and a second transaction t′

writes to the same object after t’s read. If t′ commits before
t, t has a conflict, since it should have read the update t′

made to x. Hence, t must fail validation. If a transaction
passes validation, the processor sends its writes to the stor-
age; this is the write phase. Otherwise, the processor aborts
and restarts the transaction.

OCC presents unique opportunities for batching because
the final serialization order of transactions is only decided at
commit time in the validator. There are three opportunities
to apply semantic batching. The first is the processor in

Storage

Validator

Processor Client

validation
requests

commit / abort
validation results

read / write
requests

responses
issue transactions

get responses

Storage

Validator

Processor Client

validation
requests

commit / abort
validation results

read / write
requests

responses
issue transactions

get responses

Figure 1: OCC system architecture

the transactions’ read phase, where transaction requests can
be batched before execution. Recent work in the context
of locking-based protocols batch transactions and serialize
them before execution to reduce overhead [18, 40, 49]; these
techniques can be adapted and applied in OCC as well.

The second possible place is the validator. The validator
can batch validation requests and then select a validation
order that reduces the number of conflicts and aborts. As-
sume again two transactions t and t′ where t reads x, and t′

writes x after t’s read. Without batching, if t′ arrives at the
validator before t and commits, t will fail. With batching, if
t and t′ are in the same validation batch, we can serialize t
before t′ (assuming no other dependencies between t and t′),
and we can commit both transactions without any aborts.

Third, batching can be done at the storage level. This af-
fects already-validated transactions in their write phase as
well as transactions still in their read phase. The storage
can buffer read and write requests into joint batches as they
arrive. If a batch contains read and write requests for the
same object, the system can apply all the writes first in their
serialization order and then process all the reads. Prioritiz-
ing writes over reads is always optimal as this reduces the
number of aborts later in the validator as much as possible.
This is because in OCC reads come from uncommitted trans-
actions, while writes come from validated transactions that
will commit soon. Thus, if the storage schedules a pending
read before a pending write on the same object, the reading
transaction will see a stale value and later fail validation.

Contributions of this work. We explore the benefits of
transaction batching and reordering in OCC with backward
validation, focusing on storage and validator batching.
• Our first contribution is to show how to integrate batching

and reordering throughout the lifetime of a transaction to
enhance OCC-based protocols. We analyze the reasons for
conflicts and aborts at each stage of a transaction’s life cy-
cle, and develop techniques to reduce these aborts through
semantic batching. We introduce intra-batch storage re-
ordering and intra-batch validator reordering, and we show
that selecting the optimal transaction ordering at the val-
idator for a batch is NP-hard. (Section 3).
• Our second contribution is two practical classes of greedy

algorithms for validator reordering that balance abort rates
and reordering overheads. We also extend these algo-
rithms a weighted version to incorporate different reorder-
ing policies such as transaction priorities. We further show
how to parallelize validator reordering to reduce its over-
heads (Section 4).
• In a detailed experimental study of a prototype system,

as well as on top of a state-of-the-art OLTP system and a
commercial database, we show that batching and reorder-
ing always increases transaction throughput and, surpris-
ingly, also reduces transaction latency, especially tail la-
tencies. For workloads with high data contention, batch-

ing and reordering can improve the throughput by up to
2.2× and reduce tail latencies by up to 71% compared
with the state-of-the-art OLTP systems (Section 5).

2. BACKGROUND
We use the term optimistic concurrency control (OCC)

to refer to the (traditional backward) validation based OCC
protocol introduced by Kung [34]. As explained in the intro-
duction, every transaction goes through three phases. First
comes a read phase, where the transaction reads data from
the storage and executes while making writes to a private
“scratch workspace”. Then the transaction enters a valida-
tion phase. If validation is successful, the transaction enters
the write phase, when its writes are installed in the stor-
age. The validator assigns each transaction a timestamp i,
examines the transaction’s read set RS(i) and its write set
WS(i), and compares them to the writes of previously com-
mitted transactions. When validating a transaction T (j)
with timestamp j, the validator needs to check for conflicts
with all transactions T (i) with timestamp i < j that have al-
ready committed and that overlapped temporally with T (j),
i.e., T (i) had not committed when T (j) started. T (j) can be
serialized after such a transaction T (i) if one of the following
conditions holds:
• T (i) completed its write phase before T (j) started its

write phase, and WS(i) ∩RS(j) = ∅, or
• T (i) completed its read phase before T (j) started its write

phase, and WS(i) ∩RS(j) = ∅ and WS(i) ∩WS(j) = ∅
If T (i) and T (j) overlap temporally, and WS(i)∩RS(j) 6= ∅,
we say there is a read-write dependency from T (j) to T (i).
Intuitively, if there is such a dependency, T (j) cannot be
serialized after T (i).

In addition, we must ensure the writes of the two trans-
actions are installed in the correct order to maintain consis-
tency in the storage. If they write to the same object, the
updates must be applied in their serialization order. The
original OCC algorithms achieve this by putting the valida-
tion and write phases in a critical section [34], but there has
been much progress on OCC over the last decades to scale
OCC-based OLTP systems that decouple the two phrases,
resulting in out-of-order write requests. We handle such re-
quests with a versioned datastore, where every object in the
datastore is versioned and every write request is tagged with
a version number equal to the updating transaction’s times-
tamp. If the datastore receives a write request with version
(timestamp) i and a higher-numbered version j > i already
exists for the object, the write request is ignored.1

The versioned datastore also provides an easy way to de-
termine whether T (j) and T (i) overlap temporally; every
time a transaction performs a read, we tag the read with
the version of the object that was read. If T (j)’s read set
contains an object X and the read saw version k, the val-
idator only needs to check the write sets of all T (i) with
k < i < j to see whether they contain X [16].

3. OVERVIEW
Batching involves buffering a number of operations as they

arrive at some component of the system and processing them
as a group. Given a batch, we run a lightweight algorithm

1We assume full serializability here and in the remainder
of this paper, although our ideas can easily be extended to
snapshot isolation using multi-version storage.

to analyze the batch and then reorder the operations in the
batch to reduce aborts. We will show two types of reordering
opportunities: storage batching and validator batching.

We first make a conceptual distinction between two types
of aborts: intra-batch and inter-batch aborts. Assume trans-
action t abort due to its conflict with t′. If t and t′ are in
the same batch, we call the resulting abort of t′ an intra-
batch abort ; otherwise, we call it an inter-batch abort. In this
work, we focus on managing intra-batch aborts by strategi-
cally reordering batched requests at storage and validator.
Reducing inter-batch aborts is complementary to our effort.

Our approach is agnostic to isolation levels as long as the
reordering respects the corresponding definitions of conflicts
for write-read, write-write, and read-write dependencies. In
the remainder of this paper, we describe how to batch and
reorder for serializability, but our techniques can be adapted
accordingly to other isolation levels, e.g., snapshot isolation.

3.1 Reordering at the Storage
If a transaction reads a stale version of an object from the

storage layer, it is bound to abort at the validator as it con-
flicts with the update from a committed transaction. Thus,
applying updates at the storage layer as early as possible
can reduce the chance of aborts for incoming transactions.

We implement this idea as follows. We buffer a number of
read and write requests from transactions into batches. As a
batch of requests arrives at the storage layer, for each object,
we apply the highest-version write request on that object. It
is safe to discard all other writes on that object as explained
in Section 2.2 Next, we handle all the read requests for the
same object. This strategy reduces intra-batch aborts, as it
ensures that all available writes by committed transactions
are applied to all objects before we handle any read requests
on these objects.

3.2 Reordering at the Validator
In validator batching, we buffer transaction validation re-

quests at the validator as they arrive. Once a batch has been
collected, the validator can reduce intra-batch aborts by se-
lectively aborting transactions while choosing a good vali-
dation (and thus resulting serialization) order. Such intra-
batch transaction reordering can be done with several goals
in mind. We can simply minimize intra-batch transaction
aborts, i.e., maximize the number of transactions in each
batch that commit. Alternatively, we may also want to pri-
oritize certain transactions to have a greater chance of com-
mitting. For example, if we want to reduce transactions’ tail
latencies, we can increase a transaction’s priority every time
it has to abort and restart. Priorities could also be used for
external factors, e.g., a transaction’s monetary value or an
application-defined transaction priority.

We define the problem of intra-batch validator reordering
(IBVR) more formally. A batch B is a set of transactions
to be validated. We assume all transactions t ∈ B are vi-
able, that is, no t ∈ B conflicts with previously committed
transactions. If there are non-viable transactions in B, they
can be removed in preprocessing, as they must always abort.
Given B, the goal of IBVR is to find a subset B′ ⊆ B of
transactions to abort such that there is a serialization or-
der ≺ for the the remaining transactions B \B′, and all the
transactions in B \B′ commit when validated in this order.

2Recall that we assume full serializability; this may be dif-
ferent for snapshot isolation.

1

2

3

4 5

6

7

Figure 2: An example of a directed graph; node 1 forms a
feedback vertex set.

We then process each batch by running IBVR to identify B′

and ≺, aborting all the transactions in B′, and validating
the transaction in B \ B′ in the order ≺. Note that there
is always a trivial solution to any IBVR instance, namely
to abort all transactions but one. This solution is not use-
ful; therefore, every instance of IBVR is associated with an
objective function on B′, and the goal is to find a B′ that
maximizes the objective function. A simple objective func-
tion is the size of B′ (the fewer transactions to abort the
better), and more complex functions can take transaction
priorities or tail latencies of transactions into account. We
call this objective function a policy P .

How do we compute B′? We observe that every batch B
of viable transactions has an associated dependency graph
G, a directed graph whose nodes are the transactions in B
and whose edges are read-write dependencies. If G is acyclic,
then there exists a commit order Q on G that respects all
read-write dependencies. We can construct Q by repeatedly
committing a transaction whose corresponding node in G
has no outgoing edge using a topological sort.

If G is not acyclic, we can model this problem as an in-
stance of the feedback vertex set problem. A feedback vertex
set (FVS) of a directed graph is a subset of vertices whose
removal makes the graph acyclic. For example, consider the
graph in Figure 2. Node 1 forms a FVS since the graph
becomes acyclic after removing Node 1 and its incoming
and outgoing edges. Finding a minimal-size B′ for IBVR is
exactly the problem of finding the minimal (smallest-size)
feedback vertex set on G. If we have a more complex objec-
tive function for IBVR, we can assign weights to the vertices
to represent the desired transaction priorities, and look for
a minimum-weight FVS. Once we find the FVS B′, remov-
ing the vertices in B′ from G yields an acyclic graph that
determines the desired commit order Q. The directed graph
FVS (DFVS) problem is well-studied as it has many appli-
cations, including deadlock detection, program verification,
and Bayesian inference. Unfortunately, it is NP-hard and
APX-hard [31, 32], and it is still an open problem whether
there exists any constant-factor approximation. We propose
several practical algorithms for finding a FVS next.

4. VALIDATOR BATCHING
All our IBVR algorithms begin by constructing the de-

pendency graph G. We create one node per transaction, and
one edge per read-write dependency. To determine whether
a read-write dependency holds from transaction t′ to t, we
check whether WS(t) ∩ RS(t′) 6= ∅. If so, we add an edge
from t′ to t. We implement this by creating a hash table from
the write sets and probing it with the read sets. Since a read
in t can potentially conflict with all the other transactions
in the batch, the time complexity to probe the hash table
for a single read is O(|B|), where |B| is the size of the batch.

1 Algorithm GreedySccGraph(G, P)
Input: Directed graph G, policy P
Output: V , a feedback vertex set for G

2 V ← ∅
3 G′ ← trim(G)
4 SCC = StronglyConnectedComponents(G′)
5 for S ∈ SCC do
6 V ← V ∪GreedyComponent(S, P)
7 end
8 return V

9 Algorithm GreedyComponent(S, P)
Input: SCC S, policy P
Output: V ′, a feedback vertex set for S

10 if S.size == 1 then
11 return ∅
12 end
13 v ← SelectV ertexByPolicy(S, P)
14 S′ ← GetGraphAfterV ertexRemoval(S, v)
15 return v ∪GreedySccGraph(S′, P)

Algorithm 1: SCC-based greedy algorithm

1 Algorithm GreedySortGraph(G, P , k)
Input: Directed graph G, policy P , multi factor

k
Output: V , a feedback vertex set for G

2 V ← ∅
3 G← trim(G)
4 while G 6= ∅ do
5 if G.size < k then
6 V ← V ∪GreedySortGraph(G,P, 1)
7 break

8 end
9 Q← QuickSelectV ertexByPolicy(G,P, k)

10 for i = 1; i ≤ k; + + i do
11 V ← V ∪Q[i]
12 G←

GetGraphAfterV ertexRemoval(G,Q[i])

13 end
14 G← trim(G)

15 end
16 return V

Algorithm 2: Sort-based greedy algorithm

The complexity of building G is thus O(|B|2 + |R| + |W |),
where |R| is the total number of reads, and |W | is the total
number of writes.

We now process G to find a feedback vertex set. Both
before and during the execution of our FVS algorithms, we
trim the graph to remove all the vertices that have no in-
coming edges and/or no outgoing edges, since such vertices
cannot participate in any cycles.

4.1 Algorithms
SCC-Based Greedy Algorithm. The intuition behind

our first algorithm is that each cycle must be contained in
a strongly connected component (SCC) of the graph. Af-
ter preprocessing, we partition the graph into SCCs. For a
graph with V nodes and E edges, we can do this in time
O(|V |+ |E|) using Tarjan’s SCC algorithm [47].

Nodes in SCCs of size one cannot belong to any cycle. For
an SCC that contains more than one node, we choose a ver-

tex to remove according to a policy. The policy is a ranking
function over nodes, and we greedily choose the top-ranked
vertex to remove. We then recurse on the remaining graph.
Algorithm 1 shows the details of this procedure. We begin
by trimming and partitioning the graph into SCCs (lines 3-
4). We process each SCC S using GreedyComponent(S, P)
(lines 5-7). This subroutine starts by eliminating SCCs of
size one (lines 10-12). Next, it chooses the top-ranked vertex
v from S under Policy P (line 13). It removes v from S and
recursively calls GreedySccGraph on the remaining graph
S′ (lines 14 - 15). Finally, it returns the union of all the FVSs
obtained in processing S (line 15). When the top-level pro-
cedure GreedySccGraph(G,P) has processed all the SCCs
of G, it returns the union of the FVSs obtained (line 8).
Trimming and updating the graph after removing a node
take O(|V |+ |E|) in total, since each node / edge can be re-
moved only once. In the worst case, i.e., in a fully connected
graph, we may only remove one node per iteration. Since
SCC takes O(|V | + |E|) per iteration, the time complexity
of this algorithm is O(|V |(|V | + |E|)). The policy P is at
the heart of the algorithm, and it ranks nodes which are
likely to be included in a desirable FVS highly. We discuss
possible policies in Section 4.2.

An example. Figure 3 shows an instance of the SCC-
based greedy algorithm that aims at minimizing the size of
FVS, with a policy P selecting the node with the largest
product of its in-degree and out-degree, i.e., prod-degree.
The graph cannot be trimmed, so we partition it into SCCs.
We remove all SCCs of size 1 – Nodes 0, 7, 10, 11, and 12
(Figure 3b). There are three remaining SCCs. We first look
at the component containing Nodes 3 and 4. Since Nodes
3 and 4 have the same product of in-degree and out-degree,
we can add either one of them to the FVS. We choose Node
3. Now Node 4 has neither incoming nor outgoing edges, so
it is trimmed (Figure 3c). We repeat the process with the
other components. For the SCC containing Nodes 2, 5, and
6, we add Node 6 to the FVS, as it has the largest product
of in-degree and out-degree among the three nodes in this
SCC. We now trim Nodes 2 and 5 (Figure 3d). Finally, we
remove Node 8 from the last component, and trim Nodes 1
and 9 (Figure 3e). This leaves us with a final FVS consisting
of Nodes 3, 6, and 8.

Sort-Based Greedy Algorithm. Our first algorithm
relies on a SCC partitioning routine that takes linear time in
the size of the graph. As this routine is called several times
throughout the algorithm, the overhead can be high. Here
we propose a faster greedy algorithm using a sort-based ap-
proach to remove nodes. Through extensive empirical tests
of the SCC-based greedy algorithm, we find that at each it-
eration, all the top ranked nodes in the graph are very likely
to be included in the final FVS. Our second algorithm is
based on this observation; it sorts the nodes according to a
policy P , and includes the k top-ranked nodes in the FVS.
We call k the multi factor of the algorithm. The algorithm
removes these nodes and iterates on the remaining graph
until the remaining graph becomes empty.

Algorithm 2 shows this in more detail. We start by trim-
ming the graph (line 3); if the graph has no more than k
nodes, we reduce the multi-factor to 1 (lines 5-8). Other-
wise, we sort and select the top ranked k nodes into a queue
Q using P with the Quickselect algorithm [29], and include
the k nodes in V (lines 9-13). After removing the selected
nodes from G, we trim the remaining graph again (line 14).

3

4

7

8

1 9

6

2

5

0

12

11

10

(a) original

3

4

7

8

1 9

6

2

5

0

12

11

10

(b) partition into SCCs

3

4

7

8

1 9

6

2

5

0

12

11

10

(c) add 3 to FVS

3

4

7

8

1 9

6

2

5

0

12

11

10

(d) add 6 to FVS

3

4

7

8

1 9

6

2

5

0

12

11

10

(e) add 8 to FVS

Figure 3: An example of the SCC-based greedy algorithm using prod-degree policy. Blue nodes are trimmed during the
algorithm, and yellow nodes form the FVS.

We repeat this procedure until the graph is empty (line 4).
As with the previous algorithm, trimming and updating the
graph after removing a node takes O(|V |+ |E|) in total. Up-
dating the weights of the remaining nodes takes O(|V |) per
iteration. The Quickselect algorithm [29] has an amortized
time complexity of O(|V |). In the worst case, it will take
O(|V |/k) iterations to terminate. So the overall time com-
plexity is O(|V |2/k+ |V |+ |E|). This algorithm has smaller
time complexity than the SCC-based greedy algorithm, and
we can increase k to further trade accuracy for shorter run-
time. As we will see in Section 5, it has comparable accuracy
to the SCC-based algorithm in practice.

Example (Continued). Figure 4 shows the same exam-
ple using the sort-based greedy algorithm with k = 1. After
the first sort, we add Node 5 to the FVS since Node 5 has
the highest product of in-degree and out-degree. After re-
moving Node 5, Nodes 10 and 12 have only incoming edges
and get trimmed (Figure 4b). We sort the remaining nodes.
This time, we add Node 8 to the FVS and trim Nodes 0, 1,
9, 11 (Figure 4c). We repeat this process with the remain-
ing nodes until the graph is empty. This yields a FVS with
Nodes 3, 5, 6, and 8 (Figure 4e), which contains one more
node than the FVS obtained with the SCC-based algorithm.

Hybrid Algorithm. We combine the SCC-based greedy
algorithm and the precise brute-force FVS search into a hy-
brid algorithm. The algorithm is similar to the SCC-based
greedy algorithm but runs a precise, brute-force FVS search
whenever it can afford to. Instead of processing all SCCs
via GreedyComponent (lines 5-7 of Algorithm 1), it runs
the precise search when processing SCCs that are smaller
than a threshold, and the GreedyComponent on SCCs that
are larger than the threshold. Adjusting the threshold al-
lows us to trade off precision versus runtime.

4.2 Policies
Policies are of utmost importance for our algorithms. Re-

call that a policy is a ranking function on vertices of the
graph, and a good policy ranks vertices which are likely to
be in a desirable FVS highly. We discuss three kinds of
policies designed for different performance objectives and
system architectures.

Minimize the number of aborts. We first discuss poli-
cies that aim at minimizing the number of conflicts, i.e., the
size of the FVS. The simplest such policy is random that
assigns all nodes random rankings. We can instead rank
nodes using degree-based heuristics, based on the intuition
that the removal of a node will break many cycles if the

node is high in some measurement of its graph degree. Such
heuristics have been shown to work well for FVS computa-
tion [14]. For example, the policy max-degree chooses the
node with the largest degree (either in-degree or out-degree),
sum-degree chooses the node with the largest total degree
(in-degree plus out-degree), and prod-degree chooses the
node with the largest product of in-degree and out-degree.

Minimize tail latency. More sophisticated policies are
possible if the system is optimizing for a metric beyond max-
imizing the number of commits. For example, we may want
to bound the transactions’ tail latency; we can do that by
incorporating latency information in our policies. With this
approach, we can rank transactions based on how many
times they have been aborted and restarted; thus, trans-
actions that have been restarted many times are less likely
to enter the FVS and have a higher chance of committing.
Alternatively, we can also devise policies that combine the
information about a transaction’s number of restarts and
its graph degree. For example, we can compute the ranking
of a vertex as the product of its in-degree and out-degree
divided by an exponential function of how many times it
restarts. In business applications, the monetary value of
different transactions varies. Optimizing for maximal mon-
etary value, we can design policies that favor more valuable
transactions. For example, we can customize the policy to
always add a transaction with the lowest value to the FVS
until the resulting dependency graph is acyclic.

Reduce inter-thread conflicts. Many recent OCC-
based OLTP systems use a decentralized architecture [38,
50, 56, 33], where there is no centralized validation. Each
transaction is scheduled to a dedicated thread and processed
by this thread synchronously for its entire lifetime. Since a
transaction is executed synchronously, it can only conflict
with transactions executed by other threads.

In such an architecture, while batching operations across
transactions does not apply, we can assign transactions to
specific threads to reduce inter-thread conflicts. Intuitively,
for a batch of transactions, we schedule conflicting transac-
tions to be executed on the same thread, where they are pro-
cessed serially without conflicts. Because conflicting trans-
actions access the same objects, reordering also improves
caching within a thread.

We design a thread-aware policy which assigns transac-
tions thread by thread. We batch a number of transactions
and assign the same number of transactions to each thread.3

3More sophisticated assignments are possible as future work.

3

4

7

8

1 9

6

2

5

0

12

11

10

(a) original

3

4

7

8

1 9

6

2

011

12

10

5

(b) add 5 to FVS

3

4

7

8

1 9

6

2

011

12

10

5

(c) add 8 to FVS

3

4

7

8

1 9

6

2

011

12

10

5

(d) add 6 to FVS

3

4

7

8

1 9

6

2

011

12

10

5

(e) add 3 to FVS

Figure 4: An example of the sort-based greedy algorithm using prod-degree policy and multi factor 1. Blue nodes are
trimmed during the algorithm, and yellow nodes form the FVS.

At each thread, we compute the weight of a transaction t
first based on the number of conflicts to the set of trans-
actions S in the batch that have already been assigned to
this thread, then the number of object accesses shared be-
tween t and S, and finally t’s number of conflicts to the
unassigned transactions in this batch. For each thread, our
sort-based algorithm will first pick the transaction with the
most conflicts against the remaining transactions, and then
it iteratively updates the weights of the transactions left
to pick the next one with the highest weight. This policy
greedily puts conflicting transactions on the same thread to
minimize conflicts across threads; as a side effect, it tries to
assign transactions accessing the same objects to the same
thread, resulting in better caching.

4.3 Parallelism
Since batching and reordering occur during transaction

execution, they can increase transaction latency, resulting
in a higher chance of conflicts. Thus, we introduce paral-
lelism into validation. Recall that the validator first prepares
a batch of transactions, then reorders them, and finally vali-
dates them and caches the resulting updates of transactions
that commit. Each step corresponds to a subcomponent
in the validator. Parallelism across these components seems
difficult since there are strict sequential dependencies among
them. We first explain how to parallelize execution within
each component and then even across components.

Figure 19 shows the architecture of our parallel validator,
including three components: The batch preparation com-
ponent receives transactions from the processor, packages
them into batches, and sends the batches to the transaction
reordering component. The transaction reordering compo-
nent reorders the transactions, and then sends a validation
request to the transaction validation component. The trans-
action validation component takes a batch of ordered trans-
actions and validates them against the latest validator cache.
It also updates the validator cache with the updates from
transactions that pass the validation.

Parallelism within a component. In batch prepara-
tion, multiple threads can package transactions into batches.
We can either assign each processor to send its validation
request to a specific batch preparation thread, or we can
create a consumer-producer queue to connect the proces-
sors and the batch preparation threads. In transaction re-
ordering, multiple threads can consume reordering requests
from the batch preparation threads, and reorder batches of
transactions concurrently. Since the batches are not ordered

yet in the reordering stage (although transactions within
each batch are now ordered), the threads can send the pro-
cessed batches to the validation component in any order.
At the validation component, the batches are processed se-
rially and validated against all previously committed trans-
actions. Within an ordered batch, since the transactions
are already serialized by the reordering component, the only
source of conflicts is from transactions committed prior to
the batch. Thus, transactions within a batch can be vali-
dated in parallel. Since conflicts can happen across batches,
a new batch can only be processed after transactions from
previous batches have been validated. Updates from com-
mitted transactions in a batch are applied to the validator
cache in serialization order at the end of the processing of
the batch. We can further partition the key space to par-
allelize within a batch, which is similar to the design of a
partitioned validator [16].

Parallelism across components. We can further in-
crease parallelism by running the three validator compo-
nents with pipelined parallelism, with each component work-
ing on a different batch in parallel. The batches then shift
from one component to the next component in the validator.

A further refinement: Pre-validation. As mentioned
in Section 3.2, prior to reordering, we can remove non-viable
transactions, i.e., transactions that conflict with previously
committed transactions. While this pre-validation adds an
additional validation for transactions on top of the final vali-
dation which serializes them, it reduces the number of trans-
actions to reorder and the reordering algorithm runs faster.
Empirically, we observe that the reordering component is the
bottleneck piece, and removing non-viable transactions with
pre-validation significantly improves performance. Thus, af-
ter batch creation, we first pre-validate the batch, reorder
the remaining transactions, and then perform a second and
final validation against the current database state.

In Figure 19, the bottom row shows a set of database
snapshots, each after a batch of transactions that has been
validated. With pre-validation, a batch B will get vali-
dated against a “stale” database state S. Those transactions
within batch B that have passed the pre-validation are then
re-ordered and validated a second time in the transaction
validation component against the “correct” database state
S′. Since S′ now reflects all the updates from transactions
committed after S while B is in the reordering component,
transactions in B can still show additional conflicts during
the final validation.

5. EVALUATION
We first describe the experimental setup for our proto-

type to isolate and study the impact of different parameters
in our algorithms. Section 5.5 and 5.6 describe our experi-
ments with an open-source OLTP system and a commercial
database system; both of these sections will describe their
own experimental setups, respectively.

Our research prototype system architecture has four com-
ponents: transaction clients, processors, storage, and a val-
idator as shown in Figure 1. The components communi-
cate through consumer-producer queues. The transaction
client continuously produces new transactions until the sys-
tem reaches the maximum permitted concurrency level. The
processor acts as a transaction coordinator and multiplexes
multiple transactions in parallel. It receives transaction re-
quests from clients, sends read/write requests to the storage,
sends validation requests to the validator, restarts aborted
transactions, and sends commit messages back to the clients.

The processor is non-blocking : It processes requests from
its consumer-producer queue without waiting for the re-
sponse of the request. For example, when it receives a trans-
action request from a client, it sends read requests on behalf
of this transaction to the storage, and then it continues to
process the next request in its queue without waiting for
the response from the storage. This asynchronous process-
ing allows the processor to multiplex many transactions in
parallel to improve its throughput.

The storage processes read and write requests. With stor-
age batching, the storage buffers requests into batches and
processes the requests as described in Section 3.1.

The validator performs backward validation. For every
transaction, a validation request consists of the keys and
versions of its reads and the keys of its writes. The valida-
tor caches the write keys of committed transactions in an
in-memory hash table, until these writes are overwritten by
later updates. When batching is enabled, the validator col-
lects the requests into a batch as they arrive, and runs one
of the algorithms from Section 4.1 to determine a serializa-
tion order. Every transaction that passes the validation is
assigned an integer commit timestamp, which corresponds
to the version number of the updates it will install in stor-
age. By default, the validator uses the sort-based greedy
algorithm with the prod-degree policy and multi factor 2.

We parallelize the transaction generation with two trans-
action clients. We run two storage workers concurrently to
process reads and writes, and the writes are applied based
on its data versioning as described in Section 3.1. We decou-
ple the validator into subcomponents and parallelize them
as described in Section 4.3.

We use a key-value model for the storage, implemented as
an in-memory hash table. In our micro benchmark, we pop-
ulate the database with 100K objects, each with an 8-byte
key. The values are left null as they are not relevant to our
evaluation. We generate a workload where each transaction
reads 5 objects and writes to 5 objects, drawn from a Zipfian
distribution [24], with one of the reads and one of the writes
on the same object. We limit the concurrency level to 300,
i.e., at any time there are at most 300 active transactions.
The default batch size is 40 for both storage and validator.
We choose the concurrency level and batch size empirically
to properly load the system.

The baseline configuration (base) represents the system
running with storage and validator batching turned off. We

 0

 1

 2

 3

 4

 5

 6

 7

 0.5 0.6 0.7 0.8 0.9

S
iz

e
o

f
F

ee
d

b
ac

k
 V

er
te

x
 S

et
 P

er
 G

ra
p

h

Skew Parameter of Zipfian Distribution

random

random_3

greedy_max

greedy_sum

greedy_prod

greedy_sort

hybrid_10

hybrid_15

hybrid_20

search

Figure 5: Size of FVS per graph

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 0.6 0.7 0.8 0.9

R
u

n
n

in
g

 T
im

e
P

er
 G

ra
p

h
 /

 M
il

li
se

co
n

d
s

Skew Parameter of Zipfian Distribution

random

random_3

greedy_max

greedy_sum

greedy_prod

greedy_sort

hybrid_10

hybrid_15

hybrid_20

search

Figure 6: Running time of finding FVS

optimize the code path for transactions without batching
to avoid the overhead from batching and reordering, includ-
ing skipping buffering transactions into batches as well as
the reordering workers in validator. We further add a batch
mode (batch) to separately measure the effects of batching
and reordering, where requests are batched at both storage
and validator, but no reordering is performed. The batch
mode has improved performance over base, because it bene-
fits from better caching with tighter loops in the processing.

Our prototype is implemented in Java. All the experi-
ments are run on a machine with an Intel Xeon E5-2630
CPU @2.20GHz and 16GB RAM. All our experimental fig-
ures show the averages of 10 runs, each lasting for 60 seconds
between a 10-second warm-up and a 10-second cool-down.
The standard deviation is not significant in any of the exper-
iments, so we omit the error bars for clarity of presentation.
We report throughput (the number of committed transac-
tions per second), average, and percentile latencies.

5.1 Validator Reordering Algorithms
We first investigate the performance of the feedback ver-

tex set algorithms from Section 4.1 for their accuracy and
running time. We run the algorithms on graphs constructed
as described in Section 4, using our micro benchmarks. We
test the SCC-based greedy algorithm with the max-degree

(greedy max), sum-degree (greedy sum) and prod-degree

policies (greedy prod). We also test the sort-based greedy

Table 1: Summary of settings and trade-offs

Setting Trade-off
Batch size Larger batch sizes give more flexibility of reordering but can increase transaction latency.

FVS algorithms The sort-based algorithm is cheaper but includes more transactions in the FVS.
Minimize aborts Reorder transactions to reduce the number of aborts.

Minimize tail latency Reorder transactions to reduce tail latencies at the cost of slightly increased aborts.
Reduce inter-thread conflicts Reorder transactions to achieve thread locality for a decentralized system architecture.

 0

 50

 100

 150

 200

 250

 300

 350

 0.5 0.6 0.7 0.8 0.9

T
h

ro
u

g
h

p
u

t
(K

)
/

S
ec

o
n

d

Skew Parameter of Zipfian Distribution

base
batch
g
gs

Figure 7: Throughput with different
greedy algorithms

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5 0.6 0.7 0.8 0.9

L
at

en
cy

 /
 M

il
li

se
co

n
d

s

Skew Parameter of Zipfian Distribution

base
batch
g
gs

Figure 8: Average latency with differ-
ent greedy algorithms

 0

 5

 10

 15

 20

b
ase

b
atch

g g
s

b
ase

b
atch

g g
s

b
ase

b
atch

g g
s

b
ase

b
atch

g g
s

b
ase

b
atch

g g
s

L
at

en
cy

 /
 M

il
li

se
co

n
d
s

Skew Parameter of Zipfian Distribution

95
90
50

0.90.80.70.60.5

Figure 9: Percentile latencies with
different greedy algorithms

algorithm greedy sort (using the prod-degree policy for
sorting and multi factor 2), as well as the hybrid algorithm
hybrid m. The hybrid algorithm uses greedy prod as a sub-
routine when the size of the SCC is larger than m, and
switches to the brute force search otherwise. By increasing
the threshold, we can progressively approximate the optimal
solution. We test these algorithms against several baselines:
search is an accurate, brute force search algorithm; random
is the SCC-based greedy algorithm which removes a vertex
at random from each SCC to break the cycle; random 3 runs
random 3 times for each graph constructed from a batch of
transactions and returns the smallest FVS, mitigating the
effect of bad random choices.

Figure 5 shows the average size of the feedback vertex set
found by each algorithm. The brute force search algorithm
is so slow that it cannot produce results once the skew factor
increases beyond 0.7 as the graphs become too dense. The
random baseline computes a FVS whose size is almost twice
as large as the greedy and the hybrid algorithms. Running
the random algorithm multiple times produces similar re-
sults. This confirms the theoretical results which show that
finding a good FVS is hard. The greedy algorithms, on the
other hand, produce very accurate results. The average size
of the FVS is almost identical to that of the brute force
search when the skew factor is no larger than 0.7, and it
is very close to the best hybrid algorithm (hybrid 20, i.e.,
one that uses the brute force search when the size of the
SCC is no larger than 20). Among the greedy algorithms,
greedy prod is consistently the best, although the difference
is small.

Figure 6 shows the running time of the algorithms. The
running time of the hybrid algorithm depends on the thresh-
old for switching to brute force search. Thus, hybrid 20
and hybrid 15 have a longer running time than other algo-
rithms, while the running time of hybrid 10 is comparable
to the SCC-based algorithms. Each of the SCC-based al-
gorithms (greedy max, greedy sum, greedy prod, random)

has a similar running time. The random algorithm takes
slightly longer than the greedy algorithms because it re-
moves more nodes and thus requires more iterations to find
FVS. The running time of random 3 is three times that
of random, since it runs the random algorithm three times.
The sort-based greedy algorithm (greedy sort), while slightly
less accurate than the SCC-based greedy algorithms, reduces
the running time of these algorithms by 74%.

We compare the end-to-end performance of the best SCC-
based algorithm (greedy prod) with the sort-based greedy
algorithm. Figures 7 and 8 show the throughput and the
average latency of the system with greedy prod (g) and
greedy sort (gs) with storage batching enabled. The base
line shows the throughput with both storage and validator
batching disabled. The two greedy algorithms have similar
throughput when the skew is very low. However, greedy prod
degrades significantly with increasing data skew. This is be-
cause while greedy prod is slightly more accurate, it takes
much longer to run. This increases transaction latency and
leads to more conflicts, especially with high data contention.
greedy sort consistently gives the highest throughput over
all the workloads for its high accuracy and low running
time. Figure 9 shows the percentile latencies, i.e., the la-
tency thresholds for up to 95% of the transactions. The
tail latencies of greedy sort are much lower than that of the
other two, consistent with the throughput data.

5.2 Storage and Validator Batching
Next, we perform a detailed analysis on the effects of stor-

age and validator batching. We configure the system in sev-
eral different modes: no batching (base), batching without
reordering (batch), storage only batching with reordering
(sr), validator only batching with reordering (vc), and both
storage and validator batching with reordering (srvc).

Figures 10, 11, and 12 show the throughput, average, and
percentile latencies of different system modes under various
data skews. Using batching with reordering at the storage

 0

 50

 100

 150

 200

 250

 300

 350

 0.5 0.6 0.7 0.8 0.9

T
h

ro
u

g
h

p
u

t
(K

)
/

S
ec

o
n

d

Skew Parameter of Zipfian Distribution

base
batch
sr
vc
srvc

Figure 10: Throughput under work-
loads of Zipfian distribution

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5 0.6 0.7 0.8 0.9

L
at

en
cy

 /
 M

il
li

se
co

n
d

s

Skew Parameter of Zipfian Distribution

base
batch
sr
vc
srvc

Figure 11: Average latency under
workloads of Zipfian distribution

 0

 5

 10

 15

 20

b
ase

b
atch

sr v
c

srv
c

b
ase

b
atch

sr v
c

srv
c

b
ase

b
atch

sr v
c

srv
c

b
ase

b
atch

sr v
c

srv
c

b
ase

b
atch

sr v
c

srv
c

L
at

en
cy

 /
 M

il
li

se
co

n
d
s

Skew Parameter of Zipfian Distribution

95
90
50

0.90.80.70.60.5

Figure 12: Percentile latencies under
workloads of Zipfian distribution

 0

 50

 100

 150

 200

 250

 300

 350

 0.5 0.6 0.7 0.8 0.9

T
h

ro
u

g
h

p
u

t
(K

)
/

S
ec

o
n

d

Skew Parameter of Zipfian Distribution

base
batch
sr
vc
srvc

Figure 13: Throughput with Small
Bank benchmark

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5 0.6 0.7 0.8 0.9

L
at

en
cy

 /
 M

il
li

se
co

n
d

s

Skew Parameter of Zipfian Distribution

base
batch
sr
vc
srvc

Figure 14: Average latency with
Small Bank benchmark

 0

 5

 10

 15

 20

b
ase

b
atch

sr v
c

srv
c

b
ase

b
atch

sr v
c

srv
c

b
ase

b
atch

sr v
c

srv
c

b
ase

b
atch

sr v
c

srv
c

b
ase

b
atch

sr v
c

srv
c

L
at

en
cy

 /
 M

il
li

se
co

n
d
s

Skew Parameter of Zipfian Distribution

95
90
50

0.90.80.70.60.5

Figure 15: Percentile latencies with
Small Bank benchmark

and/or validator consistently improves throughput by up to
2.7x. Moreover, validator reordering significantly reduces
the average and tail latencies by up to 67% and 82% respec-
tively, compared with the baseline (base).

When the data contention is extremely high (i.e., skew
factor 0.9), the number of intra-batch conflicts that cannot
be resolved by validator reordering increases. Validator re-
ordering is slower due to denser graphs, while bringing less
benefit. Thus, the best throughput in this case is achieved
by using storage only batching with reordering (sr).

We further evaluate batching and reordering on the Small
Bank benchmark [4]. The Small Bank benchmark contains
transactions with a realistic and diverse combination of read
and write conflicts: compute the balance of a customer’s
checking and savings accounts, deposit money to a check-
ing account, transfer money from a checking account to a
savings account, move funds from one customer to another,
and withdraw money from a customer’s account. We use a
Zipfian distribution to simulate skewed data accesses. We
populate the database with 100K customers, including 100K
checking and 100K savings accounts.

Figures 13, 14, 15 show the throughput, average, and
percentile latencies of transactions with very similar results
compared to our micro benchmark.

5.3 Reducing Tail Latency
We now explore validator reordering with more sophis-

ticated policies as discussed in Section 4.2. Our baselines
are the prod-degree policy that maximizes the number of
commits (mc) as well as no batching (base) and batching
without reordering (batch). Our first tail-latency aware pol-

icy (rct) favors transactions that have already been aborted
and restarted. When choosing a node to include in the FVS,
it chooses the node with the smallest number of restarts,
breaking ties using prod-degree. Our second latency-aware
policy (rdeg) combines the number of restarts and the in-
coming/outgoing degrees of a transaction into a weight. It
computes the weight of a node as the product of in-degree
and out-degree over the exponential of the number of restarts
with base 2. When choosing a node to include in the FVS, it
picks the node with the highest weight. Thus, a node with a
high degree product can have its weight reduced if the corre-
sponding transaction has restarted several times. Figures 16
and 17 show the throughput and average latency, where the
impact of tail-latency aware policies is negligible as com-
pared to when we maximize the number of commits (mc).
Figure 18 shows the tail latencies. The more advanced pol-
icy rdeg consistently performs significantly better than all
the others, and it reduces the tail latencies by up to 86%.

5.4 Parallel Validation
We now evaluate the benefits of parallelism. Since we

have observed that the reordering of FVS is the most time
consuming subcomponent in the validator, we increase the
number of threads to perform batch reordering as described
in Section 4.3. Figures 20 and 21 show the throughput and
average latency varying the number of reordering workers
from 1 to 4 (w1, w2, w3, w4). The performance improves
significantly with more reordering workers when data skew
is medium to high. With four workers, the throughput in-
creases by up to 2.6× and the average latency reduces by up
to 39%, compared to using one worker. Figure 22 shows the

 0

 50

 100

 150

 200

 250

 300

 350

 0.5 0.6 0.7 0.8 0.9

T
h

ro
u

g
h

p
u

t
(K

)
/

S
ec

o
n

d

Skew Parameter of Zipfian Distribution

base
batch
mc
rct
rdeg

Figure 16: Throughput with tail la-
tency optimized policies

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5 0.6 0.7 0.8 0.9

L
at

en
cy

 /
 M

il
li

se
co

n
d

s

Skew Parameter of Zipfian Distribution

base
batch
mc
rct
rdeg

Figure 17: Average latency with tail
latency optimized policies

 0

 50

 100

 150

 200

 250

b
ase

b
atch

m
c

rct
rd

eg

b
ase

b
atch

m
c

rct
rd

eg

b
ase

b
atch

m
c

rct
rd

eg

b
ase

b
atch

m
c

rct
rd

eg

b
ase

b
atch

m
c

rct
rd

eg

L
at

en
cy

 /
 M

il
li

se
co

n
d

s

Skew Parameter of Zipfian Distribution

100
99.99
99.9
99
90

0.90.80.70.60.5

Figure 18: Percentile latencies with
tail latency optimized policies

O
rd

ered
 B

atch

O
rd

ered
 B

atch

O
rd

ered
 B

atch

O
rd

ered
 B

atch

Txn

Txn

Txn

Txn

Txn

Txn

Txn

Txn

Txn

Txn

Txn

Txn

Batch

Batch

Batch

Batch

Batch

Batch

Batch

Batch Ordered Batch

Ordered Batch

Ordered Batch

Ordered Batch

Ordered Batch

Ordered Batch

Ordered Batch

Ordered Batch

Processor Batch
Preparation

Transaction
Reordering

Transaction
Validation

Database
Snapshot

(Cached Updates)
O

rd
ered

 B
atch

O
rd

ered
 B

atch

O
rd

ered
 B

atch

O
rd

ered
 B

atch

Txn

Txn

Txn

Txn

Txn

Txn

Batch

Batch

Batch

Batch Ordered Batch

Ordered Batch

Ordered Batch

Ordered Batch

Processor Batch
Preparation

Transaction
Reordering

Transaction
Validation

Database
Snapshot

(Cached Updates)

Validator

. . . Sk Sk+1 Sk+2 . . . Sn. . . Sk Sk+1 Sk+2 . . . Sn

Figure 19: The architecture of parallel validator. It is
decoupled into three subcomponents for pipeline parallelism:
batch preparation, transaction reordering, and transaction
validation. Each subcomponent can be further parallelized.

percentile latencies. With more reordering workers, more
transactions are reordered concurrently, and the transaction
queuing time at validator is reduced. With four workers, the
tail latencies reduce by up to 41%.

5.5 Integration with Cicada
We integrate the idea of transaction batching and re-

ordering into Cicada, an open-source OLTP system [38].
Cicada represents an important class of in-memory OCC-
based OLTP system architectures. In Cicada, every thread
executes its transactions independently, and there are no
centralized threads for transaction validation or storage ac-
cess. We apply our techniques to this architecture by batch-
ing and reordering the transactions in a preprocessing step
using the thread-aware policy described in Section 4.2.

We configure our strategy with a batch size of 4 times
the number of threads and assign 4 transactions to each
thread within a batch after reordering, i.e., a transaction
is never reordered across batch boundaries. The reordering
has low overhead, which is up to 5x in throughput compared
with transaction processing. It can be further parallelized
as described in Section 4.3.

We compare our strategy (rc) with a number of the-state-
of-the-art OLTP systems, including Cicada (cicada) [38],
Silo (silo) [50], ERMIA (ermia) [33], and TicToc (tictoc) [56],
using the same YCSB benchmark configuration as in the
original Cicada paper [38]. Each transaction consists of 16
requests generated from a Zipfian distribution, with 50%

read and 50% read-modify-write. The database consists of
10 million keys, each with 100-byte payload.

We run the experiment on a machine with two Intel Xeon
Processor E5-2690 v4 CPUs (each with 14 physical cores)
and 256GB of DRAM. We pin threads to different cores and
use NUMA-aware memory to allocate hugepages.

Figure 23 shows the throughput of these systems with a
write-intensive, highly-skewed workload, varying the num-
ber of threads. Figures 24 and 25 show the throughput and
tail latencies with the maximal number of threads (i.e., 28)
under workloads with different degrees of data contention.4

As the degree of data contention increases, either with
more threads or more data skew, using reordering outper-
forms the other systems resulting in higher throughput and
lower tail latencies. With 28 threads and skew factor 0.99,
using reordering improves throughput by up to 2.2x and re-
duces the 99% tail latency by up to 71%.

5.6 Integration with DBMS-X
We implement our techniques on top of a commercial

DBMS-X, a high performance OLTP engine using OCC. We
implement validator reordering for the transactions batched
at the middle tier, i.e., before submitting them to the database
server. Since the transactions haven’t started executing and
their read timestamps are not yet available, we conserva-
tively assume that all the transactions in a batch read from
the same snapshot of the database. We analyze the poten-
tial conflicts between the transactions and reorder them to
minimize the number of aborts. The transactions excluded
from the batch, together with future incoming transactions,
are included in the next batch for reordering.

We use JDBC to issue transactions. A connection to
DBMS-X can send transaction statements individually or
in batch through JDBC calls, where the call returns after
all the transactions are processed. Whenever DBMS-X re-
ceives a batch of statements, it executes them concurrently.
Batching the statements reduces communication overhead
and increases the concurrency level.

We use the SmallBank benchmark as described in Sec-
tion 5.2, with a Zipf skew of 0.9 as a high-data-contention
scenario. We compare transaction batching and reorder-
ing (reorder) with two baselines: no batching (nobatch) and
batching without reordering (batch). In nobatch, we submit
transactions to DBMS-X one at a time. In batch and reorder,

4ERMIA is not shown in Figure 25 since it does not report
percentile latencies.

 0

 50

 100

 150

 200

 250

 300

 350

 0.5 0.6 0.7 0.8 0.9

T
h

ro
u

g
h

p
u

t
(K

)
/

S
ec

o
n

d

Skew Parameter of Zipfian Distribution

w1
w2
w3
w4

Figure 20: Throughput varying the
number of reordering workers

 0

 0.5

 1

 1.5

 2

 2.5

 0.5 0.6 0.7 0.8 0.9

L
at

en
cy

 /
 M

il
li

se
co

n
d

s

Skew Parameter of Zipfian Distribution

w1
w2
w3
w4

Figure 21: Average latency varying
the number of reordering workers

 0

 2

 4

 6

 8

 10

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

L
at

en
cy

 /
 M

il
li

se
co

n
d
s

Skew Parameter of Zipfian Distribution

95
90
50

0.90.80.70.60.5

Figure 22: Percentile latencies vary-
ing the number of reordering workers

 0

 0.5

 1

 1.5

 2

 2.5

 4 8 12 16 20 24 28

T
h

ro
u

g
h

p
u

t
(M

)
/

S
ec

o
n

d

Number of Threads

rc
cicada

silo
tictoc

ermia

Figure 23: Throughput of YCSB with
skew factor 0.99

 0

 1

 2

 3

 4

0.4 0.6 0.8 0.9 0.95 0.99

T
h

ro
u

g
h
p
u
t

(M
)

/
S

ec
o
n
d

Skew Parameter of Zipfian Distribution

rc
cicada

silo
tictoc

ermia

Figure 24: Throughput of YCSB with
28 threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

rc cicad
a

silo
ticto

c

rc cicad
a

silo
ticto

c

rc cicad
a

silo
ticto

c

rc cicad
a

silo
ticto

c

rc cicad
a

silo
ticto

c

rc cicad
a

silo
ticto

c

L
at

en
cy

 /
 M

il
li

se
co

n
d

Skew Parameter of Zipfian Distribution

99
95
50

0.990.950.90.80.60.4

Figure 25: Percentile latencies of
YCSB with 28 threads

we batch transactions before sending them to DBMS-X. We
choose 50 as a proper batch size.

Figures 26, 28, and 27 show the throughput, latency,
and abort rate when we increase the number of database
connections. Without batching, the concurrency level is
small, resulting in low throughput and a slim chance of con-
flict (i.e., a low abort rate). As we batch transactions, the
throughput increases dramatically. However, as the load
continues to increase, the system runs into data contention.
This further leads to resource contention due to restarts.
Thus, both the abort rate and the average latency rise sig-
nificantly. When we batch and reorder transactions, the
performance improves on all metrics: Peak throughput in-
creases by 1.25×, throughput increases by up to 3.1×, la-
tency reduces by up to 66%, and the abort rate drops by up
to 62%. Moreover, the performance degrades much more
gracefully with increasing load.

5.7 Summary
The main takeaways from our experiments are:
(1) The sort-based greedy algorithm finds accurate FVS

and reduces the running time of SCC-based greedy algo-
rithms by 74%, resulting in the best end-to-end system per-
formance among all the algorithms.

(2) Batching and reordering increases throughput by up
to 2.7×, and it reduces the average and tail latencies by up
to 67% and 82%, respectively. While it is always beneficial
to use storage reordering, validator reordering consistently
improves tail latencies but can hurt throughput and average
latency under extremely high data contention.

(3) For alternative reordering policies at the validator,
prioritizing transactions with a combination of the degree
of a transaction in the dependency graph and its number of
restarts reduces tail latencies by up to 82%, without sacri-
ficing either throughput or average latency.

(4) Integrated to a high performance OCC-based OLTP
system, our techniques with a thread-aware reordering pol-
icy improve the throughput by up to 2.2× and reduces tail
latencies by up to 71% compared with other state-of-the-art
OLTP systems under write-intensive workload.

(5) Integrated to a commercial DBMS-X, our techniques
increase the throughput by up to 2.8× and reduce the aver-
age latency by up to 66% under high data contention. This
shows that there is much room for performance improve-
ments using our techniques even for mature DBMSs.

6. RELATED WORK
We discussed OCC and its applications in Section 1.
High contention concurrency control. The perfor-

mance of concurrency control protocols suffers when either
concurrency level and/or data contention are high [20, 5];
this has particular impact on OCC [3]. Hybrid approaches
combine OCC and locking to limit the number of transac-
tion restarts [48, 55]. The problem can also be addressed
by adjusting the concurrency level adaptively, limiting the
number of arriving transactions and/or using an exponen-
tial backoff for aborted transactions [28, 38]. Transaction
chopping partitions transactions into smaller pieces and ex-
ecuting dependent pieces in a chained manner [40, 46, 54].
Other work analyzes data accesses of transactions to expose

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t

(K
)

/
S

ec
o
n
d

Number of Connections

nobatch
batch
reorder

Figure 26: Throughput of DBMS-X
with SmallBank benchmark

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

L
at

en
cy

 /
 M

il
li

se
co

n
d
s

Number of Connections

nobatch
batch
reorder

Figure 27: Average latency of DBMS-
X with SmallBank benchmark

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25 30

A
b
o
rt

 R
a
te

 /
 %

Number of Connections

nobatch

batch

reorder

Figure 28: Abort rate of DBMS-X
with SmallBank benchmark

intermediate transaction state at a fine-grained level [52].
It is also possible to reduce conflicts by executing transac-
tions at heterogeneous isolation levels [53, 54] or using a
mix of optimistic and pessimistic concurrency control pro-
tocols [51]. While we also address the problem of reducing
conflicts under data contention, our techniques are different
from and complementary to previous work.

Transaction scheduling. Dynamic timestamp assign-
ment assigns each transaction a timestamp interval and flex-
ibly picks the commit timestamp from the interval [7]. A
similar technique can be used to optimize read-only trans-
actions in distributed and asynchronous OCC [16]. This
approach can be extended to dynamically update the times-
tamp intervals of live transactions while committing a differ-
ent transaction [11]. Recent work also proposes lazy times-
tamp assignment to reduce conflicts [56]. These techniques
are compatible with our batching.

Transaction scheduling has also been studied in real-time
databases, where urgent or high value transactions are prior-
itized [27]. OCC with forward validation allows the validator
to abort a transaction if it would cause live transactions with
higher priority to abort [26, 35, 37]. Real-time databases can
also schedule with locking and preemption [1] and hybrid
optimistic/pessimistic methods [30, 39]. These approaches
can be viewed as a simplified version of our validator re-
ordering, and none of them uses batching. Transactions can
also be serialized before execution [49, 40, 18], which can
be parallelized with data partitioning [44]. These are com-
plementary to our work, which is more flexible and allows
reordering at multiple stages in transaction execution.

Batching. Batching is a common optimization tech-
nique to amortize costs and condense work. One applica-
tion is to pack networking and logging messages [12, 16, 22,
23]. Batching is also widely applied to aggregate applica-
tion requests to improve performance, including group com-
mits [15, 25], condensing IO requests [15, 19], and Paxos [45].
Since batching is often associated with a throughput/latency
tradeoff, there is work on adaptive batching [21, 41]. Those
uses of batching are low-level and are not aware of the over-
all system infrastructure or the application semantics. Our
work uses batching as a core design principle at multiple
stages of transaction execution. In addition, unlike previous
work, we focus on the use of batching for reordering.

7. CONCLUSIONS AND FUTURE WORK
We show how to significantly improve transaction perfor-

mance in OLTP systems based on optimistic concurrency

control through storage and validator batching and reorder-
ing. Besides clean problem formulations and reducing val-
idator reordering to the problem of finding the minimal feed-
back vertex set (FVS), we propose two new practical greedy
algorithms for this problem that are fast and that perform
well in practice. We show that our algorithms can integrate
different policies into the reordering to optimize for a vari-
ety of performance objectives and system architectures, such
as low tail latencies and multi-threaded decentralized OLTP
architectures. We further propose a parallel validator design
to reduce the overhead of reordering. Our extensive exper-
imental study both in a prototype system, as well as with
a state-of-the-art OLTP system and a commercial database
system show that both storage and validator batching con-
sistently improve throughput, and that validator reordering
significantly reduces latency profiles. We also demonstrate
how we optimize for low tail latencies with alternative poli-
cies, and how our parallelization further improves through-
put and reduces latency.

In future work, we plan to explore more sophisticated
batch creation techniques. Since we empirically observe a
sweet spot for the batch size, we want to study how to in-
telligently adjusts the batch size.We are also interested in
applying the idea of batching and reordering to alternative
system architectures and concurrency control protocols.

Acknowledgments
The authors would like to thank Magdalena Balazinska,
Cristian Diaconu, Kunal Karoth, and the anonymous re-
viewers for their valuable feedback.

This work was partially supported by NSF Grants IIS-
0911036 and IIS-1012593 while Ding, Kot, and Gehrke were
at Cornell University. Any opinions, findings and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

8. REFERENCES
[1] R. Abbott et al. Scheduling real-time transactions: A

performance evaluation. TODS, 17(3), 1992.

[2] A. Adya and B. Liskov. Lazy consistency using loosely
synchronized clocks. In PODC, 1997.

[3] R. Agrawal et al. Concurrency control performance
modeling: alternatives and implications. TODS, 1987.

[4] M. Alomari et al. The cost of serializability on
platforms that use snapshot isolation. In ICDE, 2008.

[5] R. Appuswamy, A. C. Anadiotis, D. Porobic, M. K.
Iman, and A. Ailamaki. Analyzing the impact of
system architecture on the scalability of oltp engines
for high-contention workloads. PVLDB,
11(2):121–134, 2017.

[6] J. Baker, C. Bond, et al. Megastore: Providing
scalable, highly available storage for interactive
services. In CIDR, 2011.

[7] R. Bayer et al. Dynamic timestamp allocation for
transactions in database systems. In DDB, 1982.

[8] P. A. Bernstein, S. Das, B. Ding, et al. Optimizing
optimistic concurrency control for tree-structured,
log-structured databases. In SIGMOD, 2015.

[9] P. A. Bernstein et al. Hyder - A transactional record
manager for shared flash. In CIDR, 2011.

[10] P. A. Bernstein, C. W. Reid, et al. Optimistic
concurrency control by melding trees. PVLDB,
4(11):944–955, 2011.

[11] C. Boksenbaum, M. Cart, et al. Concurrent
certifications by intervals of timestamps in distributed
database systems. TSE, SE-13(4), 1987.

[12] M. Castro and B. Liskov. Practical byzantine fault
tolerance and proactive recovery. TODS, 20(4), 2002.

[13] J. C. Corbett et al. Spanner: Google’s
globally-distributed database. In OSDI, 2012.

[14] V. Cutello et al. Targeting the minimum vertex set
problem with an enhanced genetic algorithm improved
with local search strategies. In Intelligent Computing
Theories and Methodologies. 2015.

[15] J. DeBrabant, A. Pavlo, et al. Anti-caching: A new
approach to database management system
architecture. PVLDB, 6(14):1942–1953, 2013.

[16] B. Ding, L. Kot, A. Demers, and J. Gehrke.
Centiman: elastic, high performance optimistic
concurrency control by watermarking. In SOCC, 2015.

[17] R. Escriva, B. Wong, and E. G. Sirer. Warp:
Lightweight multi-key transactions for key-value
stores. Technical report, 2013.

[18] J. M. Faleiro and D. J. Abadi. Rethinking serializable
multiversion concurrency control. PVLDB,
8(11):1190–1201, 2015.

[19] J. M. Faleiro, A. Thomson, et al. Lazy evaluation of
transactions in database systems. In SIGMOD, 2014.

[20] P. Franaszek and J. Robinson. Limitations of
concurrency in transaction processing. TODS, 1985.

[21] R. Friedman and E. Hadad. Adaptive batching for
replicated servers. In SRDS, Oct 2006.

[22] R. Friedman and R. Van Renesse. Packing messages
as a tool for boosting the performance of total
ordering protocols. In HPDC, 1997.

[23] L. Glendenning, I. Beschastnikh, et al. Scalable
consistency in Scatter. In SOSP, 2011.

[24] J. Gray et al. Quickly generating billion-record
synthetic databases. In SIGMOD Rec., 1994.

[25] R. Hagmann. Reimplementing the cedar file system
using logging and group commit. SIGOPS Oper. Syst.
Rev., 21(5), Nov. 1987.

[26] J. Haritsa, M. Carey, et al. Dynamic real-time
optimistic concurrency control. In RTSS, 1990.

[27] J. Haritsa et al. Value-based scheduling in real-time
database systems. VLDB J., 2(2):117–152, 1993.

[28] A. Helal et al. Adaptive transaction scheduling. In
CIKM, 1993.

[29] C. A. R. Hoare. Algorithm 65: Find. Commun. ACM,
4(7):321–322, July 1961.

[30] J. Huang, J. A. Stankovic, et al. Experimental
evaluation of real-time optimistic concurrency control
schemes. In VLDB, pages 35–46, 1991.

[31] V. Kann. On the approximability of NP-complete
optimization problems. PhD thesis, 1992.

[32] R. M. Karp. Reducibility among combinatorial
problems. In Proceedings of a symposium on the
Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA, pages
85–103, 1972.

[33] K. Kim, T. Wang, R. Johnson, and I. Pandis. Ermia:
Fast memory-optimized database system for
heterogeneous workloads. In SIGMOD, pages
1675–1687. ACM, 2016.

[34] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans.
Database Syst., 6(2), 1981.

[35] K.-W. Lam, K.-Y. Lam, et al. Real-time optimistic
concurrency control protocol with dynamic
adjustment of serialization order. In RTSS, 1995.

[36] P.-Å. Larson et al. High-performance concurrency
control mechanisms for main-memory databases.
PVLDB, 5(4):298–309, 2011.

[37] J. Lee et al. Using dynamic adjustment of serialization
order for real-time database systems. In RTSS, 1993.

[38] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada:
Dependably fast multi-core in-memory transactions.
In SIGMOD, pages 21–35. ACM, 2017.

[39] Y. Lin and S. H. Son. Concurrency control in
real-time databases by dynamic adjustment of
serialization order. In RTSS, 1990.

[40] S. Mu, Y. Cui, et al. Extracting more concurrency
from distributed transactions. In OSDI, 2014.

[41] J. Nagle. Congestion control in IP/TCP internetworks.
SIGCOMM Comput. Commun. Rev., 14(4), Oct. 1984.

[42] S. Patterson, A. J. Elmore, et al. Serializability, not
serial: Concurrency control and availability in
multi-datacenter datastores. PVLDB,
5(11):1459–1470, 2012.

[43] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and
notifications. In OSDI, 2010.

[44] T. M. Qadah and M. Sadoghi. Quecc: A
queue-oriented, control-free concurrency architecture.
In ACM/IFIP International Middleware Conference,
2018.

[45] N. Santos and A. Schiper. Tuning paxos for
high-throughput with batching and pipelining. In
Distributed Computing and Networking. 2012.

[46] D. Shasha et al. Transaction chopping: Algorithms
and performance studies. TODS, 20(3), 1995.

[47] R. Tarjan. Depth-first search and linear graph
algorithms. SIAM journal on computing, 1(2), 1972.

[48] A. Thomasian. Distributed optimistic concurrency
control methods for high-performance transaction
processing. TKDE, 10(1), 1998.

[49] A. Thomson, T. Diamond, et al. Calvin: fast
distributed transactions for partitioned database
systems. In SIGMOD, 2012.

[50] S. Tu, W. Zheng, et al. Speedy transactions in
multicore in-memory databases. In SOSP, 2013.

[51] T. Wang and H. Kimura. Mostly-optimistic
concurrency control for highly contended dynamic
workloads on a thousand cores. PVLDB, 10(2):49–60,
2016.

[52] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li.
Scaling multicore databases via constrained parallel
execution. In SIGMOD, pages 1643–1658. ACM, 2016.

[53] C. Xie, C. Su, et al. Salt: Combining ACID and BASE
in a distributed database. In OSDI, volume 14, 2014.

[54] C. Xie, C. Su, et al. High-performance ACID via
modular concurrency control. In SOSP, 2015.

[55] P. Yu and D. Dias. Analysis of hybrid concurrency
control schemes for a high data contention
environment. TSE, 18(2), 1992.

[56] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. Tictoc:
Time traveling optimistic concurrency control. In
SIGMOD, pages 1629–1642. ACM, 2016.

