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Abstract

Evolution Strategies (ES), a class of black-box optimization
algorithms, has recently been demonstrated to be a viable al-
ternative to popular MDP-based RL techniques such as Q-
learning and Policy Gradients. ES achieves fairly good per-
formance on challenging reinforcement learning problems
and is easier to scale in a distributed setting. However, stan-
dard ES algorithms perform one gradient update per data
sample, which is not very efficient. In this paper, with the
purpose of more efficient using of sampled data, we pro-
pose a novel iterative procedure that optimizes a surrogate
objective function, enabling to reuse data sample for multiple
epochs of updates. We prove monotonic improvement guar-
antee for such procedure. By making several approximations
to the theoretically-justified procedure, we further develop
a practical algorithm called Trust Region Evolution Strate-
gies (TRES). Our experiments demonstrate the effectiveness
of TRES on a range of popular MuJoCo locomotion tasks in
the OpenAI Gym, achieving better performance than ES al-
gorithm.

Introduction
Developing agents that can accomplish challenging tasks
in complex, uncertain environments is a primary goal of
Reinforcement Learning (RL). The most popular paradigm
for analyzing such problem has been using a class of
MDP-based algorithms, such as DQN (Mnih et al. 2015),
DDPG (Lillicrap et al. 2015), and TRPO (Schulman et
al. 2015), which have gained significant achievements af-
ter applying to a variety of applications, including Atari
games (Mnih et al. 2015; Van Hasselt, Guez, and Silver
2016; Mnih et al. 2016), robot locomotion tasks (Schulman
et al. 2015; 2017) and the game of Go (Silver et al. 2016;
2017).

Recently, as a class of black-box optimization algorithms,
Evolution Strategies (ES) (Salimans et al. 2017) has been
risen to be a viable alternative to popular MDP-based RL
techniques. As comparable to state-of-the-art policy gradient
methods, ES has demonstrated its success in training poli-
cies on a variety of simulated robotics tasks in MuJoCo and
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Figure 1: Red curve represents true objective. Green curve
represents local approximation. Blue curve represents local
approximation with KL penalty, which is the surrogate ob-
jective function. The surrogate objective function forms a
lower bound of the true objective, so optimizing this surro-
gate objective is guaranteed to improve the true objective.

on Atari games. With competitive performance and good
parallelization, ES algorithms are receiving more and more
attention as a scalable alternative to popular MDP-based RL
techniques.

Compared to MDP-based RL techniques, ES algorithms
employ a different path of techniques by directly searching
optimal policy in parameter space. To be specific, the ES
algorithm in (Salimans et al. 2017) proposed to optimize the
Gaussian smoothing of objective function,

J(θ) = EX∼N (θ,σ2I)[F (X)], (1)

where F (X) is the objective function representing the ex-
pected total reward. In each training iteration of above ES al-
gorithm, two phrases are executed sequentially: 1) Sampling
search directions εi from Gaussian distribution N (0, σ2I)
and evaluating these search directions by sampling data us-
ing policy with parameter (θ + εi) in the environment. 2)
Using sampled data to estimate the gradient which are then
applied to update the corresponding parameter. Given such
procedure, in order to enhance ES algorithms, one vital di-
rection is to improve sample efficiency, which is not that
high in current ES algorithm since the sampled data is only
used for one gradient update.

To boost sample efficiency, it is essentially comprised of
two major aspects. One aspect concerns how to sample bet-
ter or more diverse search directions, and the other one cor-
responds to how to make more efficient use of existing sam-
pled data. Some recent works (Choromanski et al. 2018;
Maheswaranathan et al. 2018) have been proposed for im-
proving sample efficiency of ES algorithms from the first



aspect. However, to the best of our knowledge, there is no
existing work exploring another perspective: given the sam-
pled data, how can we make more efficient use of them?

To take deeper investigation on the other aspect of sample
efficiency, in this paper, we propose a novel iterative pro-
cedure that introduces a surrogate objective, by optimizing
which can give rise to efficiently reusing sample data for
multiple epochs of updates. In particular, we first introduce
a local approximation Lθ(θ̃) to the Gaussian smoothing ob-
jective J(θ̃) around current parameter θ where we sample
data, with the purpose to approximately optimize J(θ̃) by
reusing sampled data from θ instead of sampling new data
from θ̃. However, this local approximation only works well
when θ̃ is close enough to current parameter θ, as shown in
Figure 1. It’s still not clear that how much can we update
when optimizing the local approximation Lθ(θ̃). To address
this issue, we propose a novel procedure that optimizes a
surrogate objective function, namely a local approximation
with a KL divergence penalty, which forms a lower bound of
the true objective J(θ̃). We prove theoretical monotonic im-
provement guarantee for such procedure. At last, we make
a series of approximations to the theoretically-justified pro-
cedure, yielding a practical algorithm, which leads to better
performance than ES algorithm, called Trust Region Evolu-
tion Strategies (TRES).

To summarize, our contributions are as follows:
• Make more efficient use of sampled data by optimizing

surrogate objective function for multiple epochs of up-
dates, instead for just one gradient update.

• Prove theoretical monotonic improvement guarantee for
this optimization procedure.

• Develop practical algorithm TRES after making several
approximations. Experiments on five popular physical lo-
comotion tasks in the OpenAI Gym demonstrate the ef-
fectiveness of TRES.

Background
The goal of reinforcement learning (RL) is to find, through
trial and error, a feedback policy that prescribes how an
agent should optimally act in a dynamic, uncertain environ-
ment. ES address RL problem by directly searching for op-
timal policy in parameter space, casted as a maximization
problem of the form:

max
θ∈Rd

F (θ), (2)

where a family of deterministic policies mapping states to
actions is parameterized by θ ∈ Rd, and the objective
F : Rd → R measures the expected total reward of policy
parameter θ.

However, when the environment is stochastic and imple-
mented in black-box physics simulators, the objective func-
tion F is only accessible via noisy and expensive function
evaluations, and may not be smooth. So the gradient of F
cannot be computed with a backpropagation-like algorithm.
That means we cannot directly use standard gradient-based
optimization methods to find a good solution for θ.

In order to both make the problem smooth and to find a
way to estimate its gradients, it is necessary to add noise. In
this way, we turn to optimize the Gaussian Smoothing of the
objective function,

max
θ∈Rd

J(θ) = EX∼pθ(x)[F (X)], (3)

where pθ(x) denotes the probability density function of mul-
tivariate Gaussian distribution with diagonal covariance ma-
trix N (θ, σ2I).

Such process can be interpreted as adding a Gaussian blur
to the original objective, which results in a smooth, differen-
tiable objective J(θ) that can be solve with stochastic gradi-
ent ascent.

Estimating Gradients of Gaussian Smoothing
The gradient of J(θ) is given by

∇J(θ) =
1

σ2
EX∼pθ(x) [F (X)(X − θ)] . (4)

In practice, this gradient is intractable, and must be esti-
mated. The gradient ∇J(θ) can be estimated via a variety
of Monte Carlo estimators. In this paper, we investigate two
fundamental estimators:

Vanilla ES gradient estimator. The first estimator is de-
rived via the Monte Carlo REINFORCE (Williams 1992)
estimator, and coincides with a standard Monte Carlo esti-
mator of the expectation appearing in Equation (4):

∇̂VNJ(θ) =
1

Nσ2

N∑
i=1

F (xi)(xi − θ), (5)

where (xi)
N
i=1

i.i.d∼ N (θ, σ2I) can be interpreted as search
parameters sampled from search distributionN (θ, σ2I). We
refer to this gradient estimator as the vanilla ES gradient es-
timator.

Antithetic ES gradient estimator. Secondly, we consider
the version of vanilla ES gradient estimator augmented with
antithetic variables, as in (Salimans et al. 2017), given by

∇̂ANJ(θ) =
1

2Nσ2

N∑
i=1

((F (xi)− F (2 · θ − xi))(xi − θ)),

(6)
where again (xi)

N
i=1

i.i.d∼ N (θ, σ2I). The two terms appear-
ing in the summand are contributed by search parameter
xi ∼ N (θ, σ2I) and its antithetic counterpart (2 · θ − xi),
We refer to this gradient estimator as the antithetic ES gra-
dient estimator, owing to its use of antithetic Monte Carlo
samples.

In summary, Evolution Strategies (ES) introduced
by (Salimans et al. 2017) aims to optimize Gaussian
Smoothing objective by directly using stochastic gradient as-
cent, with the antithetic ES gradient estimator, and each gra-
dient update step of ES algorithm could be divided into two
sub-steps: 1) Sampling search parameters {x1, ..., xN} from
search distribution N (θ, σ2I) and evaluating these search
parameters via doing rollouts in the environment. 3) Using



sampled data {F (x1), ..., F (xN )} to estimate the gradient
and updating current parameter with the estimated gradient.
For each parameter update, ES needs to sample new data to
estimate the gradient, which is not very efficient.

Methodology
In this section, we present a new algorithm, Trust Region
Evolution Strategies (TRES), with the purpose of more ef-
ficient using of sampled data. We will start with an intro-
duction of a local approximation Lθ(θ̃) to the true objec-
tive J(θ̃), aiming to approximately optimize J(θ̃) by reusing
sampled data from θ instead of sampling new data from θ̃.
Then, we derive that the difference between local approxi-
mation Lθ(θ̃) and true objective J(θ̃) is bounded by a KL
divergence term Dmax

KL (θ, θ̃). Based on this bound, we pro-
pose to optimize a surrogate objective function, namely lo-
cal approximation with a KL divergence penalty, which is a
lower bound of the true objective J(θ̃) and thus can provide
explicit lower bounds on the improvement of J(θ̃). After
making a series of approximations to the theoretical proce-
dure, we finally develop the practical TRES algorithm and
propose a distributed implementation of it.

Local Approximation of Gaussian Smoothing
In this subsection, we introduce a local approximation to the
true objective J(θ̃) around current parameter θ where we
sample data.

We start by introducing the difference of the true objective
between new parameter θ̃ and current parameter θ :

J(θ̃)− J(θ) = EX∼pθ̃(x)[F (X)]− EX∼pθ(x)[F (X)]. (7)

Given that X stands for a d-dimension search parameter, we
can rewrite it in vector form [X1, ..., Xd], where the super-
script denotes the corresponding dimension. Thus Equation
(7) becomes:

J(θ̃)− J(θ) = EX1...d∼θ̃[F (X)]− EX1...d∼θ[F (X)]. (8)

For compactness, we use the notation X1...i to represent the
first i dimensions ofX , namely [X1, ..., Xi] and the notation
pθ(x

1...i) to represent the marginal distribution ofX1...i, for
i ∈ {1, ..., d}. Besides, we further compress pθ(x1...i) down
to θ in expectation forms.

We decompose this difference as a sum of per-dimension
difference:

J(θ̃)− J(θ) =

d−1∑
i=0

[
EX1...i+1∼θ̃
Xi+2...d∼θ

[F (X)]− E X1...i∼θ̃
Xi+1...d∼θ

[F (X)]

]
.

(9)
For convenience, we will give the following definitions of

the value function Vθ, and the advantage function Aθ in our
framework:

Vθ(x
1...i) = EXi+1...d∼θ

[
F (X)|X1...i = x1...i

]
, ∀i = 1, ..., d.

Aθ(x
1...i+1) = Vθ(x

1...i+1)− Vθ(x1...i), ∀i = 1, ..., i− 1.
(10)

Specifically, when i = 0, Vθ(x1...0) = EX1...d∼θ[F (X)] =
J(θ); when i = d, Vθ(x1...d) = F (x1...d) = F (x).

In other words, value function Vθ(x
1...i) represents the

expectation of F (X) when first i dimensions of X are given
and remaining dimensions are sampled from pθ(x

i+1...d),
and advantage function Aθ(x1...i+1) represents the expecta-
tion difference in whether (i+ 1)th dimension of X is given
or sampled from pθ(x

i+1). We can rewrite Equation (9) with
the notations described above:

J(θ̃) = J(θ) + EX∼θ̃

[
d−1∑
i=0

(Vθ(x
1...i+1)− Vθ(x1...i))

]

= J(θ) + EX∼θ̃

[
d−1∑
i=0

Aθ(X
1...i+1)

]
.

(11)

Then we proceed to expand Equation (11):

J(θ̃) = J(θ) +

d−1∑
i=0

EX∼θ̃
[
Aθ(X

1...i+1)
]

= J(θ) +

d−1∑
i=0

∑
x1...i+1

pθ̃(x
1...i+1)Aθ(x

1...i+1)

= J(θ) +

d−1∑
i=0

∑
x1...i

pθ̃(x
1...i)

∑
xi+1

pθ̃(x
i+1)Aθ(x

1...i+1).

(12)

The complex dependency of pθ̃(x
1...i) on θ̃ makes Equation

(12) difficult to optimize directly without new sampled data
over θ̃. With the purpose to approximately optimize J(θ̃) by
reusing sampled data from θ instead of sampling new data
from θ̃, we introduce the following local approximation to
J(θ̃),

Lθ(θ̃) = J(θ) +

d−1∑
i=0

∑
x1...i

pθ(x
1...i)

∑
xi+1

pθ̃(x
i+1)Aθ(x

1...i+1).

(13)
Although Lθ(θ̃) uses pθ(x1...i) rather than pθ̃(x

1...i), we
can find that Lθ(θ̃) matches J(θ̃) to zero order and first or-
der (see supplementary material for proof). That is, for any
parameter value θ,

Lθ(θ̃)|θ̃=θ = J(θ̃)|θ̃=θ,
∇θ̃Lθ(θ̃)|θ̃=θ = ∇θ̃J(θ̃)|θ̃=θ.

(14)

which implies that a sufficiently small step θ → θ̃ that im-
proves Lθ(θ̃) will also improve J(θ̃).

Monotonic Improvement Guarantee
In this subsection, we first derive KL divergence bound of
the difference between local approximation Lθ(θ̃) and true
objective J(θ̃). Based on this bound, we propose to optimize
a surrogate objective function, namely local approximation
with a KL divergence penalty, with theoretical monotonic
improvement guarantee.

The particular distance measure we use here is the to-
tal variation divergence, which is defined by DTV (p||q) =
1
2

∑
i |pi − qi| for discrete probability distributions p, q, the

definition of continuous total variation divergence can be
also found in supplementary material. Define Dmax

TV (θ, θ̃) as

Dmax
TV (θ, θ̃) = max

1≤i≤d
DTV (θi, θ̃i). (15)



For simplicity, we use the notation DTV (θi, θ̃i) to represent
DTV (N (θi, σ2),N (θ̃i, σ2)).

Theorem 1 Let α = Dmax
TV (θ, θ̃). Then the following bound

holds:
|J(θ̃)− Lθ(θ̃)| ≤ 2εd · (d+ 1)α2

where ε = max
x1...i

1≤i≤d

|Aθ(x1...i)|. (16)

Theorem 1 provides a TV divergence bound of the differ-
ence between true objective J(θ) and local approximation
Lθ(θ̃), and we defer the proof of Theorem 1 to supplemen-
tary material.

In consideration of the following relationship between
the total variation divergence and the KL divergence:
DTV (p||q)2 ≤ DKL(p||q), we define Dmax

KL (θ, θ̃) =

max1≤i≤dDKL(θi, θ̃i), and then the KL divergence bound
follows directly from Theorem 1:

J(θ̃) ≥ Lθ(θ̃)− c ·Dmax
KL (θ, θ̃),

where c = 2εd · (d+ 1).
(17)

where we also use DKL(θi, θ̃i) to represent
DKL(N (θi, σ2I),N (θ̃i, σ2I)), and we define Dmax

KL (θ, θ̃)

as max1≤i≤dDKL(θi, θ̃i).
Based on Equation (17), we further define Mθ(θ̃) =

Lθ(θ̃)− c ·Dmax
KL (θ, θ̃). Then

J(θ̃) ≥Mθ(θ̃) by Equation (17),
J(θ) = Mθ(θ) by definition,

⇒J(θ̃)− J(θ) ≥Mθ(θ̃)−Mθ(θ).

(18)

Thus, by maximizing Mθ(θ̃) at each iteration, we guaran-
tee that the true objective J(θ̃) is non-decreasing. This al-
gorithm is a type of minorization-maximization (MM) algo-
rithm (Hunter and Lange 2004). In the terminology of MM
algorithms, Mθ(θ̃) is called the surrogate objective function
that minorizes J(θ̃) with equality at θ.

Practical Algorithm
After justifying the effectiveness of optimizing a surrogate
objective function, we now describe how to derive a practical
algorithm from these theoretical foundations.

Constrained Optimization As indicated by Equation
(18), by performing the following maximization, we are
guaranteed to improve the true objective J(θ̃):

max
θ̃

[
Lθ(θ̃)− c ·Dmax

KL (θ, θ̃)
]
. (19)

In practice, considering c = 2εd · (d + 1), the penalty
coefficient increases accordingly to the dimension size of
the policy parameter, and then the update step size would
be very small. A natural way to take larger steps in a robust
way is to use a constraint on the Dmax

KL (θ, θ̃), i.e., a trust
region constraint, so we can transform Equation (19) to the
following constraint optimization problem:

max
θ̃
Lθ(θ̃)

subject to Dmax
KL (θ, θ̃) ≤ δ.

(20)

Sampled-Based Estimation We seek to solve the follow-
ing optimization problem, obtained by expanding Lθ(θ̃) in
Equation (20):

maxθ̃

d−1∑
i=0

∑
x1...i

pθ(x
1...i)

∑
xi+1

pθ̃(x
i+1)Aθ(x

1...i+1)

subject to Dmax
KL (θ, θ̃) ≤ δ.

(21)

We first replace the sum over first i + 1 dimensions of x in
this objective by the expectation:

maxθ̃

d−1∑
i=0

EX1...i∼θ
Xi+1∼θ̃

[
Aθ(X

1...i+1)
]

subject to Dmax
KL (θ, θ̃) ≤ δ.

(22)

Note that in Equation (22), Xi+1 still follows the distribu-
tion pθ̃(X

i+1), rather than pθ(Xi+1). we solve this problem
by using an importance sampling estimator:

maxθ̃

d−1∑
i=0

EX1...i+1∼θ

[
pθ̃(X

i+1)

pθ(Xi+1)
Aθ(X

1...i+1)

]
subject to Dmax

KL (θ, θ̃) ≤ δ.

(23)

Next we replace the advantage function Aθ(x1...i+1) by the
value function Vθ(x1...i+1), which only changes the objec-
tive by a constant.

At last, our optimization problem in Equation (23) is ex-
actly equivalent to the following one:

max
θ̃

EX∼θ

[
d−1∑
i=0

pθ̃(X
i+1)

pθ(Xi+1)
Vθ(X1...i+1)

]
subject to Dmax

KL (θ, θ̃) ≤ δ.

(24)

All that remains is to replace the expectation by sample aver-
ages and replace the value function by an empirical estimate.

Clipped Surrogate Objective However, the optimization
of Equation (24) is exactly a constrained optimization prob-
lem with box constraint, which is complicated and hard to
solve precisely. Inspired by PPO (Schulman et al. 2017), we
propose a novel surrogate objective with clipped probability
ratio, which forms a lower bound of the local approxima-
tion Lθ(θ̃), and we can optimize this clipped objective via
multiple epochs of gradient updates. Let ri(θ̃) denotes the

probability ratio of ith dimension, namely, ri(θ̃) =
pθ̃(X

i)

pθ(Xi)
,

the main objective LCLIPθ (θ̃) is the following:

LCLIPθ (θ̃) = EX∼θ

[
d∑
i=1

min(li(θ̃), l
CLIP
i (θ̃))

]
where li(θ̃) = ri(θ̃)Vθ(X

1...i),

lCLIPi (θ̃) = clip(ri(θ̃), 1− λ, 1 + λ)Vθ(X
1...i).

(25)

The motivation for this objective is as follows: the first
term li(θ̃) is the ith dimension’s contribution to local ap-
proximation Lθ(θ̃), and the second term lCLIPi (θ̃) modi-
fies li(θ̃) by clipping the probability ratio, which removes



the search parameters for moving ri outside of the interval
[1−λ, 1+λ] and thus constrains the update step during train-
ing process. Finally, we take the minimum of the clipped
and unclipped objective, so the final objective is a lower
bound on the local approximation, which ensures that the
improvement of local approximation Lθ(θ̃) when we opti-
mize LCLIPθ (θ̃). Although this objective is not exactly con-
strained in trust region, we still call our algorithm Trust Re-
gion Evolution Strategies since in spirit it encourages the
parameter to stay in trust region.

Distributed Implementation The resulting practical al-
gorithm repeatedly executes two phases: 1) Sampling search
parameters {x1, ..., xN} from search distributionN (θ, σ2I)
and evaluating sampled search parameters by doing roll-
outs in the environment, and 2) Reusing sampled data
{F (x1), ..., F (xN )} and performing K epochs of gradient
updates to optimize the clipped surrogate objective.

The evaluation of various search parameters in the first
phase is well suited to be scaled up to many parallel workers:
the rollout process of each search parameter operates inde-
pendent of each other. Following the efficient communica-
tion strategy introduced by (Salimans et al. 2017), we share
random seeds to sample search parameters between work-
ers and each worker knows what search parameter the other
workers used, so each worker only needs to communicate a
single scalar to and from each other worker to agree on a
parameter update, TRES thus requires extremely low band-
width, in sharp contrast to policy gradient methods, which
require workers to communicate entire gradients. We give
the parallel version of TRES in Algorithm 1.

Algorithm 1 Trust Region Evolution Strategies
Require: noise standard deviation σ, initial policy parame-

ter θ0, epoch number K, learning rate α, clip factor λ
Ensure: N workers with known random seeds, and initial

parameters θ0
1: for each iteration t = 0, 1, 2, ... do
2: for each worker i = 1, ..., N do
3: Sample xi ∼ N (θt, σ

2I)
4: Compute rollout returns F (xi)
5: end for
6: Send all rollout returns to every worker
7: for each worker i = 1, .., N do
8: Reconstruct all search parameters
9: Compute value function with rollout returns

10: Let θt,1 = θt
11: for each epoch j = 1, ...,K do
12: Reusing sampled data from θt
13: θt,j+1 = θt,j + α∇LCLIPθt

(θt,j)
14: end for
15: Update policy parameter via θt+1 = θt,K+1

16: end for
17: end for

Experiments
To demonstrate the effectiveness of TRES, we conducted
experiments on the continuous MuJoCo locomotion tasks
from the OpenAI Gym (Brockman et al. 2016). These
tasks have been widely studied in the reinforcement learn-
ing community (Duan et al. 2016; Gu et al. 2016; 2017;
Rajeswaran et al. 2017). In these tasks, the states of the
robots are their generalized positions and velocities, and the
controls are joint torques. And, these tasks are challeng-
ing due to under-actuation, high dimensionality, and non-
smooth dynamics.

Experimental Settings
The empirical result from (Mania, Guy, and Recht 2018)
shows that linear policies are sufficiently expressive to cap-
ture diverse behaviors in MuJoCo; thus, we use linear policy
structure in all tasks we evaluated. Thus, the policy param-
eter size is equal to the product of state space dimension
and action space dimension in the environment. We uni-
formly initialize policies with zero matrix before training in
all tasks.

To reduce variance, We use the antithetic sampling (also
known as mirrored sampling) technique following (Sali-
mans et al. 2017). For some of tasks, such as Walker-v1
and Ant-v1, the default reward functions include a survival
bonus, which rewards RL agents with a constant reward at
each timestep as long as a terminal condition has not been
reached. This may cause that finding policies are more likely
to be local optimal. To resolve this problem, we subtract the
the survival bonus from the rewards outputted as in (Mania,
Guy, and Recht 2018).

To remove the influence of outlier individuals in sampled
parameters and avoid falling into local optima, we perform
fitness shaping (Sun et al. 2009; Wierstra et al. 2011; 2014;
Salimans et al. 2017) by applying a rank transformation to
the rollout returns before computing each parameter update.
We also perform state normalization trick, which is widely
used in various RL related works (Schulman et al. 2015;
2017; Wu et al. 2017; Mania, Guy, and Recht 2018) and is
similar to data whiting used in regression tasks. Intuitively, it
ensures that policies put equal weight on the different com-
ponents of the states.

Our algorithms are built based on the implementation
of OpenAI evolution-strategies-starter code (Salimans et al.
2017). Each algorithm has been evaluated on 5 environ-
ments, with 6 random seeds on each. For fair comparison,
we sample six random seeds uniformly from the interval [0,
1000) and share them in all environments.

Main Results
To compare the performance of TRES with those of ES,
TRPO and PPO, Figure 2 shows the training curves of TRES
and ES, respectively, and Table 1 illustrates the number of
timesteps required to reach a prescribed reward threshold by
TRES, ES, TRPO and PPO, respectively. From the figure
and this table, we can see that TRES outperforms ES across
all the tasks and provides competitive results with TRPO and
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Figure 2: Training curves of TRES (red) versus ES (blue) on the MuJoCo locomotion tasks. For each run, after every ten training
iterations, we evaluate current policy parameter via average returns of 100 independent rollouts. The curves are averaged over
six random seeds, and the shaded region shows the standard deviation of these seeds.

Environment Threshold TRPO timesteps PPO timesteps ES timesteps TRES timesteps

Swimmer-v1 128 4.6e+6 4.4e+5 4.5e+5 2.4e+5
HalfCheetah-v1 2385 2.6e+6 1.2e+6 1.7e+6 9.8e+5

Walker2d-v1 2872 2.9e+6 1.9e+6 1.2e+7 3.6e+6
Ant-v1 3000 N/A 1.0e+7 1.5e+7 1.3e+7

InvertedDoublePendulum-v1 9104 4.4e+6 1.9e+6 8.8e+5 6e+5

Table 1: A comparison of TRES, ES, TRPO and PPO on the MuJoCo locomotion tasks. For each task we show the average
number of timesteps required to reach a prescribed reward threshold, averaged over six random seeds.

PPO in most tasks. This indicates that TRES can achieve ro-
bust and consistent performance for various tasks. A partic-
ular notable case is the walker2d-v1 task, which is known
for its difficulty and falling into local optimal easily. In such
task, our TRES converges much faster than ES and achieves
better final performance, without falling into the local op-
tima that ES stuck into. In Figure 2, we also find that the
shaded region of TRES is smaller than that of ES in most
tasks. This suggests that TRES achieves stronger robust-
ness across different random seeds. Especially in Swimmer-
v1 task, ES has a very high variance during training, while
TRES can obtain a stable training process with low variance.

Impact of hyper-parameters
There are two main hyper-parameters λ and K in TRES al-
gorithms. In this subsection, we conducted several experi-
ments to investigate their impact.

Impact of clip factor λ Clip factor λ is introduced to con-
strain policy parameter update in each iteration. We con-
ducted several experiments on HalfCheetah-v1 task to study
the impact of λ. We plot the training curves of different λ

in Figure 3. From Figure 3, we can see that λ ∈ [8.0, 20.0]
can improve sample efficiency consistently against baseline,
and λ = 14.0 has the best performance. Reducing or in-
creasing λ from 14.0 hurts the performance. Intuitively, too
small clip factor means that policy parameter update is con-
strained strictly, which may slow down the training process,
while too big clip factor means that policy parameter update
is completely unconstrained, which may make the training
process unstable. Therefore, a medium clip factor is a bet-
ter choice to obtain a fast and stable training process. These
results well suggest our intuitive understanding.

Impact of epoch numberK By reusing the sampled data,
we perform K gradient steps over clip surrogate objec-
tive in each iteration. We conducted some experiments on
HalfCheetah-v1 task to study the impact of epoch number
K. Intuitively, larger epoch number contributes to higher
reuse frequency of sampled data, but if the updated param-
eter is too far away from current policy parameter where
we sample data, it would be no longer precise to improve
true objective by using the approximated gradient from
clipped surrogate objective. To investigate the balance be-



tween reuse frequency and gradient precision, we try differ-
ent epoch numbers with fixed λ. Figure 4 shows the training
curves of various settings of K. From Figure 4, we can ob-
serve that a smallK does not make the best of sampled data,
and a large K causes a performance drop. We observe that
K = 15 can gain best performance.

Figure 3: Impact of λ on HalfCheetah-v1 task.

Figure 4: Impact of K on HalfCheetah-v1 task.

Parallel version
The good parallelizability is one of the most important char-
acteristics of ES algorithm, which allows a very fast training
over distributed computing environment. Our TRES retains
this valuable property.

We show time analysis between TRES and ES on
HalfCheetah-v1 task in Figure 5. From figure 5(a), we can
see that TRES is the same with ES with respect to time cost
of rollout process. From figure 5(b), we can see that although
TRES needs to update parameter for multiple rounds in each
iteration, which is more complex than ES, TRES curve is al-
most coincident with ES curve with respect to overall pro-
cess. This makes sense because the time cost of rollout pro-
cess is far greater than that of update process during the ac-
tual training process.

Related work
Evolution Strategies (ES) is an age-old black-box optimiza-
tion method (Rechenberg 1971; Sun et al. 2009; Schaul,
Glasmachers, and Schmidhuber 2011; Wierstra et al. 2011;
2014), which generates a descent direction via finite differ-
ences over random sampled directions. Recently, (Salimans
et al. 2017; Mania, Guy, and Recht 2018) applied it to re-
inforcement learning domain and empirically demonstrated
that ES is comparable to state-of-the-art policy gradient al-
gorithms, which has generated renewed interest in ES as a
promising direction in reinforcement learning.

(a) Rollout time cost (b) Total time cost

Figure 5: Time Analysis for TRES and ES

However, how to improve sample efficiency of ES algo-
rithm is still a challenging problem. Recent methods pro-
posed for this purpose could be divided into two categories:
(1) Adapting the search distribution by encouraging the ex-
ploration diversity. (2) Adapting the search distribution with
the help of extra gradient information. In the first cate-
gory, (Choromanski et al. 2018) propose to enforce orthog-
onality conditions on the Gaussian perturbations for param-
eter exploration, and they demonstrate theoretically and em-
pirically that random orthogonal and Quasi Monte Carlo
(QMC) finite difference directions are much more effective
for parameter exploration than random Gaussian directions
used in (Salimans et al. 2017). (Conti et al. 2017) hybridize
ES with some existing algorithms which promote directed
exploration like novelty search (NS) and quality diversity
(QD), improving ES performance on sparse or deceptive
deep RL tasks. In the second category, (Maheswaranathan
et al. 2018) proposes Guided Evolution Strategies, the main
idea of such method is to use extra surrogate gradient infor-
mation (directions that may be correlated with, but not nec-
essarily identical to, the true gradient) along with ES random
perturbations. Specifically, they define a new search distri-
bution for ES that is elongated along a guiding subspace
spanned by the surrogate gradients.

All of above mentioned works focus on sampling better or
more diverse search directions to improve sample efficiency
of ES algorithm. Quite different from these methods, our
approach focuses on how to fully utilize the sampled data,
no matter how they are sampled.

Conclusion and Future Work
In this paper, we have proposed a new algorithm, Trust Re-
gion Evolution Strategies (TRES) in the context of rein-
forcement learning. With the purpose of making more effi-
cient use of sampled data, we propose a novel iterative pro-
cedure that optimizes a surrogate objective function, with
guaranteed monotonic improvement. After making a series
of approximations to the theoretically-justified procedure,
we further develop the practical algorithm TRES. Experi-
ments on five popular MuJoCo locomotion tasks in the Ope-
nAI Gym show that our TRES has more efficient perfor-
mance than ES algorithm.

For future work, we plan to combine our method with
some prior works that focus on sampling better or more di-
verse search directions, it would be possible to substantially
reduce sample complexity of ES algorithm.
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Supplemental Material
Theoretical proof
Lemma 1 local approximation Lθ(θ̃) matches true objec-
tive J(θ̃) to zero order and first order:

Lθ(θ̃)|θ̃=θ = J(θ̃)|θ̃=θ,
∇θ̃Lθ(θ̃)|θ̃=θ = ∇θ̃J(θ̃)|θ̃=θ.

(26)

Proof. By definition of J(θ̃) and Lθ(θ̃) from Equation
(12) and Equation (13), we get

J(θ̃) = J(θ) +

d−1∑
i=0

∑
x1...i

pθ̃(x
1...i)

∑
xi+1

pθ̃(x
i+1)Aθ(x

1...i+1),

Lθ(θ̃) = J(θ) +

d−1∑
i=0

∑
x1...i

pθ(x
1...i)

∑
xi+1

pθ̃(x
i+1)Aθ(x

1...i+1).

(27)
The zero order equality over θ is obvious from Equation

(27), we continue computing the gradient of J(θ̃):

∇θ̃J(θ̃) =

d−1∑
i=0

∑
x1...i

∇θ̃pθ̃(x
1...i)

∑
xi+1

pθ̃(x
i+1)Aθ(x

1...i+1)

+

d−1∑
i=0

∑
x1...i

pθ̃(x
1...i)

∑
xi+1

∇θ̃pθ̃(x
i+1)Aθ(x

1...i+1).

(28)
Then we compute the gradient of Lθ(θ̃):

∇θ̃Lθ(θ̃) =

d−1∑
i=0

∑
x1...i

pθ(x1...i)
∑
xi+1

∇θ̃pθ̃(x
i+1)Aθ(x

1...i+1).

(29)
Note that when θ̃ = θ,∑

xi+1

pθ̃(x
i+1)Aθ(x

1...i+1)

=
∑
xi+1

pθ(x
i+1)Aθ(x

1...i+1)

=
∑
xi+1

pθ(x
i+1)

(
Vθ(x

1...i+1)− Vθ(x1...i)
)

=
∑
xi+1

pθ(x
i+1)Vθ(x

1...i+1)− Vθ(x1...i)

= Vθ(x
1...i)− Vθ(x1...i)

= 0.

(30)

Therefore, when θ̃ = θ, the first term of ∇θ̃J(θ̃) in
Equation (28) is zero, then we prove that ∇θ̃Lθ(θ̃)|θ̃=θ =

∇θ̃J(θ̃)|θ̃=θ. �

Definition 1 The total variation distance between two prob-
ability measures p and q on a sigma-algebra F of subsets of
the sample space Ω is defined via

δ(p, q) = supA∈F |p(A)− q(A)|. (31)
Informally, this is the largest possible difference between
the probabilities that the two probability distributions can
assign to the same event.

Definition 2 Define Ā(x1...i) to be the expected advantage
of θ̃ over θ at (i+ 1)th dimension:

Ā(x1...i) = EXi+1∼θ̃
[
Aθ(X

1...i+1)|X1...i = x1...i
]
. (32)

Now Equation (11) can be written as follows:

J(θ̃) = J(θ) + EX∼θ̃

[
d−1∑
i=0

Ā(X1...i)

]
. (33)

Note that Lθ can be written as

Lθ(θ̃) = J(θ) + EX∼θ

[
d−1∑
i=0

Ā(X1...i)

]
. (34)

Definition 3 (θ, θ̃) is an α-coupled parameter pair if it
exists joint distribution (Xi, X̃i), such that P (Xi 6=
X̃i) ≤ α, Xi and X̃i follows the marginal distributions
N (θi, σ2),N (θ̃i, σ2), for all dimensions i ∈ {1, ..., d}.

Lemma 2 Given that (θ, θ̃) is an α-coupled parameter pair,
for all x1...i, 0 ≤ i ≤ d− 1.

|Ā(x1...i)| ≤ 2αmax
xi+1
|Aθ(x1...i+1)|. (35)

Proof. Given that (θ, θ̃) is an α-coupled parameter pair,
it exists joint distribution pjoint(X

i, X̃i) which satisfies
Pjoint(X

i+1 6= X̃i+1) ≤ α, and Xi, X̃i follows the
marginal distributions N (θi, σ2),N (θ̃i, σ2) for all dimen-
sions i ∈ {1, ..., d}.

|Ā(x1...i)| = |EX̃i+1∼θ̃

[
Aθ(X̃

1...i+1)
]
|

= |E(Xi+1,X̃i+1)

[
Aθ(X̃

1...i+1)−Aθ(X1...i+1)
]
|

= |Pjoint(Xi+1 6= X̃i+1)

· E(Xi+1,X̃i+1)|Xi+1 6=X̃i+1

[
Aθ(X̃

1...i+1)−Aθ(X1...i+1)
]

+ Pjoint(X
i+1 = X̃i+1)

· E(Xi+1,X̃i+1)|X
i+1 = X̃i+1

[
Aθ(X̃

1...i+1)−Aθ(X1...i+1)
]
|

= |Pjoint(Xi+1 6= X̃i+1)

· E(Xi+1,X̃i+1)|X
i+1 6= X̃i+1

[
Aθ(X̃

1...i+1)−Aθ(X1...i+1)
]
|

≤ α · 2 max
xi+1
|Aθ(x1...i+1)|.

(36)
�

Lemma 3 Let (θ, θ̃) be an α-coupled parameter pair. Then

|EX1...i∼θ̃
[
Ā(X1...i)

]
− EX1...i∼θ

[
Ā(X1...i)

]
|

≤ 4α(1− (1− α)i) max
x1...i+1

|Aθ(x1...i+1)|. (37)

Proof. Given the coupled parameter pair (θ, θ̃), we can
obtain a random vector pair (X1...i, X̃1...i), where X1...i

follows the marginal distribution N (θ1...i, σ2I); X̃1...i fol-
lows the marginal distribution N (θ1...i, σ2I), and P (Xj 6=



X̃j) ≤ α, for 1 ≤ j ≤ i. Let ni denote the number of
dimensions that Xj 6= X̃j for 1 ≤ j ≤ i,

EX1...i∼θ̃

[
Ā(X1...i)

]
= P (ni = 0)EX1...i∼θ̃|ni=0

[
Ā(X1...i)

]
+ P (ni > 0)EX1...i∼θ̃|ni>0

[
Ā(X1...i)

]
.

(38)

Similarly,

EX1...i∼θ

[
Ā(X1...i)

]
= P (ni = 0)EX1...i∼θ|ni=0

[
Ā(X1...i)

]
+ P (ni > 0)EX1...i∼θ|ni>0

[
Ā(X1...i)

]
.

(39)

Note that the ni = 0 terms are equal:

EX1...i∼θ̃|ni=0

[
Ā(X1...i)

]
= EX1...i∼θ|ni=0

[
Ā(X1...i)

]
.

(40)
Subtracting Equations (38) and (39), we get

EX1...i∼θ̃

[
Ā(X1...i)

]
− EX1...i∼θ

[
Ā(X1...i)

]
= P (ni > 0)(EX1...i∼θ̃|ni>0

[
Ā(X1...i)

]
− EX1...i∼θ|ni>0

[
Ā(X1...i)

]
).

(41)

By the definition ofα,P (Xj = X̃j) ≥ 1−α, for 1 ≤ j ≤ i.
Therefore, P (ni = 0) = P (X1 = X̃1, ..., Xi = X̃i) =∏i
j=1 P (Xj = X̃j) ≥ (1− α)i, and

P (ni > 0) ≤ 1− (1− α)i. (42)

On the other hand,

|EX1...i∼θ̃|ni>0

[
Ā(X1...i)

]
− EX1...i∼θ|ni>0

[
Ā(X1...i)

]
|

≤ |EX1...i∼θ̃|ni>0

[
Ā(X1...i)

]
|+ |EX1...i∼θ|ni>0

[
Ā(X1...i)

]
|

≤ 4α max
x1...i+1

|Aθ(x1...i+1)|,
(43)

where the second inequality follows from Lemma 2.
Plugging Equation (42) and Equation (43) into Equation
(41), we get

|EX1...i∼θ̃
[
Ā(X1...i)

]
− EX1...i∼θ

[
Ā(X1...i)

]
|

≤ 4α(1− (1− α)i) max
x1...i+1

|Aθ(x1...i+1)|. (44)

�
So far, Lemma 3 bounds the difference in expected advan-

tage at each dimension i. We can sum over each dimensions
to bound the difference between J(θ̃) and Lθ(θ̃). Before
proving Theorem 1 with Lemma 3, we need to bridge the
gap between max TV divergence (which appears in Theo-
rem 1) and coupled parameter pair (which appears in Lemma
3). Let α = Dmax

TV (θ, θ̃), we can get that DTV (θi, θ̃i) ≤
α,∀i = 1, ..., d. From (Levin, Peres, and Wilmer 2006),
Proposition 4.7:

Suppose pX and pY are distributions with
DTV (pX ||pY ) = β. Then there exists a joint distri-
bution (X,Y ) whose marginals are pX , pY , for which
X = Y with probability 1 - β.

we can derive that there exists joint distribution
pjoint(X

i, X̃i) which satisfies Pjoint(Xi+1 6= X̃i+1) ≤ α,
and Xi, X̃i follows the marginal distributions
N (θi, σ2I), N (θ̃i, σ2I),∀i = 1, ..., d. Based on Defi-
nition 2, we conclude that if Dmax

TV (θ, θ̃) = α, (θ, θ̃) is also
an α-coupled parameter pair.

After bridging the gap between max TV divergence and
α-coupled parameter pair, we go on to prove Theorem 1.

Theorem 1 Let α = Dmax
TV (θ, θ̃). Then the following bound

holds:
|J(θ̃)− Lθ(θ̃)| ≤ 2εd · (d+ 1)α2

where ε = max
x1...i

1≤i≤d

|Aθ(x1...i)|. (45)

Proof. Subtracting Equation (33) and Equation (34), and
defining ε = max x1...i

1≤i≤d
|Aθ(x1...i)|,

|J(θ̃)− Lθ(θ̃)| =
i=d∑
i=1

|EX∼θ̃
[
Ā(X1...i)

]
− EX∼θ

[
Ā(X1...i)

]
|

≤
d∑
i=1

4α(1− (1− α)i) max
x1...i+1

|Aθ(x1...i+1)| by Equation (44)

≤
d∑
i=1

4α(1− (1− α)i)ε by definition of ε

≤
d∑
i=1

4α(1− (1− αi))ε

=

d∑
i=1

4α · αi · ε

= 2d · (d+ 1)α2ε.
(46)

where the last inequality can be derived from the property
that total variation distance ranges in [0, 1] and the common
inequality that

(1−m)i ≥ 1− im, ∀m ∈ [0, 1],∀i ∈ N. (47)

�

Connections with TRPO
TRPO (Schulman et al. 2015) and TRES can be considered
as applying the idea of minorization-maximization (MM) al-
gorithm to optimizing policy in the reinforcement learning
domain. In this subsection, we will discuss about the rela-
tionship between these two methods.

Smoothed objective function As mentioned in back-
ground section, a large source of difficulty in RL stems
from the lack of informative gradients of policy performance
F (θ): such gradients may not exist due to non-smoothness
of the environment or policy, or may only be available as
high-variance estimates because the environment usually



can only be accessed via sampling. In such situation, we can-
not directly use standard gradient-based optimization meth-
ods to find a good solution for policy θ. In order to both make
the problem smooth and to have a means of to estimate its
gradients, a natural solution is to add noise to the original
objective F (θ).

Policy Gradient algorithms add the noise in trajec-
tory/action space and proceeds to optimize the smoothed ob-
jective function as below:

η(θ) = Eτ [

∞∑
t=0

γtr(st, at)], (48)

where the trajectory τ follows the MDP setting with infinite
timesteps: p(τ) =

∏∞
t=0 p(s0)πθ(at|st)p(st+1|st, at).

Evolution Strategies algorithms add the noise in parame-
ter space and proceeds to optimize the following smoothed
objective function:

J(θ) = EX [F (X)], (49)

where the parameter X follows the isotropic multivari-
ate Gaussian distribution setting with finite dimensions:
p(X) =

∏d
i=1 pθ(X

i).

These two methods have the similar general principle of
smoothing the original objective. However, their smoothed
objective functions are quite different in terms of search
space, as shown in Figure 6. TRPO and TRES can be seen as
applying the idea of of minorization-maximization (MM) al-
gorithm to Policy Gradient and Evolution Strategies respec-
tively.

(a) trajectory space (b) parameter space

Figure 6: Policy Gradient algorithms optimize policy in the
trajectory space, while Evolution Strategies algorithms opti-
mize policy in the parameter space.

Surrogate objective function When optimizing the
smoothed optimization objectives, TRES and TRPO both
adopt the idea of minorization-maximization (MM) algo-
rithm. The MM algorithm works by finding a surrogate
objective function that minorizes or majorizes the objec-
tive function in each iteration. Optimizing the surrogate ob-
jective function will drive the objective function upward
or downward until a local optimum is reached. TRES and
TRPO design their respective surrogate objective function
to approximately maximize their smoothed objective func-
tions.

The surrogate objective function used in TRPO is:

Eτ∼θ

[
∞∑
t=0

πθ̃(at|st)
πθ(at|st)

Vθ(st)

]
− c ·max

s
DKL(πθ̃(·|s)||πθ(·|s))

where c =
4εγ

(1− γ)2
, ε = max

s,a
|Aθ(s, a)|.

(50)
The surrogate objective function used in TRES is:

EX∼θ

[
d−1∑
i=0

pθ̃(X
i+1)

pθ(Xi+1)
Vθ(X1...i+1)

]
− c · max

1≤i≤d
DKL(θi, θ̃i)

where c = 2εd · (d+ 1), ε = max
x1...i

1≤i≤d

|Aθ(x1...i)|.

(51)

When designing the local approximation, namely the first
term of surrogate objective function, TRPO decomposes the
difference of smoothed objective function as a sum of per-
timestep difference in infinite horizon, while TRES decom-
poses the difference a sum of per-dimension in finite hori-
zon. Owing to this decomposition discrepancy, the penalty
coefficient c of these two methods are also different. With
regard to the max-KL penalty, namely the second term of
surrogate objective function, TRPO restricts the parameter
update in terms of the distance in action space, while TRES
restricts the parameter update directly in terms of the dis-
tance in parameter space.

Generally, we can regard TRPO and TRES as two dual
methods to optimize policy with the idea of MM algorithm,
under the MDP setting in trajectory space and isotropic mul-
tivariate Gaussian distribution setting in parameter space.

Experiment settings
For the evaluation of TRES, we sample six random seeds
uniformly from the interval [0, 1000) and share them in
five MuJoCo locomotion tasks. The exact value we used is
{5523, 2265, 3481, 147, 8971, 9485}.

Influence of clip factor λ to max-KL divergence
In this subsection, we study the influence of clip factor λ
to the max-KL divergence Dmax

KL (θ, θ̃). From Figure 7, we
can see that average max-KL divergence during the whole
training process increases with the growth of clip factor λ,
which suggests that our clipped surrogate objective can im-
plicitly constrain parameter update in a max-KL divergence
trust region by means of clip factor λ.

Figure 7: The influence of λ to max-KL divergence on
HalfCheetah-v1 task.


