

A.M.B.R.O.S.I.A: Providing Performant Virtual Resiliency

for Distributed Applications

Jonathan Goldstein, Ahmed Abdelhamid, Mike Barnett,

Sebastian Burckhardt, Badrish Chandramouli, Darren Gehring,

Niel Lebeck, Christopher Meiklejohn, Umar Farooq Minhas, Ryan Newton,

Rahee Ghosh Peshawaria, Tal Zaccai, Irene Zhang

ABSTRACT

When writing today’s distributed programs, which fre-

quently span both devices and cloud services, programmers

are faced with complex decisions and coding tasks around

coping with failure, especially when these distributed com-

ponents are stateful. If their application can be cast as pure

data processing, they benefit from the past 40-50 years of

work from the database community, which has shown how

declarative database systems can completely isolate the de-

veloper from the possibility of failure in a performant man-

ner. Unfortunately, while there have been some attempts at

bringing similar functionality into the more general distrib-

uted programming space, frequently called “exactly once

execution”, a compelling general-purpose system must be

performant, support a variety of machine types with vary-

ing resiliency goals, and be language agnostic, allowing

distributed components written in different languages to

communicate. This paper introduces the first system, Am-

brosia, to satisfy all these requirements. We coin the term

“virtual resiliency”, analogous to virtual memory, for the

fundamental mechanisms (already present in data pro-

cessing systems for decades) that allow programmers to

write their applications in a failure oblivious way. Of inter-

est to our community is the effective reapplication of much

database performance optimization technology to make

Ambrosia more performant than many of today’s non-

resilient cloud solutions.

1 Introduction
When writing today’s distributed programs, which fre-

quently span both devices and cloud services, programmers

are faced with complex decisions and coding tasks around

coping with failure, especially when these distributed com-

ponents are stateful. For instance, consider the simple case

of two objects, one called Client, and the other called Serv-

er, where Server keeps a counter, initially 0, and exposes a

method called Inc() to increment the counter and return the

new value. Furthermore, assume Client calls Inc() twice

and prints the value of the counter after each call. If both

objects are in a single process, the outcome is clear: the

values 1, and 2 are displayed in the Client output. In con-

trast, consider the possibilities when Client and Server run

on different machines, where method calls are performed

through an RPC (remote procedure call) mechanism.

First let’s consider possible outcomes when the Client

fails and is naively restarted from scratch: If the Client fails

after the first call and after the return value is received, the

output will instead be 2,3, which is incorrect. If the Client

fails after successfully issuing the RPC request, but before

receiving the return value, the Server will initially try to

provide to the Client an unexpected return value, which is

problematic. Even worse, consider that Client may be re-

started on a different machine, with a different IP address.

Outcomes when the Server fails are further complicated

by the loss, and subsequent reinitialization, of the counter.

If the Server fails after the Client has completed the first

RPC, the output will be 1,1, which is incorrect. Further-

more, if the Server fails after receiving the first RPC re-

quest, but before communicating the return value, the Cli-

ent is left waiting for a return value which never arrives.

In order to get the answer we all expect after taking our

first programming class, which is consistent with no fail-

ures occurring, developers face very different challenges,

depending on the type of application they are writing.

If their task can be cast as pure data processing, they

benefit from the past 40-50 years of work from the database

community, which has shown how declarative database

systems, along with technology to make database sessions

robust ([1]) can completely isolate the developer from the

possibility of failure in a performant manner. Most recent-

ly, map-reduce and its progeny ([2, 3]), by pursuing similar

strategies, have achieved similar results.

Unfortunately, while there have been some attempts at

bringing similar functionality into the more general distrib-

uted programming space, frequently called “exactly once

execution” ([1,4]), the failure to address a number of im-

portant issues has prevented widespread use of these tech-

nologies. As a result, developers either give up entirely on

fully reliable applications, or implement solutions that in-

volve complex, error-prone, and difficult to administer

strategies to make applications reliable with today’s cloud

environments (Section 3). A compelling general-purpose

solution to this problem must address the following:

 Performance/Cost – In order to offer failure-

obliviousness as a general capability, performance

must be comparable to failure-sensitive code with a

good application specific strategy for achieving exactly

once execution (e.g. within a factor of 2). Only data

processing systems have achieved this.

 Machine Heterogeneity – While machines inside a

datacenter are homogenous, complete distributed apps

typically span devices and datacenters. While some

devices may be heavy and able to persist information

necessary to hide failure, others may be best effort.

The end-to-end semantics must be easy to understand,

reason about, and code against. Today, [4] is the clos-

est to achieving this goal.

 Language Heterogeneity – Because distributed appli-

cations span across a wide variety of machines and set-

tings, distributed components written in different lan-

guages must be able to work together. Protobuf, Avro,

HTTP, and JSON effectively solve this problem.

 Determinism – In order to build a general purpose ex-

actly once system, all computation needs to be deter-

ministically replayable. Achieving this in the face of

internal race conditions and non-deterministic calls

(e.g. GetTimeOfDay) is challenging. Again, databases,

with their notion of serial ordering captured in the log,

are the only widely used successes.

In this paper, we coin the term “virtual resiliency”,

which provides developers the illusion that machines never

fail, by automatically healing the system after physical fail-

ure, analogous to how virtual memory provides developers

the illusion that physical memory never runs out by auto-

matically paging memory to disk. While most data pro-

cessing platforms already provide efficient programming

and execution environments with virtual resiliency, there

are no commonly used analogous systems for general pur-

pose distributed programming.

We address this problem with Ambrosia (Actor Model

Based Reliable Object System for Internet Applications),

the first general purpose distributed programming platform

with virtual resiliency, high performance, and machine and

language heterogeneity. Ambrosia is a real system. For in-

stance, Ambrosia is used in a cloud service which manages

the machine images of hundreds of thousands of machines

running a cloud application (Section 5).

Ambrosia’s high performance was achieved by incorpo-

rating the decades’ old wisdom used to build performant,

reliable, and available database systems. For instance, we

make extensive use of batching, high-performance log writ-

ing, high-performance serialization concepts, and group

commit strategies.

Our performance with respect to resiliency is compara-

ble to distributed data-processing systems in wide use to-

day. For instance, the resiliency behavior of both Hadoop

and Spark can be replicated with Ambrosia, making similar

performance for distributed plans possible.

Through employing the technology mentioned above,

we achieve throughput results which, in some cases, exceed

gRPC by up to a factor of 12.7X, despite gRPC lacking

failure protection. Compared to gRPC, using Ambrosia to

add geo-replicated persistence increases ping latency only

by 5.5ms. We vastly outperform today’s cloud-based serv-

erless, stateless compute, exactly-once strategies, in some

cases achieving over a 100x improvement in cost per unit

of work served.

Because Ambrosia’s virtual resiliency implementation is

based on database logging technology, we also offer famil-

iar related features, like transparent high availability

through active standbys. With these mechanisms, we are

also able to provide application-centric features less famil-

iar to databases, like time-travel debugging, retroactive

code testing, and in-flight application upgrades.

 The next section describes, abstractly, the resiliency

strategy implemented both by today’s cloud applications, as

well as Ambrosia itself, in common terms. Section 3 de-

scribes how to implement this by hand using typical cloud

application building blocks. Section 4 describes the Am-

brosia design and implementation. Section 5 contains an in-

depth case study of how Ambrosia was used to build a real

cloud service which manages the images of hundreds of

thousands of machines. Section 6 contains an experimental

evaluation which compares Ambrosia against the strategy

described in Section 3, as well as a comparison to gRPC.

Section 7, 8, and 9 are further related work, future work,

and conclusions, respectively.

2 Achieving Distributed Resiliency
While Ambrosia’s architecture and implementation details

are quite different from the standard resiliency implementa-

tions in today’s cloud services, the overall approach in both

is fundamentally the same, and has been proposed in the

systems and database communities decades ago [5,6].

Both approaches involve encapsulating the application

to be made resilient, logging its input, and relying on de-

terministic replay to reconstruct state after failure.

Sender/
Caller

Sender/
Caller

DurableQ
/Log

Receiver/
Callee

DurableQ
/Log

Figure 1: Distributed resiliency, abstractly

To illustrate, consider Figure 1. In this figure, we have

three communicating distributed components, labeled

Sender/Caller, and Receiver/Callee. Logically, a durable,

distributed replicated queue (i.e. log) records ordering deci-

sions made regarding requests from the two callers. Once

this ordering has been determined, the callee deterministi-

cally processes the requests, resulting in outgoing side ef-

fects, which are first sent to another durable queue and then

handled. In this fashion, multiple components may be

stitched together in a peer-to-peer arrangement.

If the callee fails, the queue is used to replay input until

the state is reached which produced the last successfully

enqueued output. Processing then continues normally.

Checkpoints of the callee to distributed replicated stor-

age are periodically taken, which limits the number of

queue entries needed to replay during recovery, and conse-

quently allows reclamation of unneeded queue space.

Database logs optimize further, eliminating the need to

log read-only transactions, which can reduce network

bandwidth by as much as 2x, but with additional logging

potentially needed on the caller to complete an end-to-end

failure-oblivious developer story [1].

Once these logs exist, they can be used to maintain any

number of active standbys, which continuously read the log

in recovery mode, until the primary which writes the log,

fails, at which point control can fail-over to one of the ac-

tive secondaries. This is a tried and true technique for im-

plementing highly available databases [7].

3 Distributed Resiliency in the Cloud Today
While it is possible to build fully resilient distributed appli-

cations with today’s cloud development tools, application

writers don’t usually fully implement this guarantee, due to

the impression that such an implementation would be diffi-

cult to code and perform badly. To better understand this

point of view, we consider a typical arrangement of today’s

commonly used service components. Then we explore what

an implementation of distributed resiliency would look like.

For instance, Kafka, Event Hub, or Kinesis provides the

durable queue. The receiver is typically microservice code

executed with a serverless, stateless service, like Azure or

Lambda Functions, or with manually deployed Docker con-

tainers running on a Kubernetes cluster.

Client/s
Event
Hub Q

Service
Logic

Azure
Functions

Event
Hub Q ...

Figure 2: Resiliency using stateless compute

The above Figure shows a typical configuration for a

cloud application today. In this particular example, a client,

which may or may not be in the datacenter, first durably

records its service request in event hub, ensuring that the

request, along with its ordering relative to other requests, is

preserved in replicated storage. The application logic is

then expressed as an Azure function and is called on batch-

es of event hub input. Any output (e.g. to other micro-

services), is then sent to other event hub queues, and the

pattern is potentially repeated with other services.

Since Azure functions are stateless, to make the applica-

tion resilient, every call must begin by retrieving all appli-

cation state necessary to process the requests. Before the

Azure function completes, it must write modified state back

atomically, along with the sequence numbers associated

with all input and output queues at the time of completion.

These sequence numbers are used by the application devel-

oper to recover from partially executed Azure functions; it

becomes part of the application logic.

While only one Azure function can be run at a time and

still guarantee correct behavior, most applications naturally

partition into independent identical pipelines, which may be

run in parallel to achieve higher application throughput. For

this reason, they typically store application state in

key/value stores keyed on the partition id.

Example. Consider a counter service with increment

and reset operations, which reports its state to a monitor

service after every 1000 increments. The application state

is the current count, and there are three types of messages:

class State { int count; }

class IncrementMessage: Message {}

class ResetMessage: Message {}

class ReportMessage: Message { int count; }

To achieve virtual resiliency, we label participants with

a unique id, add sequence numbers to messages, and track

sent and received sequence numbers per participant:

class PMessage {

 Id origin;

 int seqno;

 Message payload;

}

class PState {

 Id id;

 State state;

 map<Id, int> received;

 map<Id, int> sent;

}

To process a batch of messages, the state is first loaded

from storage. Then, the messages (excluding duplicates)

are processed, updating the state and sending messages. Fi-

nally, the state is written back to storage.

void process(Id id, List<Message> batch)

{

 State state = LoadState(id);

 foreach(var m in batch) {

 if (m.seqno <= state.received[m.origin])

 continue; // ignore duplicate

 Process(state.state, m.payload,

 (dest,payload) => send(dest,

 new Message(id,++sent[dest],payload);

 state.received[m.origin] = msg.seqno;

 }

 SaveState(state);

}

void Process(State state,

 Message message,

 Action<Message, PId> send) {

 if (message is ResetMessage)

 state.count = 0;

 else if (message is IncrementMessage) {

 state.count++;

 if (state.count % 1000 == 0)

 send(monitorId,

 new ReportMessage(count));

 }

}

This technique of combining at-least-once delivery with

idempotent processing to achieve exactly-once semantics is

sometimes called “effectively-once”.

4 Ambrosia and Virtual Resiliency
In this section, we first describe the Ambrosia architecture,

contrasting important design decisions with the state of the

art in cloud programming, and hypothesize the performance

consequences, which will be explored in Section 6.

Next, we define virtual resiliency abstractly, and discuss

the difficulties which arise from trying to support virtual

resiliency in a general-purpose programming environment.

We then explain how we implement virtual resiliency in the

context of the Ambrosia binding for C# (which is the lan-

guage Ambrosia is implemented in), and briefly discuss

how different choices could be made for different pro-

gramming languages without compromising component

interoperability.

4.1 Ambrosia Architecture
We begin with the following diagram, which illustrates the

architectural components of two communicating Ambrosia

services/objects/actors, called “immortals”.

Immortal
Coordinator

Immortal
Coordinator

Application

Ambrosia
C# Binding

Application

Ambrosia
C# Binding

Immortal 1 Immortal 2

Figure 3: Resiliency using Ambrosia

First, note that each immortal is composed of two running

processes, which are expected to run on the same

VM/container/machine, meaning that they fail and recover

together. The choice to run each immortal as two separate

processes is an implementation convenience which allows

us to more easily add support for multiple languages, at ad-

ditional cost, but is not fundamental to Ambrosia’s design.

The two pieces communicate through local TCP, and on

Windows, make use of TCP loopback, minimizing latency

and maximizing throughput.

The first process is the immortal coordinator, which

handles all log interactions, and communication with other

immortals. As a result, this process is responsible for or-

chestrating recovery, including handling the correct recon-

nection of a recovered immortal to other immortals, or even

just reestablishing connection after a TCP connection

breaks. It is also responsible for handling failover when ac-

tive secondaries are present.

Note that the immortal coordinator relies on an open-

source application hosting layer, called CRA [20], which

virtualizes the communication links between a graph of

immortals. For instance, when an immortal fails and is re-

started on another machine, all previously connected im-

mortals are automatically reconnected by CRA to the re-

started instance, going through a connection protocol in the

immortal coordinator guaranteeing fully resilient behavior.

The second process is divided into 2 parts: the first part

is a language-specific Ambrosia binding, responsible for

interacting with the immortal coordinator, and executing

application logic in response to requests. As such, the Am-

brosia language-specific binding creates a language specific

development framework in which it is straightforward to

author serializable immortals with deterministic replayabil-

ity. The second part of this process is the application logic

itself, which is authored in the context of the language spe-

cific framework.

Note that each immortal coordinator has a connection to

storage, which may be backed by either local storage, or

cloud replicated storage for highly reliable applications.

Like a database, the immortal coordinator creates determin-

istic replayability through logging. In Ambrosia’s case, we

log all incoming requests (which can come from multiple

sources). The position of these requests in the log deter-

mines the order in which they are submitted to the applica-

tion process for (re)execution.

As a result, the application process must uphold the fol-

lowing contract: from some initial state, any execution of

the same requests in the same order results in both the same

final state, as well as the same outgoing requests in the

same order.

In addition, the language-specific binding must also

provide a state serializer. To avoid replaying from the start

of the service during recovery, the immortal coordinator

must occasionally checkpoint the state of the immortal,

which includes the application state. Again, the way this

serialization is provided can vary from language to lan-

guage, or even amongst bindings for the same language.

At this point, it is interesting to point to a few important

differences between Ambrosia’s architecture, and the archi-

tecture described in Section 3:

 Because the durable queue is hidden in the immor-

tal coordinator, and immortal coordinators are di-

rect peers, the immortal coordinator is now free to

store the queue wherever, and however it likes.

For instance, it could store the queue in a local

file, or to some form of cloud storage. Further-

more, this decision can even be delayed until de-

ployment time, with different decisions made for

different deployments.

 Application developers no longer write logic to

recover from partial executions, since this is all

handled by the immortal coordinator. For the same

reason, they also no longer write code to retrieve

and store state, since all state is implicitly durable

through the combination of logging and determin-

istic execution. As we’ll show in Section 6, this

can have profound performance implications.

 Since the log implicitly contains all state changes

for the application, debugging is greatly facilitat-

ed. To perform “time travel debugging” [23], we

simply execute from a checkpoint before a bug

occurred, and roll forward with the debugger at-

tached, without involving any distributed compo-

nents outside one immortal itself. This kind of de-

bugging convenience is very difficult to replicate

when applications explicitly write recovery code

and durable state.

4.2 Virtual Resiliency and C#
Virtual resiliency, a term coined in this paper, is defined as

follows:

Virtual Resiliency – A mechanism in a (possibly dis-

tributed) programming and execution environment, typical-

ly employing a log, which exploits the replayably determin-

istic nature and serializability of an application to automat-

ically mask failure.

Like virtual memory, virtual resiliency is a mechanism.

Like virtual memory, the effect of working with an envi-

ronment which has virtual resiliency can be easily de-

scribed: the presence of virtual resiliency removes the need

for application writers to write logic for recovery or state

protection. This paper describes one reference implementa-

tion, although there are many others.

Note that data processing systems, which typically ex-

press their queries in SQL variants, have provided their

query writers virtual resiliency for decades. Map-reduce

systems, which don’t necessarily use SQL, also provide this

capability. Note that in all these cases, this feature leverag-

es the ability to deterministically replay, like Ambrosia.

Also, note the use of the phrase “replayably determinis-

tic”. Transactional databases provide replayable determin-

ism, even though they have many sources of non-

determinism, like thread scheduling. They are, however,

replayably deterministic, which means that with the aid of

the recovery log, they can recover the state which affects

external visibility

In the case of C#, we interpret messages between im-

mortals as RPC calls. The vocabulary of calls handled by a

given immortal, including the arguments and their types, is

expressed in C# as an interface. For example, the following

example illustrates how the counter example in the previ-

ous section is implemented in Ambrosia-C#.

Example. In the C# binding for Ambrosia, the counter ser-

vice defines interfaces for two immortals:

public interface ICounter {

 void Increment();

 void Reset();

}

public interface IMonitor {

 void Report(int count);

}

The implementation of the counter contains the applica-

tion logic, some attributes to allow state serialization, and

initialization to set up a proxy for sending messages to the

monitor:

[DataContract] class Counter:

 Immortal<ICounterProxy>, ICounter

{

 [DataMember] int count;

 [DataMember] IMonitorProxy monitorProxy;

 public Counter() {

 monitorProxy = GetProxy<IMonitor>(“mon1”);

 }

 public void Reset() { count = 0; }

 public void Increment() {

 count++;

 if (count % 1000 == 0)

 monitorProxy.ReportFork(count);

 }

}

From the two interfaces, we automatically generate C# li-

braries which contain abstract base classes with associated

abstract method calls, which are implemented by the appli-

cation writer. For instance, class Counter in the above ex-

ample implements ICounter, which is in the associated

generated C# library.

These generated libraries also contain proxies for mak-

ing method calls on immortal instances of this type from

other Ambrosia applications. For instance, in the above ex-

ample, monitorProxy is of type IMonitorProxy, which is

a generated type for interacting with immortals which im-

plement IMonitor. GetProxy is used to get a handle to an

immortal registered in a catalog of immortals stored in a

table. (Ambrosia uses Azure tables.)

In C#, Ambrosia calls to other immortals can be execut-

ed in either an awaitable (called async), or non-awaitable

(called fork) fashion. For instance, the Report call on the

monitorProxy is a forked call, which means it is not

awaitable. Both RPC versions are automatically generated

in the proxy for using an Ambrosia immortal. If an RPC is

executed in a non-awaitable fashion, no return value is ex-

pected or sent, similar to sending an event. If an Ambrosia

call is awaited, the executing call is suspended until the re-

turn value arrives through the message queue from the co-

ordinator. Handling a return value simply involves waking

up the suspended RPC and continuing execution.

Within the C# language binding, we execute all arriving

RPC requests in the order in which they arrive (i.e. were

logged), in a single threaded manner. Therefore, as long as

the application code is deterministic, we have met the de-

terminism requirement for Ambrosia. Since the handling of

return values relative to new RPC calls is deterministically

ordered and single threaded, determinism w.r.t. the han-

dling of return values is preserved.

Note that for expensive partitionable workloads, Am-

brosia applications can be sharded, where each shard runs

on its own set of cores, like many other systems. While

Ambrosia does not yet support elasticity, this is a subject of

future work, and we expect elastic sharding designs similar

to other stateful systems, like databases [9], and Orleans

[16] to be effective.

4.2.1 Replayable Determinism and Impulses
Of course, there are unavoidable sources of non-

determinism, like user input, or calls to GetTimeOfDay. In

the first case, deterministic replay would require that a user

reenter their input. In the second case the clock would

somehow have to be rewound to the exact point in time it

was called in previous runs. Fortunately, we have a log!

Like a database, we can log all non-deterministic data be-

fore acting on it, resulting in deterministic replayability.

When non-state changing method calls are deterministi-

cally made, but the return value differs on reexecution, as

in GetTimeOfDay, it suffices to wrap the GetTimeOfDay

call in an Ambrosia self-RPC, returning the measured val-

ue. This will ensure that all reexecutions will use the first

successfully logged execution of the call, whose return val-

ue will also be logged, solving our determinism problem.

When data arrives from an asynchronous unreplayable

source like user input, the data is passed to an “Impulse

Handler”, which is a specially marked Ambrosia RPC,

which logs the data (since it’s an argument), and continues

processing as a typical RPC call after logging. Such im-

pulse handlers differ from regular RPC calls in that they are

faithfully replayed during recovery but cannot be called un-

less the node is handling incoming requests (not recovering

or a secondary).

Example. After declaring an impulse handler

public interface IMyImmortal {

 [ImpulseHandler]

 void UserInput(string line);

}

we can start a background thread that reads nondeterminis-

tic console input and sends it to the impulse handler:

class MyImmortal:

Immortal<IMyImmortalProxy>, IMyImmortal

{

 public MyImmortal() {

 new Thread(() => {

 string line;

 while ((line=Console.ReadLine())!=null)

 thisProxy.UserInputFork(line);

 }).Start();

 }

 public void UserInput(string line) {

 // process input deterministically here

 }

}

Common scenarios using impulse handlers include user in-

put, data from lightweight non-resilient sources as in IOT

applications, and periodic self-calls like health checking.

Note that it is perfectly fine for background threads to be

used to collect this data, if the only side effects or state

changes happen in the impulse handler itself, after the data

has been logged. In part for this reason, Ambrosia Immor-

tals have an overloadable method called BecomingPrimary,

which is executed after recovery, and just prior to dispatch-

ing the first RPC. All impulse gathering threads may be

started here, ensuring that new impulses are not arriving

during recovery.

Great care must be taken by the immortal coordinator in

correctly handling impulses during recovery. For instance,

the outgoing messages after replay will not contain the im-

pulses generated by threads that don’t run during replay

(e.g. collecting input from the user). As a result, sequence

numbers on the reproduced output will no longer match the

sequence numbers of other services which received impuls-

es missing from the reproduced RPC stream. The solution

is to correctly bookkeep sequence numbers with and with-

out impulses, and for a recovering node to send the first

non-impulse RPC after the last non-impulse received by the

listener.

State serialization is a more straightforward affair. The

immortal coordinator has, built into it, the ability to serial-

ize its state, along with all necessary buffers. The C# lan-

guage binding must also provide a way to serialize the state

of the user code in the immortal. Fortunately, C# has a

built-in ability to serialize and deserialize classes labeled as

[DataContract]. This simply requires that members be

marked which are required to correctly serialize and dese-

rialize objects of that type. We therefore make use of this

standard feature, mostly solving our state serialization

problem.

The only tricky part of serialization/deserialization in C#

is the state of suspended tasks waiting for return values.

These suspended calls, along with their call stacks, must be

serialized upon checkpointing, and deserialized upon re-

play. Fortunately, we were able to find a library which does

exactly this for C# [24].

4.2.2 Nondeterministic Task Wrapping
By using the impulse handler feature, applications can per-

form arbitrary nondeterministic operations, yet remain de-

terministically replayable. For convenience, Ambrosia pro-

vides a NondetTask function that lets users wrap arbitrary

nondeterministic tasks:

time = await NondetTask(() => GetTimeOfDay());

x = await NondetTask(() => new Random().Next());

The result of the task is automatically persisted in the log

by an impulse handler, and therefore deterministically re-

playable.

Asynchronous tasks containing I/O can also be wrapped,

allowing applications to easily consume external nondeter-

ministic non-Ambrosia services. For example, we can load

or store a blob in cloud storage:

byte[] content = await NondetTask(

 async () => await LoadBlob("name"));

await NondetTask(

 async () => await StoreBlob("name", content));

Wrapped tasks execute with at-least-once semantics: if the

primary that starts the task the first time around fails before

recording a response via an impulse handler, the next pri-

mary restarts the task.

Conceptually, exceptions are not failures, but special re-

turn values. Thus, the task wrapper implementation logs

and rethrows exceptions, after which they may (or may not)

be caught and/or retried by the application.

Because the wrapped tasks execute on the thread pool,

task wrapping also provides an appropriate solution for

running CPU-intensive computations without locking up

the scheduler:

 x = await NondetTask(() => HeavyComputation());

This also has the benefit of caching the heavy computation

so it is not rerun on replay. Since wrapped tasks execute

outside of the immortal scheduler, they must not update the

state of the immortal directly.

4.3 Getting high performance
Because the resiliency approach employed by Ambrosia is

similar to a transactional database, many of the optimiza-

tions developed by the database community can be gainful-

ly employed to give Ambrosia dramatically improved per-

formance over existing methods for resilient cloud pro-

gramming. This section details these optimizations.

4.3.1 Adaptive Batching in Memory
Similar to the approach used in [8], whenever there is an

important latency/throughput tradeoff in Ambrosia’s im-

plementation, adaptive batching is used to simultaneously

guarantee low latency in a lightly loaded system, and high

throughput in a heavily loaded system.

Since a single TCP connection can only transmit one

message at a time, when part of the system becomes

throughput challenged, messages, if buffered, accumulate

while a message is transmitted. The next message then con-

tains all buffered messages, wrapped up into a single mes-

sage which begins with a count of the number of messages

in the batch. This results in very efficient message handling

code on the other side, which is a tight loop over the mes-

sages in the batch.

Application

Ambrosia
C# Binding

Immortal
Coordinator

Buffer
Immortal

Coordinator
Buffer

Buffer

Figure 4: Adaptive Batching in Ambrosia

The Figure above shows 2 sensitive locations in Ambro-

sia, where messages can accumulate, represented by buffers

used to form batches prior to sending. First, in the language

binding, if the application generates large amounts of traf-

fic, as in streaming workloads, systems such as Trill [8]

have shown that adaptive batching is greatly advantageous.

Second, note the shuffle in the immortal coordinator, which

sends the individual messages received from the language

binding to their corresponding outputs. Quill [17] showed a

similar advantage to batching the in-memory output of a

shuffle. The adaptive batching used for the immortal coor-

dinator is almost identical to what is described in Quill.

Note that, as a result, we associate with each output in the

immortal coordinator, a queue of buffer pages which grabs

and releases pages from and to a shared pool. This ensures

that outputs will respond flexibly to changes in relative

load, without allocating unreasonable amounts of memory.

4.3.2 Writing the Log to Storage Efficiently
Like a database, Ambrosia uses a log to durably record sys-

tem choices which could differ on reexecution, making the

computation deterministic. For instance, the order in which

messages appear in the log is the order in which those mes-

sages are presented to a language binding, regardless of

whether it is the first execution, or replay. Log writing is

handled inside the Coordinator processes (Figure 3).

Like a database, which can have multiple threads asso-

ciated with different database sessions simultaneously writ-

ing to the log, Ambrosia has multiple threads, associated

with different callers, simultaneously writing to the log.

We therefore take the standard approach described in

[18], where each thread grabs the position in the current log

page in which it will write its bytes. Threads can then con-

currently write their bytes to the log record, where the last

writer, which closes the page to further writes, waits for the

concurrent writers to finish before writing the page to stor-

age. After the page is closed to writing, new writers write

to the next log page etc. Our implementation uses compare

and swap to execute this strategy in a highly efficient man-

ner, as is described in [18].

Thread 1

...

Thread 2 Thread 3

In Memory Log Page

Figure 5: In Memory Log Page

The above figure shows the in-memory log page for an

immortal, with 3 threads, corresponding to 3 immortals

making RPC calls to this immortal.

They quickly grab locations in the log to write their

messages, which allows them to copy the bytes into the log

in parallel. The last writer to close out the page waits for

other writers to finish, at which time it submits the page for

asynchronous writing. As soon as the last writer determines

that it is closing out the page, a bit is set which redirects all

future writers to the next in memory log page, unblocking

future writers. The number of in memory log pages is fixed,

which ultimately forces delays on the senders if the system

becomes I/O bottlenecked.

4.3.3 Batch Commit
Group commit [19] is the mechanism employed by transac-

tional databases to get the benefits of delaying a transaction

commit until the log record which contains the commit,

which also contains many other commits, is flushed. This

results in the delay of commit notification until a flush is

performed, at which time, many transaction commits be-

come externally visible.

We achieve a similar effect by writing many requests to

the log concurrently and waiting to submit these requests to

the language binding until after the requests have been

flushed to storage. This ensures that no outgoing messages

(which are the consequence of the input messages) are pro-

duced until the input messages, and their relative order, are

made durable in the log.

It is worth noting that with some extra bookkeeping, we

could further reduce latency by submitting the requests to

the application after their relative ordering is determined,

but before the log record is written, if we withheld the re-

sulting output messages until after the log write completed.

We have found, though, that in practice, the latency savings

are not large or necessary for most real applications.

4.4 Other Log Based Ambrosia Features
There are four additional useful features enabled by virtual

resiliency based on logging and state serialization.

4.4.1 High Availability
The first of these features is high availability through active

standbys. In Ambrosia, the log, and associated checkpoints,

are written to a directory specified by the immortal deploy-

er. In both Windows and Linux, that directory can be

backed by either local storage, or cloud-replicated storage.

For instance, Azure Files may be mounted on all internet

connected Linux and Windows machines. Alternatively,

Azure Managed Disks offer a performant and very cost-

effective alternative for immortals running inside Azure.

At any given moment, there is one primary, which pro-

duces the log and is connected to other Ambrosia immor-

tals, and secondaries, which consume the log in recovery

mode, until they become primary. Leader election is simply

the result of all instances continuously (e.g. every half sec-

ond) trying to acquire the exclusive write lock on the log.

When an instance acquires the lock, is becomes primary,

and CRA establishes all connections to other immortals. If

a primary ever loses the file lock, it commits suicide.

The log is broken into deployer-specified chunks, such

that whenever a threshold is reached, a new log file is cre-

ated with an incremented chunk number as part of the file-

name. When a secondary becomes primary it immediately

starts a new log file.

In Ambrosia’s implementation of high availability,

checkpoints are generated by a secondary, such that each

time a new log file is started, there is an associated generat-

ed checkpoint which contains the state of the immortal in-

stance at the start of the log file. The secondary-based

checkpointing prevents loss of primary availability while

checkpointing and turns out to be the optimal strategy in a

resource-reservation based environment like the cloud [21].

A new secondary then starts from the latest checkpoint and

rolls forward until it is caught up.

4.4.2 Time Travel Debugging

Using the checkpoints and log files, Ambrosia exploits ap-

plication replayable determinism to implement time travel

debugging. With time travel debugging, the developer

starts the application process and attaches the debugger.

The developer then starts the immortal coordinator in time

travel mode. In this mode, the developer points the coordi-

nator to the log and checkpoint files (which may still be

live) and specifies the checkpoint number to begin recover-

ing from. The immortal coordinator then runs recovery,

never becoming primary.

Since the debugger is attached to the application pro-

cess, all the usual debugger features may be used, like set-

ting breakpoints, and stepping through code. Because re-

playing the log is deterministic, the same application be-

havior may be replayed and debugged as many times as de-

sired, even against a live log.

4.4.3 Retroactive Code Testing
Related to time travel debugging, if the application writer

wants to test an alternate version of the service which has

the same interface and state (as is frequently the case when

fixing bugs), they can perform time travel debugging with

the updated version of the application, using the debugger,

to find a bug or test a fix. A developer may even use this

feature to create new user-level logs against the replay.

Observe that new versions of services may even be

rolled out this way, where the new version starts as an ac-

tive secondary and becomes primary when all instances as-

sociated with old versions are killed.

4.4.4 Live Service Upgrades
Occasionally, services go through significant upgrades,

where the API to the service broadens, and/or where the

type of the application state changes (e.g. the addition of

new counters). For such situations, Ambrosia allows devel-

opers to define an “upgraded Immortal”, where both old

and new versions of the application code are present in the

process.

When such an immortal is deployed, it recovers using

the old version of the service. When it becomes primary, it

calls a constructor for the new version of the service, which

takes as an argument the state of the old version at the time

it becomes primary. A new checkpoint is then taken of the

new version of the service, and the upgrade is complete.

To deploy such an upgrade, it is initially added as an ac-

tive secondary. While killing all the instances of the old

service, the new version becomes primary and the service

continues. Note that any old versions of the service still

running simply die once the new version becomes primary.

5 Anatomy of a Real Ambrosia Application
Ambrosia is a real system, used in production today. This

section describes a real Ambrosia service used to manage

the submission of commands to a collection of hundreds of

thousands of machines running another service.

Figure 6 shows the overall arrangement of the two ser-

vices. Working backwards from the machines whose imag-

es are being maintained, there is a command scheduling

and monitoring service, composed of multiple machines,

such that each machine is responsible for scheduling, sub-

mitting commands for, and monitoring a subset of the ma-

chines being maintained. Since there are between three and

four hundred thousand machines being maintained, we

need about 10 machines to satisfy the overall load, and

simply hash partition the overall collection of machines.

Each of these 10 machines accept user-submitted com-

mands from a command submission service. Note that

while the command submission service, and the command

scheduling/monitoring service are Ambrosia immortals,

Ambrosia is not running on either the machines which

(C1,0-100K)

Command Scheduler

Command Scheduler

Command Submitter

(C1,0-50K)

(C1,50k-100K)

Schedule 1

Schedule 50K

...

Running 1

Running 50K

...

Schedule 1

Schedule 50K

...

Running 1

Running 50K

...

(C1)

(C1)

(C1, 0)

(C1,0-100K)

Figure 6: Anatomy of a real ambrosia application

submit commands to the command submitter, or the ma-

chines being managed.

Note that the command submitter and all command

schedulers are running in active/active configurations, re-

sulting in high availability of the service, overall.

Starting from the command submission service and

working forwards, commands arrive through a web service

interface, which are serviced using a collection of threads

in the Ambrosia immortal. Non-Ambrosia calls are repre-

sented in our diagram by dashed lines, such as (C1, 0-100K)

in the example above. When a command arrives at the

command submitter, a self-call is made using an impulse

handler, called AcceptRequest, such as in the example

above, represented by the solid line. This makes the request

durable. The request itself contains the command to submit,

in the form of a Command class, and a list of machines on

which the command needs to be run. In this example, C1

must be executed on machines 0 through 100,000.

AcceptRequest, upon execution, partitions the set of

machines on which the command must be run into ten sets,

corresponding to the 10 immortal instances in the command

scheduling service. Each of these machines, then, receives

the command, and the associated set of machines it must be

run on, through the ScheduleRequest method. The

ScheduleRequest method then adds the new command to

the schedule of each machine it must be run on. Note that

some commands can be run in parallel, with other com-

mands, and others not. It is up to the scheduler to maintain

a legal schedule for each of the machines it is responsible

for. Note that the schedule is part of the serializable state of

the immortal, and therefore is automatically protected from

failure. In the example above, the first command scheduler

is responsible for managing the first 50,000 machines, so

the ScheduleRequest call sent to that Ambrosia instance

only applies to those machines. ScheduleRequest now

adds the new command C1 to each relevant schedule, serial-

izing conflicts while maximizing parallelism.

Associated with the schedule of each machine is a list of

currently running commands. which is also part of the seri-

alizable state of the immortal. Periodically, the scheduling

immortal scans through the list of currently running com-

mands, and (re)issues all open requests to individual ma-

chines through a web service API. This results in at least

once submission of commands to individual machines

maintained. The submission of requests is made idempotent

on the maintained machine, resulting in exactly-once exe-

cution of commands. In the above example, we see C1 sent

to all managed machines, since it must be run on them all.

It is worth pointing out that the thread which periodical-

ly scans the running commands and reissues them only runs

on the primary. For instance, we don’t want secondaries to

reissue these commands. For such situations, we overload a

method in the immortal called OnBecomingPrimary, which

runs just prior to establishing connections. The scanning

thread may be started there.

Once the command has completed, a finished message is

sent by the managed machine, to the correct scheduler

through a web service interface, which immediately calls

the impulse handler CommandFinished, which updates the

state of the machine’s schedule and running commands,

and schedules the next command/s if appropriate. Note that

in the case of a lost Finished message, the running com-

mand is periodically reissued automatically, resulting in a

resend of the Finished message without re-execution. This

guarantees exactly-once execution of the command on the

managed machines, regardless of failure.

It is interesting to observe that the interaction of the

scheduler and managed machines is a special case of the

NonDetTask logic shown in Section 4.2.1. In this case,

since all retries in the scheduler may be performed at once

on the same schedule, the logic is implemented directly

with impulse handlers, rather than using NonDetTask,

which has more flexible behavior.

6 Experimental Evaluation
In this section, we explore the performance of several dif-

ferent implementations for our mirror service, described in

Section 4. We focus on 4 different implementations:

 A non-resilient implementation using gRPC

 Ambrosia (C# client)

 Ambrosia (native client in C++)

 Azure Serverless - Based on the design described

in Section 3.

We consider 2 types of experiments. The first is a through-

put experiment, which tests the possible throughput (or dol-

lar cost of throughput in the case of Azure Serverless) for

payload delivery of various sizes. This is a streaming work-

load, where acknowledgements for each delivered payload

need not be delivered back to the sender.

The second experiment is designed to test the latency of

these various approaches under light load, which reflects

the best latency achievable by these systems. For this we

perform pings, where only one outstanding ping is allowed.

6.1 gRPC
This implementation is the ringer, as it represents a perfor-

mance-oriented cloud RPC framework that does not do any

logging or recovery. It is just straight-up RPC. As such, we

would expect it to soundly beat Ambrosia, and it should

represent an upper bound of what’s possible.

Of course, theory and practice are not always the same

in practice. One of the standard data streaming tricks we

employed, adaptive batching, allows us to navigate the

throughput/latency tradeoff very effectively. Only experi-

mentation will determine if gRPC has effectively incorpo-

rated this technology.

Note that for the throughput benchmark, we used the

gRPC streaming implementation in C++, which according

to [22], is the most performant option for this benchmark.

In this mode, there is a client and a server, where the server

has a streaming RPC, called Receive, which takes a byte

array of the appropriate size and keeps a running total of all

bytes received. The choice of a byte array is designed to

minimize serialization and deserialization overhead, which

is orthogonal to the issues tested here.

For the latency test, we use a single RPC call, which

performs the fastest round trip available in gRPC, perform-

ing one at a time to ensure minimum interference.

6.2 Ambrosia – C#
This implementation is the main focus of this paper. While

we provide implementations for both .NET framework, and

.NET core, and run on both Windows and Linux, we focus

in these experiments on the .NET framework implementa-

tion on Windows. We wrote two immortals: a client and a

server. Both are fully recoverable and generate their own

logs and checkpoints. Each write their logs to Azure stor-

age. In particular, we wrote our logs to 8x P10 Azure Pre-

mium Managed Disks which were pooled together in a

software RAID configuration with aggregate bandwidth of

800 MB/s. Note that this RAID configuration represents the

cheapest way to allocate the bandwidth we anticipated we’d

need for our tests.

Like the gRPC implementation, the server keeps track of

the total bytes sent, which is part of the serializable state of

the server and as a result is marked as a data member. Note

that checkpointing (but not logging) was turned off for

these experiments.

Like gRPC, we use our streaming RPC calls (Fork).

Conceptually, there is very little difference between the

code written to implement this microbenchmark in gRPC

and Ambrosia, although differences in C# and C++ make

the Ambrosia-C# version more readable.

6.3 Ambrosia – C++
In this version, we wanted to test the performance of our

C# language binding compared to a very lean binding writ-

ten in C++. It uses a simpler ring-buffer for communica-

tion between a networking thread and an application thread.

Note that we can arbitrarily mix and match C# and C++

clients and servers, since we implemented a C++ binding

that understands our serialization format for byte arrays.

For these experiments, we are using the same immortal

coordinator, written in C#, regardless of the language bind-

ing being used for the immortal code. We would expect

that the C++ implementation would be at least as perfor-

mant as the C# implementation, although this may not be

relevant if we are bottlenecked by the coordinator.

6.4 Azure Serverless and Stateless Compute
A popular design (see Figure 2) for microservices is to in-

gress data into a messaging layer such as Azure Event

Hubs, a fully-managed, real-time data ingestion service.

Event Hubs feeds data to a serverless execution fabric such

as Azure Functions, which pulls data batches from

EventHub and executes the user code. The user code is

stateless; it loads state from a persistent back-end such as

Azure Tables, runs application logic, and writes back the

state at the end of execution. We can compute the total cost

to run a microservice using this architecture, in terms of

dollar amount per month, per MB/sec of ingress. We as-

sume that both the messaging layer and the serverless func-

tions layer can parallelize as much as needed. The cost

components of a deployment are:

(1) Cost to ingress data into EventHub: It currently costs

$0.028 per million messages, plus $0.015 per hour, per

throughput unit (1 MB/sec ingress, 2 MB/sec egress).

Event Hubs also offers a dedicated option that costs

$4999.77 per month; we choose the lower cost be-

tween these options for our computations.

(2) Azure Function costs have two components. First,

there is a cost of $0.20 per million executions, we as-

sume that a function is invoked with batches contain-

ing up to 256KB of data from Event Hubs. Second,

there is an execution time cost of $0.000016 per GB-

sec, a unit of resource consumption. Resource con-

sumption is calculated by multiplying average memory

size in gigabytes by the time in milliseconds it takes to

execute the function. We assume 128MB of average

memory (the lowest allowed) and that it takes 0.1ms

per event in the batch fed to Azure functions.

(3) We perform one read and write to storage per function

invocation. Azure Tables cost $0.00036 per 10,000

transactions, with a $0.07 per GB cost for the actual

first terabyte of storage. We assume that 1GB is

enough to hold the state for our example.

We vary the per-message size from 16 bytes and up, and

compute costs over a month if the service ingests

100MB/sec over the entire month. We then scale the result

down to report the cost per month, per MB/sec of ingested

data.

6.5 Results

Note that in all cases except Azure serverless, we perform a

throughput experiment and a latency experiment on 2x

D14v2 Azure instances, where one acts as the client and the

other acts as the server. The same actual instances were

used in all experiments to eliminate hardware variation.

For the resilient implementation based on the design in

Section 3, which uses only serverless components, we

simply calculate costs for comparable work done, and

measure the latency of individual components, assuming

latency is additive.

The results of the throughput experiments are shown in

Figure 7. First, observe that our ringer isn’t a ringer after

all! Even though gRPC is a bare RPC framework, without

any notion of failure resiliency, it is nevertheless signifi-

cantly less performant for small message sizes than either

of the Ambrosia variations. For 16-byte arguments, it is ac-

tually more than 10x slower than Ambrosia-C#! We attrib-

ute this to our careful implementation of adaptive batching,

which is particularly helpful for small message sizes. Note

that gRPC briefly outperforms Ambrosia-C# a bit near the

throughput limit, but pulls back, for some reason, to effi-

ciency levels indistinguishable from Ambrosia-C#. We saw

this trend continue for even larger message sizes.

As expected, there is very little difference between the

Ambrosia-C# and Ambrosia-C++ versions. The Ambrosia-

C++ slightly underperforms, which we believe to reflect the

relative maturity levels of the bindings.

The results of the ping experiment are shown in Table 1:

 0.5 0.9 0.99 0.999 Mean

Ambrosia-C# 6.57 7.1 8.71 11.34 6.63

Ambrosia-C++ 6 6.47 8.79 12.48 6.1

gRPC 0.5 0.59 0.8 61.85 0.58

Table 1: Latency in milliseconds

The first four columns show the latencies for various

percentiles. For instance, 0.5 is the median, 0.9 is the value

for which 90% of the latencies are lower, etc. Unsurprising-

ly, gRPC, which simply sends a message across the wire

from one machine to the other, is the clear latency champ.

Ambrosia, on the other hand, must make two sequential

round trips to our P10 disks. What we see here is that adap-

tive batching and asynchrony completely closes the gap

(and then some) on throughput, but not latency. Oddly,

gRPC has the higher tail latency around 60ms. These are

not one-time outliers; they occur regularly throughout the

workload. It likely reflects global locking associated with

gRPC periodically cleaning up resources. We left out num-

bers for stateless compute due to measuring difficulties, but

expect latencies for the workflow to exceed 100ms [25].

For the final experiment, we compare the costs of per-

forming our ping experiment in terms of cost per month per

MB if we ran the experiment continuously for a month on

the hardware described. Performing any comparison of this

sort is fraught with difficult decisions which can make one

strategy fare better or worse.

For instance, EventHub can be run in either basic or

standard mode. There are several differences, one of which

is the ability to write queue history to cold storage for later

processing. The difference in price is a factor of 2. Of

course, Ambrosia provides this capability, making the log

directly available. Nevertheless, in our calculations, we

chose the basic level of support, as some users may not care

about this feature.

Another example of this is that we chose relatively ex-

pensive instances to run Ambrosia and gRPC on, wanting

Figure 7: Throughput as a function of message size

Figure 8: The price of RPCs that update state. In the case

of gRPC, the state is in memory (not resilient).

to test the limits of performance. As such, the numbers for

both Ambrosia and gRPC can likely be significantly im-

proved by optimizing for price/performance, rather than

performance. Also, we are assuming the on demand price

of these VMs, which can be reduced by about 30% with

long term reservations.

With these caveats in mind, the results are shown in

Figure 8. First, note that both gRPC and Ambrosia are sig-

nificantly cheaper than stateless compute. For gRPC, this

isn’t a surprise, as stateless compute has resilience to fail-

ure, and gRPC doesn’t. The bigger surprise is that Ambro-

sia is even more dramatically cheaper. This is due to the

combination of effective adaptive batching, which dramati-

cally helps for small message sizes, and the very low cost

of storage bandwidth relative to compute. For instance, the

monthly cost of a DS14 instance is $1541.03, while the

monthly cost of 100MB of continuous storage bandwidth is

only 19.71.

At larger message sizes, all the options become closer,

as differences in adaptive batching and CPU efficiency be-

come irrelevant. In these experiments, the state is a single

counter which can be read once for each batch, then updat-

ed with a single write per batch. More typical is that the

application is partitioned, resulting in close to one read and

write for each message in a batch. This would increase the

cost of stateless compute for small messages significantly.

7 Further Related Work
Throughout the paper, we have mentioned much related

work in the DB and systems communities, which we will

not revisit here. We have, however, not talked about related

work in deterministic computation, which is relevant for

language bindings, or maybe even the construction of lan-

guages and runtimes specifically for use with Ambrosia.

Typically, determinism is accomplished via a combination

of programmer obligations and language-specific mecha-

nisms. Ensuring deterministic execution has been the sub-

ject of a substantial body of research in operating systems

[10,11], threading libraries [12,13], and programming lan-

guages [14,15]. When developing a service to run on top of

Ambrosia, any combination of these approaches may be

used, as determinism is a local property of each communi-

cation endpoint.

8 Future Work
While Ambrosia in its current form is immediately useful,

as is shown in Section 5, there are many more interesting

research problems to think about and solve, as well as asso-

ciated exciting possible capabilities.

The most obvious next step is elastic scaleout. While da-

tabases have certainly solved the problem for transactional

systems, they rely on the ability to abort in flight transac-

tions. In an exactly once system, this is not an option, and

performant solutions to this problem must be found as part

of a desirable implementation.

While this work has made little of the ability of immor-

tals to be relocated on other machines, this is potentially

very exciting in the world of devices, where Ambrosia fa-

cilitates the construction of easily migratable apps from one

device to another, without loss of state.

Figuring out how to support other languages, including

Javascript, and Java, is both useful and interesting. For in-

stance, the language binding choices made for Javascript, a

single-threaded language, may be quite different from a

language like C#, where thread non-determinism can com-

plicate achieving replayably deterministic behavior.

Finally, as the number of CPUs and distributed state

proliferates with IOT, the problem of distributed state man-

agement in distributed applications will become excruciat-

ing. Ambrosia provides a crucial building block to tame

this complexity. Understanding Ambrosia’s role, and po-

tential gaps, for these scenarios is very important.

9 Conclusions
This paper introduces Ambrosia, the first general purpose

distributed platform that provides its developers virtual re-

siliency with high performance, and the flexibility of work-

ing across a variety of machines, operating systems, and

languages. Furthermore, Ambrosia supports high availabil-

ity, time-travel debugging, retroactive debugging, and live

service upgrades. Ambrosia is a real system, used to build a

service which manages hundreds of thousands of machines.

Ambrosia’s performance depends upon technology, de-

veloped by the database community, used to develop per-

formant data processing systems. For instance, we make

extensive use of adaptive batching from the streaming

community, efficient log writing, and batch commit.

Therefore, Ambrosia achieves dramatically higher

throughput than gRPC, a widely used non-resilient RPC

framework, outperforming gRPC by as much as 10x for

smaller message sizes, typical of cloud services, but at

higher latency costs due to cloud storage latency. Further-

more, Ambrosia is both simpler to program, and cheaper to

run, than a typical stateless compute cloud configuration

designed to be resilient to failure, outperforming this con-

figuration by over 100x for small message sizes. These re-

sults also indicate that the stateless compute approach em-

braced by most cloud developers is likely a temporary

workaround until systems like Ambrosia mature.

REFERENCES
[1] Roger S. Barga, David B. Lomet.. Phoenix: Making Applications

Robust. SIGMOD Conference 1999: 562-564

[2] Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplified Data Pro-

cessing on Large Clusters. OSDI Conference 2004: 137-150

[3] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, Ion Stoica: Spark: Cluster Computing with Working Sets.

HotCloud 2010

[4] Irene Zhang, Adriana Szekeres, Dana Van Aken, Isaac Ackerman,

Steven D. Gribble, Arvind Krishnamurthy, Henry M. Levy: Customi-

zable and Extensible Deployment for Mobile/Cloud Applications.

OSDI 2014: 97-112

 [5] Laura M. Haas, Patricia G. Selinger, Elisa Bertino, Dean Daniels,

Bruce G. Lindsay, Guy M. Lohman, Yoshifumi Masunaga, C. Mo-

han, Pui Ng, Paul F. Wilms, Robert A. Yost: R*: A Research Project

on Distributed Relational DBMS. IEEE Database Eng. Bull. 5(4): 28-

32 (1982)

[6] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, David B. Johnson: A

survey of rollback-recovery protocols in message-passing systems.

ACM Comput. Surv. 34(3): 375-408 (2002)

[7] Wilschut, A., and Apers, P.: Dataflow Query Execution in a Parallel

Main-memory Environment. In Distributed and Parallel Databases

1(1), 1993.

[8] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, James F.

Terwilliger: Trill: Engineering a Library for Diverse Analytics. IEEE

Data Eng. Bull. 38(4): 51-60 (2015)

[9] Manish Mehta, David J. DeWitt: Data Placement in Shared-Nothing

Parallel Database Systems. VLDB J. 6(1): 53-72 (1997)

[10] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient

system-enforced deterministic parallelism. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implementa-

tion, 2010.

[11] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven Gribble. Deter-

ministic process groups in dOS. In Proceedings of the 9th USENIX

Conference on Operating Systems Design and Implementation, 2010.

[12] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo:

Efficient deterministic multithreading in software. In Proceedings of

the 14th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS XIV, pages

97–108, New York, NY, USA, 2009. ACM.

[13] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads:

Efficient deterministic multithreading. In Symposium on Operating

Systems Principles. ACM, 2011.

[14] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and

Ryan R. Newton. Freeze after writing: quasi-deterministic parallel

programming with lvars. In POPL, pages 257–270, 2014.

[15] Robert Bocchino, Mohsen Vakilian, Vikram Adve, Danny Dig, Sarita

Adve, Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Pat-

rick Simmons, and Hyojin Sung. A type and effect system for deter-

ministic parallel Java. In Proceeding of the 24th ACM SIGPLAN

conference on Object oriented programming systems languages and

applications - OOPSLA ’09, page 97, Orlando, Florida, USA, 2009.

[16] Philip A. Bernstein, Sergey Bykov: Developing Cloud Services Using

the Orleans Virtual Actor Model. IEEE Internet Computing 20(5): 71-

75 (2016)

[17] Badrish Chandramouli, Raul Castro Fernandez, Jonathan Goldstein,

Ahmed Eldawy, Abdul Quamar: Quill: Efficient, Transferable, and

Rich Analytics at Scale. PVLDB 9(14): 1623-1634 (2016)

[18] Justin J. Levandoski, David B. Lomet, Sudipta Sengupta: LLAMA: A

Cache/Storage Subsystem for Modern Hardware. PVLDB 6(10): 877-

888 (2013)

[19] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro,

Michael R Stonebraker, and David A. Wood. 1984. Implementation

Techniques for Main Memory Database Systems. In Proceedings of

the 1984 ACM SIGMOD International Conference on Management

of Data (SIGMOD ’84). ACM, New York, NY, USA, 1–8.

https://doi.org/10.1145/602259.602261

[20] Common Runtime for Applications (CRA) – a runtime for distributed

dataflow applications. https://github.com/Microsoft/CRA.

[21] Badrish Chandramouli, Jonathan Goldstein: Shrink - Prescribing Re-

siliency Solutions for Streaming. PVLDB 10(5): 505-516 (2017).

[22] gRPC Benchmarking. http://grpc.io/docs/guides/benchmarking.html

[23] ET Barr, M Marron: Tardis: Affordable time-travel debugging in

managed runtimes. ACM SIGPLAN Notices 49 (10), 67-82

[24] AsyncWorkflow.

 http://github.com/ljw1004/blog/tree/master/Async/AsyncWorkflow

[25] Blog Post Concerning Event Hub Latency.

http://blogs.msdn.microsoft.com/opensourcemsft/2015/08/08/choosin

g-between-azure-event-hub-and-kafka-what-you-need-to-know/

https://doi.org/10.1145/602259.602261
https://github.com/Microsoft/CRA
http://grpc.io/docs/guides/benchmarking.html
http://github.com/ljw1004/blog/tree/master/Async/AsyncWorkflow

