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Abstract

Spreadsheet table detection is the task of detecting all tables
on a given sheet and locating their respective ranges. Auto-
matic table detection is a key enabling technique and an ini-
tial step in spreadsheet data intelligence. However, the de-
tection task is challenged by the diversity of table structures
and table layouts on the spreadsheet. Considering the anal-
ogy between a cell matrix as spreadsheet and a pixel matrix
as image, and encouraged by the successful application of
Convolutional Neural Networks (CNN) in computer vision,
we have developed TableSense, a novel end-to-end frame-
work for spreadsheet table detection. First, we devise an ef-
fective cell featurization scheme to better leverage the rich in-
formation in each cell; second, we develop an enhanced con-
volutional neural network model for table detection to meet
the domain-specific requirement on precise table boundary
detection; third, we propose an effective uncertainty metric
to guide an active learning based smart sampling algorithm,
which enables the efficient build-up of a training dataset with
22,176 tables on 10,220 sheets with broad coverage of di-
verse table structures and layouts. Our evaluation shows that
TableSense is highly effective with 91.3% recall and 86.5%
precision in EoB-2 metric, a significant improvement over
both the current detection algorithm that are used in commod-
ity spreadsheet tools and state-of-the-art convolutional neural
networks in computer vision.

Introduction
Spreadsheets are a critical end-user development tool for
data management and analysis. In spreadsheet data, the ta-
ble is a key structure for data processing and information
presentation. Automatic table detection is an important ini-
tial step for one-click intelligence features such as Ideas in
Excel or Explore in Google Sheets, where insights can be
recommended from the detected tables with an automated
end-to-end experience. It is also a key enabling technique
for spreadsheet intelligence on the cloud or mobile devices.
On the cloud, a vast variety of data are available for batch
processing while there is no user interface to specify table
ranges. On mobile devices, user navigations and interactions
for specifying table ranges are restricted to a small screen.

Despite the importance of automatic table detection for
spreadsheets, this problem has largely been overlooked for
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decades in both the research community and industry. Pre-
vious research on table detection has mainly targeted other
medias, e.g. HTML (Wang et al. 2012; Zhai and Liu 2005;
Wang and Hu 2002), images (Gatos et al. 2005; Zuyev 1997;
Hu et al. 1999; Liu, Mitra, and Giles 2008; Shafait and Smith
2010) and PDFs (Fang et al. 2012; Liu et al. 2007). The aim
is to retrieve (mostly likely single) table regions from am-
bient text. The major challenge for these techniques is the
understanding of binary files based on meta data analysis
and image processing, but the table boundaries are clear. The
scenario with spreadsheet table detection is fundamentally
different. As demonstrated in Figure 1, a single sheet can
have multiple tables cluttered around with potentially differ-
ent structures for each table. The diversity in multi-table lay-
out and structure significantly confounds the problem with
obfuscated table boundaries. To the best of our knowledge,
there is no prior research effort on this problem in academia,
while region-growth techniques are commonly used in com-
modity spreadsheet tools. However, region-growth is quite
fragile with the presence of complicated table structures and
layouts on the sheet. For example, it fails on the sample sheet
shown in Figure 1.

A key insight from inspecting our spreadsheet corpus is
that the vast majority of tables are “human-friendly” but not
“machine-friendly”. Only less than 3% of the tables in our
corpus have a pre-defined data model or are properly nor-
malized for automated analysis. Most tables are designed
and crafted for summarization or reporting purposes, with
customized table designs by end users to fit their specific
goals. This often leads to considerable diversity in such ta-
bles and their layouts on a sheet, with artifacts to improve
clarity and visual quality. Some of these artifacts are shown
in Figure1. For the table at range B4:K371, range B31:G33
is embedded in the larger homogeneous range of the table,
aligning to the same shared header but cutting the homoge-
neous range into two sections. It is not uncommon for het-
erogeneous data fields to be inserted into a homogeneous
range intentionally to improve summary. It is also typical
for users to intentionally insert blank rows or columns in-
side a table to improve alignment and clarity. Furthermore,

1By convention, a contiguous cell range is identified by ad-
dresses of the cells in the top-left and bottom-right corners sepa-
rated by ‘:’. Cells are referenced by the column and row indices.
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Figure 1: A sample spreadsheet with three tables showing various artifacts. Dotted red bounding boxes and dashed green
bounding boxes show the tables detected by TableSense and Mask R-CNN, respectively.

users tend to arrange related tables with similar structures
closely with a small gap between them, which is the case for
the second table at range M7:V15 and the third table at range
M17:V25 in Figure 1. While these designs make the spread-
sheet tables more “human-friendly”, they also make the ta-
ble regions less coherent and table boundaries more ambigu-
ous. This significantly challenges spreadsheet table detec-
tion, making it difficult to achieve desirable accuracy based
on simple region-growth or conventional machine learning
methods.

Alternatively, a sheet can be viewed as a two-dimensional
array of cells, and a table is a subset of cells occupying a
contiguous range on the sheet. This motivates a distinct ap-
proach by leveraging convolutional neural networks (Gir-
shick et al. 2014; Uijlings et al. 2013; Hosang et al. 2016;
LeCun et al. 1989; Krizhevsky, Sutskever, and Hinton 2012;
Girshick 2015; Ren et al. 2015) to capture spatial corre-
lations and learn high-level representations of cell matri-
ces from vast variety of real-world spreadsheets. Neverthe-
less, the cross-domain application of CNNs is never straight-
forward due to domain-specific characteristics of spread-
sheet data and tasks. Directly applying CNNs to spread-
sheet data without incorporating domain-specific and task-
specific cues fails to achieve desirable accuracy. In this pa-
per, we propose TableSense, a CNN model with several key
enhancements customized for spreadsheet table detection. In
TableSense, there are three major technical contributions to
address the following domain-specific challenges.

1. Unlike pixels in images, there is no canonical represen-
tation for cells in spreadsheets. Cells typically contain much
richer information such as data types, data formats, cell for-
mats, formulas, etc. We have designed an effective featuriza-
tion scheme to capture cell information to initiate end-to-end
model learning.

2. Unlike object detection in images, table detection in
spreadsheets requires precise boundary segmentation. Leav-
ing one or two lines of pixels out of a region does not in-
validate a correct object detection in an image, but leaving a

single line of cells out of a table region leads to incorrect ta-
ble detection results on a sheet. In TableSense, we proposed
a key enhancement for refining the table boundaries.

3. Unlike image data, which is easy to collect and to la-
bel, spreadsheet data is of much smaller scale and is thus
much sparser regarding to the variety of table structures. La-
beling the tables for spreadsheet is also more difficult and
time-consuming as the human labeler often needs to under-
stand the meaning of the table for correct labeling. There-
fore, training set selection for labeling requires smart sam-
pling from the limited dataset to quickly achieve desirable
coverage of various table structures and optimize sample
efficiency for training. In our method, we adopt the active
learning approach to label data in iterations, where we de-
fine an effective uncertainty metric as key to selecting the
least confident sheets to label in the next iteration.

We have built a working system for spreadsheet table de-
tection based on the TableSense technology. Our evaluation
shows that TableSense is highly effective. It achieves 91.3%
recall and 86.5% precision measured by our proposed EoB-2
metric, a significant improvement over region-growth algo-
rithms that are used in commodity spreadsheet tools (58.5%
recall and 55.2% precision) and the state-of-the-art convolu-
tional neural networks used in computer vision tasks.

Preliminaries

Problem Statement

Spreadsheet table detection is the task of detecting all ta-
bles on a given sheet and locating their respective ranges.
In such a task, an input sheet is represented by a matrix
of cells. The output is a list of tables detected, where the
range of each detected table is represented by a 4-tuple
(colleft, rowtop, colright, rowbottom), which specifies the x and
y coordinates for the top-left and bottom-right corners of the
bounding box (bbox).



Performance Metric
For the object detection task in images, a successful de-
tection is usually measured by the Intersection-over-Union
(a.k.a. IoU) metric. Intuitively, given a detected bounding
box B and its corresponding ground truth bounding box B

′
,

IoU measures the area of intersection against the area of
their union, i.e.,

IoU =
area(B

⋂
B
′
)

area(B
⋃
B′)

(1)

A threshold of IoU > 0.5 has been commonly used to in-
dicate successful detection in object detection. However, for
spreadsheet table detection, the IoU threshold of 0.5 is too
loose to be useful. Since table detection is a preliminary step
for intelligent spreadsheet data analysis, subsequent steps
would be applied to the detection results to perform table
structure analysis and data summaries discovery2. Hence, in
general, the task requires more precise bounding box detec-
tion for a table.

Therefore, we define an Error-of-Boundary (EoB) metric
to measure how precisely the detection result is aligned to
the ground truth bounding box.

EoB =max(|rowB
top − rowB

′

top |, |rowB
bottom − rowB

′

bottom|,

|colBleft − colB
′

left|, |colBright − colB
′

right|)
(2)

EoB==0 means the detected bounding box exactly
matches the ground truth, while EoB≤2 is good enough to
flag the successful detection of a table on a sheet. The toler-
ance of 2 is chosen by accounting for the existence of titles,
footnotes and side notes around the exact table region, and
one can employ existing techniques such as (Krishnakumar
2007) to distinguish them given our detection results within
the specified tolerance. In this paper, we report precision and
recall with both EoB≤2 (EoB-2) and EoB==0 (EoB-0), re-
spectively.

Datasets
All experimental data in the development of TableSense is
from our WebSheet dataset, which is a web-crawled spread-
sheet corpus including 4,290,022 sheets.

WebSheet10k is a sampled subset of WebSheet for hu-
man labeling. It contains 10,220 sheets in English, where all
table regions on each sheet have been labeled with a cor-
responding bounding box. To control labeling quality, each
sheet has been labeled by a human labeler and then verified
by another human labeler. To ensure high coverage of var-
ious table structures and multi-table layouts on sheets, we
adopt an active learning framework to build WebSheet10k
in iterations. Details are provided in Section .

WebSheet400 is our test set with labels, which contains
400 randomly sampled sheets with 795 tables from Web-
Sheet without any overlap with WebSheet10k.

2https://support.office.com/en-us/article/ideas-in-excel-
3223aab8-f543-4fda-85ed-76bb0295ffc4

TableSense Suite
Most spreadsheet documents are created by end users for
human inspection. To enhance human readability, various
visual attributes, such as colors and border lines, and seman-
tic attributes, such as text formats and formulas, are usually
used to create tables. The great diversity in human tabula-
tion styles poses great challenges for approaches based on
heuristics or shallow learning models to fully capture the in-
trinsic table features. Alternatively, a sheet can be viewed as
a two-dimensional array of cells, and a table is a subset of
cells occupying a contiguous range on the sheet. This moti-
vates a distinct approach by leveraging convolutional neural
networks to capture spatial correlations and learn high-level
representations of sheet cells.

Nevertheless, the table detection task has some domain
specific characteristics. As demonstrated in our experiments
in Section , direct application of standard object detection
methods fails to achieve satisfactory accuracy. Hence, in
this section, we customize the CNN framework for table de-
tection, and discuss three key approaches for the success-
ful integration of deep CNN into our detection framework,
including cell featurization, model enhancement with pre-
cise bounding box regression and active learning for efficient
data labeling.

TableSense Framework
Figure 2 presents our framework tailored for table detection.
It is an end-to-end model containing a series of modules as
follows.
• Cell featurization: Since cells do not have a canonical

representation in the spreadsheet, we need to extract cell
features before feeding them to the pipeline. Details of
cell featurization will be provided in Section .

• CNN backbone: CNN is the backbone of our framework
to capture spatial correlations and learn high-level repre-
sentations from input cell matrix (Girshick et al. 2014;
Uijlings et al. 2013), and fully convolutional network is
adopted here so as to enable the model to process spread-
sheets of various sizes without rescaling them.

• Table detection head: The two-stage detection mecha-
nism which achieves state-of-the-art results in computer
vision (Ren et al. 2015; Girshick et al. 2014; He et al.
2017) is adopted. In this module, the feature maps gen-
erated by the CNN backbone are fed to a Region Pro-
posal Network (RPN), which further produces a list of Re-
gions of Interest (RoIs). Then RoIAlign (He et al. 2017)
extracts feature maps from each RoI for bounding box
regression. Then a CNN-based bounding box regression
branch (Girshick 2015) refines the boundaries of these
RoIs, a CNN-based table classifier simultaneously scores
these RoIs, and a segmentation branch generates the cell-
level table mask. These branches are applied to each RoI
separately. Finally, Non-Maximum Suppression (NMS) is
used to rank the bounding boxes and filter redundant ones
(Ren et al. 2015; He et al. 2017). For our task, RoIAlign
which is based on bilinear interpolation can preserve more
precise per-cell correspondence than RoIPool (Ren et al.
2015) which uses simple hard quantization.
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Figure 2: Framework of TableSense for spreadsheet table detection.

Table 1: 20 features employed for cell featurization.
Description Feature value
Value string
If the string is non-empty. {0, 1}
Length of the string. Integer
Proportion of digits in the string. [0.0, 1.0]
Proportion of letters in the string [0.0, 1.0]
If percent symbol (“%”) exists in the string. 0, 1
If decimal point (“.”) exists in the value 0, 1
Data format
If data format matches a numerical template 0, 1
If data format matches a date template 0, 1
If data format matches a time template 0, 1
Length of the matched template string, if any. Integer
Cell format
Background fill color Categorical
Font color Categorical
If bold font is applied. 0, 1
If the cell has left border. 0, 1
If the cell has top border. 0, 1
If the cell has right border. 0, 1
If the cell has bottom border. 0, 1
If the cell is merged with horizontal neighbor. 0, 1
If the cell is merged with vertical neighbor. 0, 1
Formula
If formula exists in the cell. 0, 1

In this paper, we enhance the Bounding Box Regression
(BBR) with a novel Precise Bounding box Regression (PBR)
to achieve precise table boundaries.

Cell Featurization
Cells in a spreadsheet correspond to pixels in an image,
but they encode much richer information than pixels do.
Whether such information is well extracted and leveraged
can lead to remarkable differences in the accuracy of table
detection, as reported in Section . Therefore, cell featuriza-
tion is an additional but important initial step in TableSense.
In general, there are four major information sources of a
cell, i.e., value string, data format, cell format, and formula.
While value string and cell format are visually perceivable to
users, data format and formula are latent unless users explic-
itly explore them. We have identified 20 features as shown
in Table 1 from the above information sources. Each fea-
ture acts as a separate channel in the input layer. If the input
spreadsheet is a matrix of h×w cells, then the input will be
a h×w×20 tensor, to which the convolution operations are
directly applied.

Our insights behind the feature set are briefly summarized
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Figure 3: Framework of PBR module in TableSense.

as follows. Unlike free-form textures in an image object, a
spreadsheet table has its unique characteristic of being es-
sentially a composition of vertically/horizontally expanded
components, which are headers, data fields and data records.
Identifying cell-level cohesion along the expanding direc-
tion of such components and detecting cell-level contrast
across components would intrinsically help identify those
components and further scope the table range. Consistency
in data formats, formulas, and other statistics are all effec-
tive information for the detection of such cell-level cohesion
and contrast.

Precise Bounding Box Regression for TableSense
The Bounding Box Regression (BBR) module in Faster R-
CNN (Girshick 2015) is optimized for object detection. In
object detection, we do not care much about the precise
bounding box locations, but rather the overlapping ratio be-
tween the detected bounding box and ground truth. This is
modeled by the BBR cost function below:

Lreg(t, t
∗) =

∑
i∈{x,y,w,h}

smoothL1
(ti − t∗i ) (3)

smoothL1
(x) =

{
0.5x2, if|x| < 1,
|x| − 0.5, otherwise, (4)

where smoothL1
() is the smooth L1 loss function defined

in (Girshick 2015), tx, tw , tx∗ and tw∗ are relative coordi-



nates with the encoding scheme below (likewise for ty , th,
t∗y and t∗h):

tx = (x− xa)/wa, tw = log(w/wa)

tx
∗ = (x∗ − xa)/wa, tw

∗ = log(w∗/wa)
(5)

where x, y, h and w denote the centroid coordinates,
width and height of the predicted bounding box, xa and x∗
denote the x-coordinates for the anchor box and ground truth
box respectively (likewise for y, w, h). This can be thought
of as a bounding-box regression from an anchor box to a
nearby ground-truth box.

The cost function defined above is designed to minimize
the relative error instead of absolute deviations. This leads
to distinct variable updating behaviors for different sized an-
chor boxes. We show this for x and w below, and the same
analysis also holds for y and h. The gradient of Lreg at x and
w is as follows:

∂Lreg(t, t
∗)

∂x
=

 (x− x∗)/wa
2, |x− x∗| < wa,

1/wa, x− x∗ ≥ wa,
−1/wa, x− x∗ ≤ −wa,

(6)

∂Lreg(t, t
∗)

∂w
=

 ln w
w∗ /w,

w∗

e < w < ew∗,
1/w, w ≥ ew∗,
−1/w, w ≤ w∗

e ,
(7)

Note the gradient at x is at least inversely proportional
to wa, and the gradient at w is inversely proportional to w,
since ln(w/w∗) is small. Hence, the larger anchor box width
wa, the smaller step variable x is updated in the backward
pass, even though the absolute deviation x − x∗ may still
be large. Likewise, w also takes a small update step if w is
large, even though w may still be far from w∗. Hence, the
BBR loss lacks sensitivity for absolute errors in large tables
compared with relative errors in small tables. In addition, the
downsampling strategy in standard RoIPool and RoIAlign
module also leads to potential accuracy loss.

To address the above problem, we propose a new Pre-
cise Bounding Box Regression (PBR) module to extend the
standard BBR in Faster R-CNN. As shown in Figure 3, the
PBR module implements a cell-level boundary regression
for each direction separately based on the corresponding lo-
cal receptive field with a size of h×2k for horizontal direc-
tion and 2k×w for vertical direction, where k controls the
maximum tolerance on absolute deviation for PBR regres-
sion. This mechanism prevents the RoIAlign module from
downsampling cell features in the regression direction, and
effectively preserves cell-level precision for boundary re-
gression. We combine BBR with PBR to predict the precise
table boundaries in a coarse-to-fine fashion, where BBR is
applied to probe for the approximate table boundaries, and
PBR is employed to refine the result returned by BBR. In
contrast, it would be difficult to find the exact boundaries
using standard BBR in isolation as discussed above. On the
other hand, using PBR alone may have convergence issues
when there is a large deviation between the initial location
and ground truth which we will discuss shortly.

We define new regression targets tleft, tright and ground
truth t∗left, t

∗
right for PBR in terms of absolute deviations from

the anchor (likewise for ttop, tbottom, t∗top and t∗bottom).

tleft = x− xa − w/2, tright = x− xa + w/2

t∗left = x∗ − xa − w∗/2, t∗right = x∗ − xa + w∗/2
(8)

The purpose of PBR is to minimize the absolute devia-
tions between predicted boundary boxes and their ground
truth values. It can be formulated as the cost function below:

LPBR(t, t
∗) =

∑
i∈{top,bottom,left,right}

R(ti − t∗i ) (9)

R(x) =

{
0.5x2, if |x| < k,
0.5k2, otherwise, (10)

whereR(x) denotes the robust loss function for absolute de-
viations, and parameter k controls the maximum tolerance
on absolute deviation for PBR regression. The loss increases
monotonically with deviations less than k columns/rows and
the same loss is incurred for any deviation over k. The loss
R(x) is well suited for precise boundary detection, since
any mismatch between detected boundaries and the ground
truth is undesirable, but larger deviations should not be over-
penalized either.

In this task, too small k would limit PBR’s receptive field
and cause failure. But for large k, if the receptive field of a
single PBR contains multiple top (similar for left, right, bot-
tom) boundaries from multiple enclosed table regions, the
PBR layer may fit to the mismatched one at test time. To re-
duce such risks, a moderate value of k is preferred. Further-
more, because of the limitation of k, the initial bounding box
should be reasonably close to the ground truth forR(x) to be
effective. Hence BBR is adopted for coarse localization be-
fore the use of PBR, and it also makes PBR converge faster.
In theory, we could cascade multiple PBRs before BBR for
a larger receptive field.

With the proposed PBR module, we can see that the vari-
able updating behaviors are dependent on the absolute devi-
ation independent of the size of the bounding box. We show
this for x and w below, and the same analysis also holds for
y and h. The gradients of LPBR on x and w are as follows.

∂LPBR(t, t
∗)

∂x
= (tleft − t∗left) sign (k − |tleft − t∗left|)

+
(
tright − t∗right

)
sign

(
k − |tright − t∗right|

) (11)

∂LPBR(t, t
∗)

∂w
=

(tleft − t∗left)

2
sign (k − |tleft − t∗left|)

+
(tright − t∗right)

2
sign

(
k − |tright − t∗right|

) (12)

The gradients above indicate that the updates for x and
w only depend on the absolute deviations x − x∗ and w −
w∗. Since the prediction targets are not normalized by w or
rescaled by logarithm, the PBR module is better suited for
precise boundary prediction.



The losses of BBR and PBR are added together for end-
to-end training. While BBR and PBR both employ CNNs as
their backbones, different prediction targets, loss functions,
receptive fields and RoIAlign targets are adopted. The PBR
module can effectively refine the BBR predictions and fur-
ther significantly improves localization accuracy.

Active Learning Framework
Training a table detection system requires a large amount of
labeled spreadsheet data. Since it is unrealistic to label all
sheets due to the amount of time and labor cost involved,
we adopt an active learning framework to label sheets in it-
erations, thus minimizing the labeling cost while maximiz-
ing learning performance. The main assumption behind ac-
tive learning is that if an active learner can freely select any
samples it wants, it can outperform random sampling with a
smaller amount of labeled data.

A key consideration for active learning is the sampling
strategy used by the sheet selector for the selection of sheets
for human labeling. The desirable strategy should make ef-
fective usage of the labeled data to optimize sample effi-
ciency in learning. Thus, we employ a sampling strategy to
select the most uncertain sheets in each iteration for the hu-
man labeler. The inclusion of uncertain samples from current
iteration into the training set is more likely to achieve higher
gains in learning the detector for the next iteration.

We propose six measures below for the evaluation of sheet
uncertainty.
• Classification uncertainty score: One minus the average

classification probability returned by the softmax values
for all detected table regions on the sheet.

• Mismatch score of segmentation and detection masks:
One minus the IoU between the segmentation mask and
detection mask. The detection mask is produced by set-
ting the values of all cells inside the detected table region
to 1 and 0 otherwise.

• Table/Sheet-level Sparsity factor: Table-level sparsity fac-
tor is given by the ratio of blank cells in the detected table
region, while sheet-level sparsity is given by the lowest
sparsity factor for all tables detected on the sheet.

• Overlapping region indicator: 1 if there is overlapping be-
tween any two detected table regions and 0 otherwise.

• Boundary mismatch indicator: 1 if there is boundary mis-
match and 0 otherwise. A mismatch is identified if any
detected boundary is on a blank column or row.

• Out-of-region coverage ratio: The ratio of the number of
non-blank cells outside the detected table regions to the
total number of non-blank cells.
Note that the first two measures above are based on the de-

tector output, and the remaining ones are based on domain-
specific rules. The overall sheet uncertainty metric is then
given by the L2 norm of the 6-dimensional vector compris-
ing the six measures above. A high score for the uncertainty
metric indicates low confidence in the detector output result,
and/or the output is incompatible with our domain knowl-
edge. Thus, we can select the unlabeled sheets by thresh-
olding on the overall uncertainty score. The active learning

algorithm is described in Algorithm 1. The stop criteria are
met when model accuracy exceeds a predefined threshold or
does not change over a few consecutive iterations.

Algorithm 1 Active learning for TableSense
Require: Spreadsheet set X = {x}, domain-specific rules θ
Ensure: Table detector D(T )

1: Initialize labeled sheet set T = {}, and detector D(T )
2: Build sheet selector S based on D(T ) and θ
3: repeat
4: S selects subset XL = {xL} from X − T
5: Human labels on {xL} with table regions {rL},

update T ← T ∪ {(xL, rL)}
6: Train table detector D′(T ) on T , update detector

D(T )← D′(T )
7: until pre-defined stop criteria is met
8: return table detector D(T )

Evaluation Results
Implementation and Experiment Setup
We customized ResNets (He et al. 2016) as the backbone for
TableSense, and the pooling layers are removed. The BBR
module is combined with the PBR module to achieve accu-
racy promotion. Both the BBR and PBR modules contain
three convolutional layers yet have different receptive fields
and prediction targets.

We use sheets in WebSheet10K for training and sheets
in WebSheet400 for testing. To parse Excel files and ex-
tract features, we use the ClosedXML3 library. Since spread-
sheets have various sizes, the mini-batch size for training is
set to 1. Due to the large variations in sheet size, the span
of RPN anchors and the span of aspect ratios in our model
range from 8 to 4,096 and 1/256 to 256 incrementing by fac-
tor of 2 respectively. As a result, our model can detect small
tables with only 12 cells up to large tables with over 100,000
cells. For the region proposal module, the proposed region
number is set to 2,000, and the top 2,000 RoIs are further
classified and refined in the detection branch. The weight
decay is set to 0.0001 for regularization. The parameter k
for the PBR module is set to 7. The rescaled output size of
RoIAlign is 14×14. Our experiments are implemented on
Nvidia V100 GPUs with TensorFlow (Abadi et al. 2016).
Figure 4 shows the accuracy curve on test set during train-
ing. It can be clearly seen that the F1 scores for detection
keep improving over the epochs, indicating the effectiveness
of TableSense training for table detection. The trained model
takes an average of 72ms for testing each sheet.

Effectiveness of Featurization
We design our first comparison experiment to evaluate the
effectiveness of different feature sets. The same training
and testing flow of the TableSense model are repeated three
times, for the binary valued features, features for value
strings, and the full feature set in Table 1 respectively. The
evaluation results are shown in Table 2.

3https://github.com/ClosedXML/ClosedXML



Figure 4: Accuracy curve on test set WebSheet400.

Table 2: Precision and recall on WebSheet400 for Table-
Sense based on different feature sets.

% EoB-0 EoB-2
Feature Recall Precision Recall Precision
Binary value feature 58.7 55.4 69.4 64.1
Value string feature set 69.5 70.2 80.6 77.3
Full feature set 80.8 78.1 91.3 86.5

From the comparison results, we can see that proper cell
feature representation plays a vital role in the effectiveness
of the learning framework. To fully leverage the power of
TableSense, cell features need to be properly designed to
encode available information from diverse sources. Using a
single feature set may lead to degenerate performance. Our
feature set is highly effective for spreadsheet table detection.

Effectiveness of TableSense Architecture
We invest both the table detection functionality in existing
commodity spreadsheet tools as well as the state-of-the-art
method for object detection in computer vision. So we com-
pare our method with these algorithms below.

• Region-growth, the existing table detection feature in Ex-
cel is based on region-growth with stride 1. Once a user
chooses a cell and press Ctrl+*, Excel will automatically
find the table range by expanding the area to include non-
blank neighboring cells based on 8-connectivity.

• Region-growth + SVM, we combine multi-stride region-
growth and SVM, where an SVM model is trained to pre-
dict whether the result of region-growth corresponds to a
true table region.

• Mask R-CNN, the state-of-the-art deep learning based
object detector.

• YOLO-v3, the state-of-the art one-stage object detector
with high speed/accuracy trade-off.

• Faster R-CNN, one of the state-of-the-art object detec-
tors based on two-stage, proposal-driven mechanism.

To ensure unbiased comparisons, all these methods use
the same featurization scheme introduced in our approach.
The comparison results are reported in Table 3. The re-
sults show that Mask R-CNN, the state-of-the-art two-stage
model, outperforms YOLO-v3, which is the state-of-the-art
one-stage model for detection. Both of them are much bet-
ter than region-growth in EoB-2 metric. However, with the
stricter EoB-0 metric, even region-growth + SVM achieves

Table 3: Spreadsheet table detection on WebSheet400.
% EoB-0 EoB-2
Model Recall Precision Recall Precision
Region-growth 43.4 39.8 58.5 52.2
Region-growth + SVM 44.3 54.3 66.5 56.7
YOLO-v3 42.8 37.9 63.4 58.2
Faster R-CNN 46.0 41.4 64.7 65.3
Mask R-CNN 48.4 40.2 75.5 64.2
TableSense 80.8 78.1 91.3 86.5

Table 4: Uncertainty selection on WebSheet400 after the 3rd
and 7th iterations.

#Spreadsheets Model after 3rd iteration Model after 7th iteration
With error Correct With error Correct

High uncertainty 154 28 83 42
Low uncertainty 34 184 13 262
Total 188 212 96 304
Selection accuracy 81.9% 86.7% 86.4% 86.1%

a better precision than Mask R-CNN. This reflects the lim-
itation of straightforward applications of the state-of-the-art
CNN-based approaches for precise boundary detection.

On the other hand, TableSense achieves a significant mar-
gin of improvement over all baselines. Compared to Mask
R-CNN and other approaches, TableSense brings in even
larger accuracy gain with EoB-0 than EoB-2. In addition,
we also train TableSense without PBR for ablation study, but
the EoB-2 recall drops from 91.3% to 78.4%, and precision
drops from 86.5% to 68.1%. Thus, our proposed TableSense
is highly effective regarding precise bounding box detection.

Effectiveness of Uncertainty Metric for Active
Learning
To evaluate the effectiveness of the uncertainty metric for
active learning, we simulate the sample selection process
over all test sheets in WebSheet400 and investigate the un-
certainty metrics for well detected sheets and sheets with
errors. A sheet is well detected if and only if all tables on the
sheet are correctly predicted. If active learning is effective,
well detected sheets should have low uncertainty scores so
that they are unlikely to be selected, and the case for sheets
with errors should be opposite. Hence we define the accu-
racy metric for sample selection as the ratio of high uncer-
tainty sheets for sheets with errors and the ratio of low un-
certainty sheets for well detected sheets.

We have built the WebSheet10k training set in 7 iterations
in total. In this experiment we evaluate the sample selection
performance using the model after the 3rd iteration and the
model after the last iteration. The results in Table 4 show that
both models achieve high selection accuracies for well de-
tected sheets and sheets with errors. The performance of the
model after 7th iteration is further improved over the model
after 3rd iteration, as indicated by the accuracy values in Ta-
ble 4. As a result, sheets with errors are much more likely to
be selected for further labeling than well detected ones due
to the contrast in uncertainty metrics. This clearly demon-
strates the effectiveness of the proposed uncertainty metric
for active learning.



Related Work
Table Detection. Considerable research has been done to
extract tables from HTML (Wang et al. 2012; Zhai and Liu
2005; Wang and Hu 2002), document images (Gatos et al.
2005; Zuyev 1997; Hu et al. 1999; Liu, Mitra, and Giles
2008; Shafait and Smith 2010) and PDFs (Fang et al. 2012;
Liu et al. 2007). They all focus on the issue of extract-
ing tables embedded in the ambient text and are well sepa-
rated from the surroundings using techniques of image pro-
cessing and meta data analysis. However, table detection in
spreadsheets has largely been overlooked. (Doush and Pon-
telli 2010) adopts a rule-based approach, but there is still a
big gap between table detection and structure analysis due
to the great flexibility in crafting spreadsheet with diverse
table structures and various tables layouts, so we devise Ta-
bleSense to address these challenges.

R-CNN. The Region-based CNN (R-CNN) (Girshick et
al. 2014) is proposed to detect bounding boxes in images by
proposing candidate regions (Uijlings et al. 2013; Hosang et
al. 2016) and evaluating convolutional networks (LeCun et
al. 1989; Krizhevsky, Sutskever, and Hinton 2012) for the
RoIs. Fast R-CNN (Girshick 2015) uses a RoIPool module
to extend R-CNN by attending to RoIs on feature maps with
improved detection performance. Faster R-CNN (Ren et al.
2015) extends Fast R-CNN by learning a Region Proposal
Network (RPN) for the generation of candidate regions for
detection. Mask R-CNN advances the stream by replacing
the RoIPool with RoIAlign to preserve the explicit per-pixel
spatial correspondence and adding a module for object mask
prediction, achieving top results in tasks involving instance
segmentation and object detection (He et al. 2017).

Conclusion and Future Work
In this paper, we propose the TableSense suite to address the
challenges in spreadsheet table detection. TableSense is a
unified, end-to-end framework customized from CNN with
several key enhancements. First, we propose a featurization
scheme to encode cell features. Second, we devise a PBR
module to predict precise bounding boxes and incorporate it.
Third, we use active learning to effectively select low con-
fidence sheets for human labeling in building up the train-
ing dataset. In the future, we will leverage the TableSense
technique for automated table structure analysis and make a
further step in spreadsheet intelligence.
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