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Abstract. We introduce the hyperedge event model (HEM)—a generative model
for events that can be represented as directed edges with one sender and one or
more receivers or one receiver and one or more senders. We integrate a dynamic
version of the exponential random graph model (ERGM) of edge structure with a
survival model for event timing to jointly understand who interacts with whom,
and when. The HEM offers three innovations with respect to the literature—first,
it extends a growing class of dynamic network models to model hyperedges. The
current state-of-the-art approach to dealing with hyperedges is to inappropriately
break them into separate edges/events. Second, our model involves a novel re-
ceiver selection distribution that is based on established edge formation models,
but assures non-empty receiver lists. Third, the HEM integrates separate, but
interacting, equations governing edge formation and event timing. We use the
HEM to analyze emails sent among department managers in Montgomery County
government in North Carolina. Our application demonstrates that the model is
effective at predicting and explaining time-stamped network data involving edges
with multiple receivers. We present an out-of-sample prediction experiment to
illustrate how researchers can select between different specifications of the model.

MSC 2010 subject classifications: Primary 60K35, 60K35; secondary 60K35.

Keywords: dynamic network model, hyperedge, continuous time model, email
data analysis.

1 Introduction

Processes that arise as time-stamped directed interactions are common in the social,
natural, and phyiscal sciences. The data produced by such processes can be represented
as dynamic directed networks—an object that has given rise to the development of sev-
eral statistical model families. For example, stochastic actor-oriented models (SAOMs)
(Snijders, 1996; Snijders et al., 2007) characterize that network evolutions occur as the
senders decide to create or remove an edge from the existing network, one edge at a time.
Event-based network models (Butts, 2008; Vu et al., 2011; Hunter et al., 2011; Perry
and Wolfe, 2013) provide a general framework for modeling the realization of edges
that occur as instances in continuous time streams of events. This family of models is
flexible enough to account for the many ways in which past network structures beget
future ones—e.g., if node i directed a tie to node j recently, then node j will direct one
to node i in the near future—and useful for understanding the traits and behaviours
that are predictive of interactions.
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2 The Hyperedge Event Model

A major limitation of existing dynamic network models is that they apply to edges
with one sender and one receiver. Dynamic network data often naturally arise as “hy-
peredges” (Karypis et al., 1999; Ghoshal et al., 2009; Zlatić et al., 2009; Zhang and
Liu, 2010) that include one sender and multiple receivers or one receiver and multiple
senders. For example, in email networks (Newman et al., 2002), each email encodes a
hyperedge from one sender to one or more receviers. Networks formed between neu-
rons via axons and dendrites involve hyperedges with one sender and multiple receivers
(axons) or one receiver and multiple senders (dendrites) (Partzsch and Schüffny, 2012).
Networks formed through the cosponsorhip of legislative bills (Fowler, 2006) involve
hyperedges with multiple senders (cosponsors) and one receiver (sponsor). Economic
sanctions between countries (Cranmer et al., 2014) induce networks with hyperedges
between multiple sending countries and one target country. Existing models require re-
searchers to alter hyperedge data to fit with the pairwise edge structure of the model.
For instance, Perry and Wolfe (2013) treat multicast interactions—one type of directed
hyperedge which involves one sender and one or more receivers—via duplication (i.e.,
obtain pairwise interactions from the original multicast), to construct an approximate
likelihood function in their inferential framework for model parameters. Similarly, Fan
and Shelton (2009) duplicate emails sent from one sender to one or more receivers and
randomly jitter the sent times in order to avoid violating the assumption that two events
cannot occur at the exact same time.

We develop a statistical dynamic network model, which we term the hyperedge event
model (HEM), that integrates the two components that govern hyperedge event forma-
tion: (1) the formation of the vertices that are incident to the hyperedge, and (2) the
timing of the hyperedge event. In what follows, we define the HEM’s generative process
for hyperedge event data (Section 2), derive the conditional posteriors for Bayesian infer-
ence, and present tests of our software implementation (Section 3). We then demonstrate
our model’s applicability in a case study (Section 4) where we analyze a corpus of inter-
nal county government emails and illustrate how to perform model selection, posterior
predictive checks, and exploratory analysis using our model. We conclude in Section 5.

2 The hyperedge event model

The hyperedge event model (HEM) specifies a generative process for E unique hyperedge
events that occur between A nodes. A single hyperedge event is indexed by e ∈ [E]—
where [E] denotes a categorical set with E levels [E] = {1, . . . , E}—and consists of three
components: the sender se ∈ [A], an indicator vector of receivers re—where rej = 1 if j ∈
[A] is a receiver of hyperedge event e and 0 otherwise—and the timestamp te ∈ (0,∞).
For simplicity, we assume that events are ordered by time such that te ≤ te+1. While the
model can be applied to two types of hyperedge events—events involving (1) one sender
and one or more receivers, and (2) one or more senders and one receiver—here we only
present the generative process for those involving one sender and one or more receivers
(i.e., multicast). One notable feature of our generative process is that we draw auxiliary
variables that serve as candidate data. Data is generated from the HEM through a sam-
pling process applied to the auxiliary variables. The auxiliary variables drawn for event
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B. Kim et al. 3

e include, for each possible sender i ∈ [A], a time increment from event e− 1 at which
sender i would create event e, and an A− 1 length vector indicating which nodes would
be the receivers of event e if it were directed by sender i. The data generated for event e
under the HEM corresponds to the sender that would create event e the soonest—at the
smallest time increment from event e− 1. The receivers of event e generated under the
HEM correspond to those receivers toward which the sender with the minimum time
increment would have directed event e. We explain these steps in more detail below.
For hyperedge events that involve one receiver and one or more senders, we treat se to
be an indicator vector of senders se and re to be the single receiver, and then follow
the alternative generative process provided in Appendix A, which we derive as a simple
reversal of the process used for multicasts (i.e., one sender and multiple receivers).

2.1 Candidate receivers

For every possible sender–receiver pair (i, j) where i 6= j, we define the “receiver inten-
sity” as a linear combination of statistics relevant to the receiver selection process:

λiej = b>xiej , (2.1)

where b is a P -dimensional vector of coefficients and xiej is a set of receiver selection
features. As we show below, this intensity contributes to the probability that i directs
event e towards receiver j. The features xiej can capture common network processes like
popularity, reciprocity, and transitivity, as well as the effects of attributes of the sender
and receivers (e.g., their gender), or attributes of sender–receiver pairs (e.g., whether the
sender is a supervisor of the receiver’s). We also include a normally distributed intercept
term to account for the average (or baseline) number of receivers: b ∼ N(µb,Σb).

The HEM assumes that the sender of each hyperedge event is the sender that would
initiate their respective event with the greatest urgency (i.e., the earliest timestamp).
Our model thus assumes that for every event e, every possible sender i generates a
candidate receiver set that would be the receiver set of event e if sender i were the sender.
For an event e, we first define an A×A matrix ue where the ith row denotes sender i’s
receiver vector of zeros and 1’s—i.e., 1’s indicate the nodes to which i intends to direct
event e. We then assume that each receiver vector uie comes from a modification of the
multivariate Bernoulli (MB) distribution (Dai et al., 2013)—a model that has been used
to model graphs in which the state of each edge indicator is drawn independently from
an edge-specific Bernoulli distribution. In order to avoid drawing hyperedge events with
no receivers, we define a probability measure “MBG” motivated by the Gibbs measure
(Fellows and Handcock, 2017). The probability measure we define amounts to a non-
empty Gibbs measure, in which the all-zero vector is excluded from the support of
the multivariate Bernoulli distribution. As a result, this measure helps us to (1) allow
a sender to select multiple receivers for a single event, (2) force the sender to select
at least one receiver, and (3) ensure a tractable normalizing constant for the receiver
selection distribution. To be specific, we draw a binary vector uie = (uie1, . . . , uieA)

uie ∼ MBG(λie), (2.2)
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4 The Hyperedge Event Model

where λie = (λie1, . . . , λieA). In particular, we define MBG(λie) as

Pr(uie| b,xie) =
1

Z(λie)
exp

(
log
(
I(‖uie‖1 > 0)

)
+
∑
j 6=i

λiejuiej

)
, (2.3)

where Z(λie) is the normalizing constant, ‖·‖1 is the `1-norm, and the log-indicator
term log

(
I(‖uie‖1 > 0)

)
ensures that empty receiver sets are excluded from the dis-

tribution’s support. These modeling assumptions facilitate efficient posterior inference
since we can derive a closed form expression for the normalizing constant—i.e., Z(λie) =∏
j 6=i
(
exp(λiej) + 1

)
− 1—and thus do not need to perform brute-force summation over

the support of uie ∈ [0, 1]A. We provide detailed derivation steps for the normalizing
constant Z(λie) in Appendix B.

2.2 Candidate timestamps

To generate timing for each event, the HEM first draws a candidate timestamp at which
the event would be created given the candidate sender and receiver combinations. The
timing rate for sender i and event e is

µie = g−1(η>yie), (2.4)

where η is a Q-dimensional vector of coefficients with a Normal prior η ∼ N(µη,Ση),
yad is a set of event timing features—covariates that could affect timestamps of events,
and g(·) is the appropriate link function such as identity, log, or inverse.

In modeling “when,” we do not directly model the timestamp te. Instead, we assume
that each sender’s “time increment”—i.e., waiting time to next event since te−1—is
drawn from a specific exponential family distribution. We define the time increment
from event e − 1 to event e as τe (i.e., τe = te − te−1) and specify the distribution of
candidate timestamps with sender-specfic mean µie. Following the generalized linear
model (GLM) framework (Nelder and Baker, 1972), we assume the mean and variance
of the τie satistify

E(τie) = µie,

V (τie) = V (µ),
(2.5)

where τie here is a positive real number. Possible choices of distribution include expo-
nential, Weibull, gamma, and log-normal distributions, which are commonly used in
time-to-event modeling (Rao, 2000; Rizopoulos, 2012). Based on the specific distribu-
tion, we may need other latent variables to draw the time increment, to account for the
variance of time increments, beyond the coefficients for the features used to model the
rate. V (µ)—e.g., the shape parameter k for the Weibull, the shape parameter θ for the
gamma, and the variance parameter σ2

τ for the log-normal. We use fτ (·;µ, V (µ)) and
Fτ (·;µ, V (µ)) to denote the probability density function (p.d.f) and cumulative density
function (c.d.f), respectively, with mean µ and variance V (µ).
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B. Kim et al. 5

Algorithm 1 Generative process: one sender and one or more receivers

Input: number of events and nodes (E,A), covariates (x,y), and coefficients (b,η)

for e = 1 to E do
for i = 1 to A do
for j = 1 to A (j 6= i) do

set λiej = b>xiej
end for
draw uie ∼ MBG(λie)
set µie = g−1(η>yie)
draw τie ∼ fτ (µie, V (µ))

end for
if n ≥ 2 tied events then

set se, . . . , se+n−1 = argmini(τie),
set re = usee, . . . , re+n−1 = use+n−1e

set te, . . . , te+n−1 = te−1 + mini τie
jump to e = e+ n

else
set se = argmini(τie)
set re = usee
set te = te−1 + mini τie

end if
end for

2.3 Senders, receivers, and timestamps

Finally, our model assumes that the observed sender, receivers, and timestamp of hy-
peredge event e are generated by selecting the sender–receiver-set pair with the smallest
time increment (Snijders, 1996):

se = argmini(τie),

re = usee,

te = te−1 + τsee.

(2.6)

Therefore, the HEM assumes a sender-driven process—i.e., the receivers and timestamp
of an event are jointly determined by the sender’s urgency to direct the event to those
selected receivers. Note that our generative process allows for tied events. In the case
of tied events—i.e., multiple senders draw exactly the same candidate timestamps—we
assume that all events are generated and occur simultaneously. Algorithm 1 summarizes
the entire generative process for hyperedge events with one sender and one or more re-
ceivers, and Figure 1 presents an illustrative example on how the eth event is generated,
assuming te−1 = 0 and A = 5.
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6 The Hyperedge Event Model

Figure 1: An illustrative example of the generative process of the HEM.

3 Posterior inference

In this section we describe how we invert the generative process to obtain the poste-
rior distribution over the latent variables—candidate receivers {ue}Ee=1, coefficients for
receiver selection features b, and coefficients for event timing features η—conditioned
on the observed data {(se, re, te)}Ee=1, covariates {(xe,ye)}Ee=1, and hyperparamters
(µb,Σb,µη,Ση). We draw the samples using Markov chain Monte Carlo (MCMC) meth-
ods, repeatedly resampling the value of each latent variable from its conditional posterior
via a Metropolis-within-Gibbs sampling algorithm. In the next subsection, we provide
each latent variable’s conditional posterior along with pseudocode of MCMC in Algo-
rithm 2. We also evaluate the correctness of both our mathematical derivations and
software implemenation using the prior–posterior simulator test of Geweke (2004).

3.1 Conditional posteriors

Candidate receivers

In our model, direct computation of the posterior densities for the latent variables b
and η—i.e., Pr(b|x, s, r, t) and Pr(η|y, s, r, t)—is not possible. However, it is possible
to augment the data by candidate receivers u such that we can obtain their conditional
posterior by conditioning on samples of u. This approach—i.e., “data augmentation”—
is commonly used throughout Bayesian statistics (Tanner and Wong, 1987; Neal and
Kypraios, 2015). Since uiej is a binary random variable, it may be sampled from a

Bernoulli distribution with probability piej =
exp(λiej)

exp(λiej)+I(‖uie\j‖1>0) , since

Pr(uiej = 1|uie\j , b,x, s, r, t) ∝ exp(λiej)

Pr(uiej = 0|uie\j , b,x, s, r, t) ∝ I(‖uie\j‖1 > 0),
(3.1)

where the subscript “\j” denotes a quantity excluding data from position j and I(·) is
the indicator function that prevents empty receiver sets.
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B. Kim et al. 7

Coefficients for receiver selection features

Unlike the candidate receivers above, the conditional posterior for b does not have a
closed form; however b may instead be re-sampled using the Metropolis–Hastings (MH)
algorithm. Assuming an uninformative prior (i.e., N(0,∞)), the conditional posterior
for b is proportional to

Pr(b|u,x, s, r, t) ∝
E∏
e=1

A∏
i=1

1

Z(λie)
exp

(
log
(
I(‖uie‖1 > 0)

)
+
∑
j 6=i

λiejuiej

)
. (3.2)

Coefficients for event timing features

Likewise, we use the MH algorithm to update the latent variable η. Assuming an un-
informative prior η (i.e., N(0,∞)), the conditional posterior for an untied event case is
proportional to

Pr(η|u,y, s, r, t) ∝
E∏
e=1

(
fτ (τe;µsee, V (µ))×

∏
i 6=se

(
1− Fτ (τe;µie, V (µ))

))
, (3.3)

where fτ (τe;µsee, V (µ)) is the probability that the eth observed time increment comes
from the specified distribution fτ (·) with the observed sender’s mean µsee, and

∏
i 6=se

(
1−

Fτ (τe;µie, V (µ))
)

is the probability that the rest of (unobserved) senders for event e all
draw time increments greater than τe. Moreover, under the existence of tied events, the
conditional posterior of η is written as proportional to

Pr(η|u,y, s, r, t) ∝
M∏
m=1

( ∏
e:te=t∗m

fτ (t∗m − t∗m−1;µsee, V (µ))

×
∏

i/∈{se}e:te=t∗m

(
1− Fτ (t∗m − t∗m−1;µie, V (µ))

))
,

(3.4)

where t∗1, . . . , t
∗
M are the unique timepoints across E events (M ≤ E). If M = E (i.e.,

no tied events), equation (3.4) reduces to equation (3.3). Note that when we have the
latent variable to quantify the variance in time increments V (µ) (based on the choice
of timestamp distribution in Section 2.2), we also use equation (3.3) (or equation (3.4)
in case there exist tied events) for the additional MH update—e.g., Pr(k|η,u,y, s, r, t)
for Weibull, Pr(θ|η,u,y, s, r, t) for gamma, and Pr(σ2

τ |η,u,y, s, r, t) for log-normal.

3.2 Getting it Right (GiR) test

Software development is integral to the objective of applying our model to real world
data. Code review is a valuable process in any research computing context, and the
prevalence of software bugs in statistical software is well documented (e.g., Altman
et al., 2004; McCullough, 2009). With highly complex models such as the HEM, there
are many ways in which software bugs can be introduced and go unnoticed. As such,
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8 The Hyperedge Event Model

Algorithm 2 MCMC algorithm

Input: number of outer and inner iterations (O, I1, I2) and initial values of (u, b,η)

for o = 1 to O do
for e = 1 to E do
for i = 1 to A do
for j = 1 to A (j 6= i) do

update uiej using Gibbs update —equation (3.1)
end for

end for
end for
for n = 1 to I1 do

update b using MH algorithm—equation (3.2)
end for
for n = 1 to I2 do

update η using MH algorithm—equation (3.3) or (3.4)
end for
if extra parameter for V (µ) then

update the variance parameter using MH algorithm—equation (3.3) or (3.4)
end if

end for
summarize the results with the last chain of b and η

we present a joint analysis of the integrity of our generative model, sampling equations,
and software implementation.

Geweke (2004) introduced the “Getting it Right” (GiR) test—a joint distribution
test of posterior simulators which can detect errors in sampling equations as well as
software bugs—and it has been used to test the implementation of Bayesian inference
algorithms (Zhao et al., 2016). The test involves comparing the distributions of variables
simulated from two joint distribution samplers, which we call “forward” and “backward”
samplers. The “forward” sampler draws joint samples of the latent and observable vari-
ables from the prior. The “backward” sampler begins by first drawing a joint sample of
the latent and observed variables from the prior. It then alternates between re-sampling
the latent variables, conditioned on the observable variables, from the MCMC transi-
tion operator, and then re-sampling the observable variable, conditioned on the latent
variables, from the model likelihood. If the MCMC transition operator is correctly de-
rived and implemented, this process should asymptotically generate joint samples of the
latent and observable variables from the prior, like the forward sampler.

In the forward sampler, both observable and unobservable variables are generated
using Algorithm 1. In the backward samples, unobservable variables are generated using
the sampling equations for inference, which we derived in Section 3.1. For each forward
and backward sample that consists of E number of events, we save these statistics:
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B. Kim et al. 9

1. Mean of observed receiver sizes ‖re‖1 across e = 1, . . . , E,

2. Variance of observed receiver sizes ‖re‖1 across e = 1, . . . , E,

3. Mean of time increments τe across e = 1, ..., E,

4. Variance of time increments τe across e = 1, ..., E,

5. bp value used to generate the samples p = 1, ..., P ,

6. ηq value used to generate the samples q = 1, ..., Q,

7. σ2
τ value used to generate the samples in log-normal distribution

To keep the computational burden of re-running thousands of rounds of inference
manageable, we run the GiR using a relatively small artificial sample, consisting of
E = 100 events, A = 5 nodes, P = 4 number of receiver selection features, and Q = 3
number of event timing features per each forward or backward sampler, using log-
normal distibution for the time increments fτ . We generated 105 sets of forward and
backward samples, and then calculated 1,000 quantiles for each of the statistics. We also
calculated t-test and Mann-Whitney test p-values in order to test for differences in the
distributions generated in the forward and backward samples. Before we calculated these
statistics, we thinned our samples by taking every 9th sample starting at the 10,000th
sample for a resulting sample size of 10,000, in order to reduce the autocorrelation in
the Markov chains. In each case, if we observe a large p-value, this gives us evidence
that the distributions generated under forward and backward sampling have the same
locations. We depict the GiR results using probability–probability (P–P) plots, in which
the empirical CDF values of the forward and backward samples are plotted on the x and
y axes, respectively. If the two samples are from equivalent distributions, the empirical
CDF values should line up on a line with zero y-intercept, and unit slope (i.e., a 45-
degree line). The GiR test results are depicted in Figure 2. These results indicate that
our sampling equations and software implementation pass the test on every statistic.

4 Application to email data

We now present a case study applying our method to Montgomery county government
email data. Our data come from the North Carolina county government email dataset
collected by ben Aaron et al. (2017) that includes internal email corpora covering the
inboxes and outboxes of managerial-level employees of North Carolina county govern-
ments. Out of over twenty counties, we chose Montgomery County to (1) test our model
using data with a large proportion of hyperedges (16.76%), all of which are emails sent
from one sender to two or more receivers, and (2) limit the scope of this initial applica-
tion. The Montgomery County email network contains 680 emails, sent and received by
18 department managers over a period of 3 months (March–May) in 2012. For this case
study, we formulate our model specification through definitions of the receiver selection
features x and event timing features y. We then report a suite of experiments—out-of-
sample prediction for model selection and posterior predictive checks—that illustrate
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10 The Hyperedge Event Model

(a) Mean of ‖re‖1 (b) Variance of ‖re‖1 (c) Mean of τe (d) Variance of τe

(e) Value of b1 (f) Value of b2 (g) Value of b3 (h) Value of b4

(i) Value of η1 (j) Value of η2 (k) Value of η3 (l) Value of σ2
τ

Figure 2: Probability–probability (P–P) plots for the GiR test statistics.

how alternative formulations of the HEM can be compared, and evaluate how well
our model recovers the distribution of the observed data. Finally, we demonstrate an
exploratory analysis of Montgomery County email data using the model estimates to
discover substantively meaningful patterns in organizational communication networks.

4.1 Covariates

Receiver selection features

A primary purpose of any network model is to use the posterior distributions to learn
which features predict and/or explain edge formation (e.g., is edge formation reciprocal,
are edges more likely to be formed among nodes with the same gender). This email
application specifically gives rise to the following question: “To what extent are nodal,
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B. Kim et al. 11

dyadic or triadic network effects relevant to predicting future emails?” As an illustrative
example, we form the receiver selection features x for Montgomery County email data
using nodal, dyadic, and triadic covariates. First, as we want to test whether gender
plays a role in receiver selection process, we include three nodal covariates—the gender
information of sender and receiver, and their homophily indicator (i.e., an indicator
of whether the sender and receiver are of the same gender). Additionally, we include
four interval-based nodal network covariates—outdegree of sender (i.e., the number
of emails sent), indegree of receiver (i.e., the number of emails received), hyperedge
size of sender (i.e., the number of total receivers directed from the sender), and the
interaction between (i.e., scalar product of) outdegree and hyperedge size—to study
the effect of nodal behaviors on future interactions. For dyadic and triadic network
effects, we employ the network statistics in Perry and Wolfe (2013) and summarize past
interaction behaviors based on the time interval prior to and including te−1. Specifically,
our time interval tracks 7 days prior to the last email was sent le = (te−1−7 days, te−1].
For i ∈ [A], j ∈ [A], and e ∈ [E], we define 14 covariates for xiej :

1. intercept: xiej1 = 1;

2. gender sender(i): xiej2 = I(gender of sender i = female);

3. gender receiver(j): xiej3 = I(gender of receiver j = female);

4. gender homophily(i, j): xiej4 = I(xiej2 = xiej3);

5. outdegree(i): xiej5 =
∑
e′:te′∈le

I(se′ = i);

6. indegree(r): xiej6 =
∑
d′:te′∈le

I(ue′j = 1);

7. hyperedge size(i): xiej7 =
∑
e′:te′∈le

∑A
j=1 I(se′ = i) I(ue′j = 1);

8. interaction(i): xiej8 = xiej5 × xiej7;

9. send(i, j): xiej9 =
∑
e′:te′∈le

I(se′ = i) I(ue′j = 1);

10. receive(i, j): xiej10 = send(j, i);

11. two send(i, j): xiej11 =
∑
h6=i,j send(i, h) send(h, j);

12. two receive(i, j): xiej12 =
∑
h6=i,j send(h, i) send(j, h);

13. sibling(i, j): xiej13 =
∑
h6=i,j send(h, i) send(h, j);

14. cosibling(i, j): xiej14 =
∑
h6=i,j send(i, h) send(j, h);

where I(·) is an indicator function. The network statistics (5–14) are designed so that
their coefficients have a straightforward interpretation. The function “outdegree(i)” and
“indegree(j)” measure the gregariousness and popularity effects of the node by counting
the number of emails sent from i and received by j, respectively, within the last 7 days.
The gregariousness effect refers to the tendency for nodes that created many events in
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12 The Hyperedge Event Model

Figure 3: Visualization of triadic statistics: two send, two receive, sibling, and cosibling.

the past to continue to do so in the future. The popularity effect refers to the tendency
for nodes that were selected as receivers of many events in the past to continue to do
so in the future. Moreover, in order to capture the individual tendency of senders to
select two or more receivers, we include the statistic “hyperedge size(i)”—the number of
events directed from sender i within last 7 days where events with n number of receivers
are counted as n separate events—as a variant of outdegree statistic, accounting for
hyperedges. We also include the interaction term, “interaction(i)”, between outdegree
and hyperedge size. This interaction allows us to model a possible tradeoff between the
hyperedge size and the total number of events created by i. Dyadic statistics “send(i, j)”
and “receive(i, j)” are defined as above such that these covariates measure the number
of events directed from i to j and j to i, respectively, within the last 7 days. In the
example of triadic statistics, the covariate “two send(i, j)” counts the events involving
some node h distinct from i and j such that events from i to h and h to j are both
observed within the last 7 days. This statistic captures the tendency for events to close
transitive triads (i.e., triads in which i directs to j and h, and j directs to h). We include
other triadic covariates that behave similarly and exhibit analogous interpretations,
which are illustrated in Figure 3.

Event timing features

For the event timing features y, introduced in Section 2.2, we identify a set of covariates
which may affect the time until the next event. Similar to the receiver selection features,
we include nodal statistics which are time-invariant (such as gender or manager status)
or time-dependent (such as the network statistics used for x). In addition, we select
some event-specific covariates based on the temporal aspect of the (e−1)th event—e.g.,
whether the previous email was sent (1) during the weekend and (2) before or past
midday (AM/PM)—since we expect the email interactions within county government
to be less active during the weekend and in the evening. To be specific, the timestamp
statistics are defined as

1. intercept: yie1 = 1;

2. gender(i): yie2 = I(gender of sender i = female);

3. manager(i): yie3 = I(sender i is the County Manager);

4. outdegree(i): yie4 =
∑
e′:te′∈le

I(se′ = i);

5. indegree(i): yie5 =
∑
e′:te′∈le

I(ue′i = 1);
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6. weekend(e): yie6 = I(te−1 is during the weekend);

7. PM(e): yie7 = I(te−1 in PM).

Note that our generative process for timestamps in Section 2.2 is sender-oriented where
the sender determines when to send the email; thus we incorporate network statistics
that depend only on i—specifically, the in and outdegrees of sender i.

4.2 Model selection

The HEM defines a flexible family of models, each of which is defined by a set of fea-
tures (i.e., the receiver selection features x, the selection of event timing features y,
and the distribution of time increments f). Many of these components will be specified
based on user expertise (e.g., regarding which features would drive receiver selection),
but some decisions may require a data-driven approach to model specification. For
example, though theoretical considerations may inform the specification of features,
subject-matter expertise is unlikely to inform the decision regarding the family of event
timing distribution. Furthermore, since different distribution families (and model spec-
ifications more generally) may involve different size parameter spaces, any data-driven
approach to model comparison must guard against over-fitting the data. In this section
we present a general-purpose approach to evaluating the HEM specification using out-of-
sample prediction. We illustrate this approach by comparing alternative distributional
families for the event timing component of the model. Here, we specifically compare the
predictive performance from two distributions—log-normal and exponential. We par-
ticularly choose the log-normal distribution based on some exploratory analysis (e.g.,
histogram and simple regressions) on raw time increments data, and select the exponen-
tial distribution as a baseline alternative that is a commonly specified distribution for
time-to-event data, and is also used in the stochastic actor-oriented models (SAOMs)
(Snijders, 1996) as well as their extensions (Snijders et al., 2007).

We evaluated the models’ ability to predict out-of-sample events and timestamps
on Montgomery County email data. We generated a train–test split of the data by
randomly selecting 10% of senders, receivers, and timestamp variables to be held out.
Our model then imputed these missing variables during inference, sampling them from
their conditional posterior along with the other latent variables. Algorithm 3 outlines
this procedure in detail. We compare the predictive performance of two versions of
our model, each with a different timing distribution over the time increments using
N = 500. We summarize the results of prediction experiments for missing senders,
receivers, and timestamps in Figure 4. First, we compare the posterior probability of
correct senders for each of the missing emails {e : se = NA}, which corresponds to
πese in Algorithm 3. We call this measure the “correct sender posterior probability.”
In Figure 4a, we display boxplots for the distribution of mean correct sender posterior

probability—i.e., π̂ese = 1
N

∑N
n=1 π

(n)
ese—across the missing emails. The results show that

both log-normal and exponential distributions achieve better predictive performance for
missing senders compared to what is expected under random guess (i.e., choose one out
of A possible senders = 1/18), with the log-normal model showing better performance
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Algorithm 3 Out-of-sample predictions

Input: data {(se, re, te)}Ee=1, number of new data to generate D, and initial values
of (b,η,u, σ2

τ )

Test splits:
draw test senders (out of E senders)
draw test receivers (out of E × (A− 1) receiver indicators {{rej}j∈[A]\se

}Ee=1)
draw test timestamps (out of E timestamps)
set the test data as “missing” (NA)

Imputation and inference:
for d = 1 to D do
for e = 1 to E do

if se = NA then
compute πe, where πei = fτ (τe;µie, V (µ))×

∏
i′ 6=i

(
1− Fτ (τe;µi′e, V (µ))

)
draw se ∼ Categorical(πe)

end if
for j ∈ [A]\se do
if rej = NA then

draw rej ∼ Bernoulli(pej), where pej =
exp(λiej)

exp(λiej)+I(‖uie\j‖1>0)

end if
end for
if te = NA then

draw τe from its conditional distribution using importance sampling, where
P (τe| ·) ∝ fτ (τe;µsee, V (µ))×

∏
i 6=se

(
1− Fτ (τe;µie, V (µ))

)
end if
run inference and update (u, b,η) given the imputed and observed data

end for
store the estimates for test data

end for

than the exponential model. Secondly, since the receiver vector is binary, we compute
F1 scores for missing receiver indicators (i.e., all e and j with rej=NA) by taking the
harmonic mean of precision and recall:

F1 = 2 · precision · recall

precision + recall
, where

recall =
TP

TP+FN
and precision =

TP

TP+FP
,

(4.1)

with TP denoting true positive (i.e., r
(obs)
ej = r

(pred)
ej = 1), FN denoting false negative

(i.e., r
(obs)
ej = 1 but r

(pred)
ej = 0), and FP denoting false positive (i.e., r

(obs)
ej = 0 but

r
(pred)
ej = 1). Although the generative process for events (Section 2.1) is not directly

affected by the choice of timestamp distribution, Figure 4b reveals slight difference
between log-normal and exponential in their performance in predicting missing receiver
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(a) Sender prediction (b) Receiver prediction (c) Timestamp prediction

Figure 4: Comparison of predictive performance between log-normal and exponential
distributions: (a) correct sender posterior probability from sender predictions, (b) F1

scores from receiver predictions, and (c) median absolute relative error from timestamp
predictions. Blue line in (a) represents the correct sender probability expected by ran-
dom guess—i.e., 1/A = 1/18 ≈ 0.056.

indicators, where log-normal on average outperforms exponential. Finally, we define the
prediction error for the dth missing timestamp bot be the median of the absolute relative
errors, often referred to as median absolute percentage error (MdAPE), across N = 500
predictions:

MdAPEe = median
({∣∣∣∣∣τ (obs)e − τ (pred)1e

τ
(obs)
e

∣∣∣∣∣, . . . ,
∣∣∣∣∣τ (obs)e − τ (pred)Ne

τ
(obs)
e

∣∣∣∣∣}). (4.2)

Figure 4c presents boxplots for the median absolute percentage errors on a log scale.
These plots show that the log-normal distribution fits the time increments significantly
better than the exponential distribution. We speculate that this difference can be sim-
ply explained by a lack of flexibility in the one-parameter exponential distribution. As
illustrated above, we can use this out-of-sample prediction task for two uses—(1) to
provide an effective answer to the question “how does the HEM perform at filling in
the missing components of time-stamped network data?” and (2) to offer one standard
way to determine the distribution of time increments in Section 2.2.

4.3 Posterior predictive checks

In this section, we perform posterior predictive checks (PPC) (Rubin et al., 1984) to
evaluate the appropriateness of our model specification for Montgomery County email
data. We formally generated entirely new data by simulating N = 500 synthetic email
datasets {(se, re, te)}Ee=1 from the generative process in Section 2, conditional upon a
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16 The Hyperedge Event Model

(a) Outdegree distribution (b) Indegree distribution

(c) Receiver size distribution (d) P–P plot for time increments

Figure 5: PPC results from log-normal distribution. Blue lines denote the observed
statistics in (a)–(c) and denotes the diagonal line in (d).

set of inferred latent variables from inference in Section 4.4. For the test of goodness-
of-fit in terms of network dynamics, we use multiple statistics that summarize mean-
ingful aspects of the data: outdegree distribution—the number of emails sent by each
node, indegree distribution—the number of emails received by each node, receiver size
distribution—the number of receivers on each emails, and a probability–probability (P–
P) plot for time increments.

Figure 5 illustrates the results of posterior predictive checks using the log-normal
model, which fit the timestamps better than the exponential model (Section 4.2). The
upper two plots show node-specific posterior predictive degree distributions across N =
500 synthetic samples, where the left one is for the outdegree statistic and the right
plot is for the indegree statistic. For both plots, the x-axis represents the nodes (a =
1, . . . , 18), and the y-axis represents the number of emails sent or received by the node.
When compared with the observed outdegree and indegree statistics (red lines), our
model appears to fit the overall distribution of sending and receiving activities across
the nodes. For example, node 1 and 10 have a significantly higher level of both sending
and receiving activities relative to the rest and this is captured in the model-simulated
data. The outdegree distribution of some low-activity nodes are not precisely recovered;
however, the indegree distribution looks much better. Since we use more information
in the receiver selection process (i.e., network effects) while we rely solely on minimum
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time increments when choosing the observed sender, these results are expected. The
lower left plot is the distribution of receiver sizes, where the x-axis spans over the size of
receivers 1 to 14 (which is the maximum size of observed receivers) and the y-axis denotes
the number of emails with x-number of receivers. The result shows that our model is
underestimating emails with one receiver while overestimating emails with two, three,
and four receivers. One explanation behind what we observe is that the model is trying
to recover broadcast emails, which are the emails with ≥ 10 number of receivers, so
that the intercept estimate b1 is slightly moved toward right. It would be an interesting
problem in future research to consider how the hyperedge size distribution can be further
modified to capture this distribution more accurately. The plot on the lower right is the
P–P plot for time increments, which depicts the two cumulative distribution functions—
one for simulated time increments and another for observed time increments—against
each other in order to assess how closely two data sets agree. Here, the closeness to
the diagonal line connecting (0, 0) and (1, 1) gives a measure of difference between the
simulated and observed time increments, and our P–P plot shows that we have great
performance in reproducing the observed timing distribution. Our findings from the
predictive experiments in Section 4.2 are further revealed in the PPC from exponential
distribution, where the PPC plots comparing log-normal and exponential distributions
are presented in Appendix C.

4.4 Exploratory analysis

Based on the prediction experiments in Section 4.2, we interpret the results from the
HEM using the log-normal distribution, with emphasis on understanding the effects of
receiver selection and event timing features defined in Section 4.1. We assume weakly
informative priors for latent variables such as b ∼ N(µb = 0,Σb = 2×IP ), η ∼ N(µη =
0,Ση = 2×IQ), and σ2

τ ∼ inverse-Gamma(a = 2, b = 1), and MCMC (Algorithm 2) with
O = 55, 000 outer iterations and a burn-in of 15,000, where we thin by keeping every
40th sample. While the inner iterations for σ2

τ is fixed as 1, we specify the inner iterations
I1 = 20 for b and I2 = 10 for η to adjust for slower convergence rates. Convergence
diagnostics including the traceplots and Geweke diagnostics (Geweke et al., 1991) are
provided in Appendix D.

Coefficients for receiver selection features

Figure 6 shows the boxplots summarizing posterior samples of b, where Figure 6a dis-
plays the coefficients for nodal covariates and 6b displays the coefficients for dyadic and
triadic covariates. Since we use the logit functional form

logit(λiej) = log
( λiej

1− λiej

)
= b1 + b2xiej2 . . .+ b14xiej14,

and can interpret the b estimates in terms of odds ratios
λiej

1−λiej
= exp(b1 + b2xiej2 . . .+

b14xiej14). First of all, we find the effects of nodal coavariates “gender sender(i)” and
“gender receiver(j)” are both nearly always negative in the posterior samples. The log
odds that any other node will be added as a receiver of an email is approximately
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18 The Hyperedge Event Model

(a) Nodal covariates (b) Dyadic and triadic covariates

Figure 6: Posterior distribution of b estimates.

two times less if the sender is a woman. The posterior distribution of the statistic
“outdegree(i)” is mostly negative, if sender i sent n number of emails to anyone last
week, then sender i is approximately exp(−0.109×n) ≈ (0.897)n times less likely to send
an email to j. However, this straightforward interpretation of the outdegree statistic only
applies when the hyperedge size is low. The scenario in which a sender sends a lot of low-
hyperedge-size emails may arise due to the use of email for a one-on-one conversation.
The large positive estimates of the interaction between hyperedge size and outdegree
indicate that those who have recently sent many emails with many receivers on each
email are likely to continue sending broadcast emails. This scenario may arise from
someone being responsible for distributing timely announcements. When we look at the
effect of “indegree(j),” we see a clear popularity effect—those who have received a lot
of emails a lot recently are likely to continue receiving a lot of emails. If the receiver j
received n number of emails over the last week, sender i is exp(0.086 × n) ≈ (1.091)n

times more likely to send an email to j.

When we look at the effects of dyadic and triadic covariates, one thing that stands
out is the large and positive posterior distribution of the statistic “send(i, j)” (i.e., num-

ber of times i sent emails to j over the last week) with the posterior mean b̂9 = 0.274,
implying that if i sent n number of emails to j last week, then sender i is approximately
exp(0.274× n) ≈ (1.315)n times more likely to send an email to j. The posterior distri-
butions for the reciprocity effect (i.e., “receive(i, j)”), and the four triadic effects, are
all fairly evenly spread around zero, so our results do not justify conclusions regarding
the nature of these effects in the Montgomery county email network.
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Figure 7: Posterior distribution of η estimates.

Coefficients for event timing features

For event timing features, Figure 7 shows the boxplots summarizing posterior samples
of η. Note that interpretations of the estimated coefficients for η̂ should be based on the
specified time unit of the datset; we specify time units to be hours for the Montgomery
county email data. Moreover, since we assume the log-normal distribution for time
increments, the coefficients are interpreted in terms of the change in the average log
time.

log(τie) ∼ N(µie, σ
2
τ ), with

µie = η1 + η2yie2 . . .+ η7yie7.

The posterior estimates of two temporal effects—“weekend(e)” and “PM(e)”—indicate
that if the (e− 1)th email was sent during the weekend or after midday, then the time
to the eth email is expected to take exp(1.552) ≈ 4.722 hours and exp(0.980) ≈ 2.665
hours longer, respectively, compared to their counterparts (i.e., weekdays and am). On
the contrary, the covariates “manager(i)”, “outdegree(i)”, and “indegree(i)” shorten
the amount of time until the next email. For example, being a county manager (i.e.,
the lead county administrator) lowers the expected value of log(τie) by η̂3 = −1.070.
The posterior mean estimates for the “outdegree(i)” and “indegree(i)” statistics are
η̂4 = −0.206 and η̂5 = −0.060, respectively. These effects indicate that those who are
involved in either sending or receiving a lot of emails recently are likely to send emails
with greater speed. The posterior distribution for the effect of the gender of the manager
is evenly spread around zero. In addition, the posterior mean estimates for the variance
parameter σ2

τ in the log-normal distribution is approximately σ̂2
τ = 14.093 with its 95%

credible interval (12.709, 15.555), indicating that there exists large variability in the
time increments of emails.
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20 The Hyperedge Event Model

5 Conclusion

Motivated by a growing class of dynamic network models which deal with events
recorded in continuous time, the hyperedge event model (HEM) can effectively learn
the underlying dynamics in events and their corresponding timestamp formations, pro-
viding novel insights to the literature. The HEM explicitly models hyperedges through
a receiver selection distribution that forces the sender to select at least one receiver; this
obviates the need to preprocess hyperedge data—e.g., by “duplicating” hyperedges—to
match the assumptions of traditional network models. Our model treating them as pure
duplicates. In modeling the timestamps (more precisely time increments) of events, our
generalized linear model (GLM) based formulation offers new innovations by eliminat-
ing the need to stick with one parameter distribution (e.g., exponential distribution).
To our knowledge, the HEM is the only existing model that can be used to generate the
sender, receivers, and timestamp of interactions in real time. To make better use of the
proposed model, we provide an algorithm for predictive experiments that help to learn
which specification of HEM provides a better fit to the data.

We have demonstrated the effectiveness of our model by analyzing the Montgomery
County government emails, where emails serve as a canonical example of directed hy-
peredge events with one sender and one or more receivers. The estimated effects for
receiver selection features reveal that our model is able to understand the structural
dynamics similar to those used in the exponential random graph model (ERGM). Our
model also learns the effects of event timing features by integrating a survival model
for event timing. Although we illustrate the entire framework and application in the
context of one type of hyperedge, one sender and one or more receivers, our model can
be easily extended to allow the opposite case, one or more sender and one receiver, by
slight modification of the generative process (shown in Appendix A). This extension
involves promising applications to socio-political networks such as international sanc-
tions and co-sponsorship of bills, and biological networks such as those formed through
neural dendrites.
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Appendix

Appendix A: Alternative generative process

Algorithm 4 Generative process: one receiver and one or more senders

Input: number of events and nodes (E,A), covariates (x,y), and coefficients (b,η)

for e = 1 to E do
for j = 1 to A do
for i = 1 to A (i 6= j) do

set λiej = b>xiej
end for
draw uje ∼ MBG(λje)
set µje = g−1(η>yje)
draw τje ∼ fτ (µje, V (µ))

end for
if n ≥ 2 tied events then

set re, . . . , re+n−1 = argminj(τje)
set se = uree, . . . , se+n−1 = ure+n−1d

set te, . . . , te+n−1 = te−1 + minj τje
jump to e = e+ n

else
set re = argminj(τje)
set se = uree
set te = te−1 + minj τje

end if
end for

Appendix B: Normalizing constant of MBG

Our probability measure “MBG”—the multivariate Bernoulli distribution with non-
empty Gibbs measure—defines the probability of sender i selecting the binary receiver
vector uie as

Pr(uie| b,xie) =
1

Z(λie)
exp

(
log
(
I(‖uie‖1 > 0)

)
+
∑
j 6=i

λiejuiej

)
,

where the receiver intensity is a linear combination of receiver selection features—i.e.,
λiej = b>xiej—as defined in Secton 2.1.

To use this distribution efficiently, we derive a closed-form expression for Z(λie) that
does not require brute-force summation over the support of uie (i.e., ∀uie ∈ [0, 1]A).
We recognize that if uie were drawn via independent Bernoulli distributions in which
Pr(uiej = 1| b,xie) was given by logit(λiej), then

Pr(uie| b,xie) ∝ exp
(∑
j 6=i

λiejuiej

)
.
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This is straightforward to verify by looking at

Pr(uiej = 1|uie\j , b,xie) =
exp (λiej)

exp (λiej) + 1
,

where the subscript “\j” denotes a quantity excluding data from position j. Now we
denote the logistic-Bernoulli normalizing constant as Zl(λie), which is defined as

Zl(λie) =
∑

uie∈[0,1]A
exp

(∑
j 6=i

λiejuiej

)
.

Now, since

exp
(

log
(

I(‖uie‖1 > 0)
)

+
∑
j 6=i

λiejuiej

)
= exp

(∑
j 6=i

λiejuiej

)
,

except when ‖uie‖1 = 0, we note that

Z(λie) = Zl(λie)− exp
( ∑
∀uiej=0

λiejuiej

)
= Zl(λie)− 1.

We can therefore derive a closed form expression for Z(λie) via a closed form expression
for Zl(λie). This can be done by looking at the probability of the zero vector under the
logistic-Bernoulli model:

1

Zl(λie)
exp

( ∑
∀uiej=0

λiejuiej

)
=
∏
j 6=i

(
1− exp (λiej)

exp (λiej) + 1

)
.

Then, we have

1

Zl(λie)
=
∏
j 6=i

1

exp(λiej) + 1
.

Finally, the closed form expression for the normalizing constant is

Z(λie) =
∏
j 6=i

(
exp(λiej) + 1

)
− 1.
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Appendix C: Comparison of PPC results: log-normal vs. exponential

(a) Outdegree distribution (b) Indegree distribution

(c) Receiver size distribution (d) P–P plot for time increments

Figure 8: Comparison of PPC results between log-normal (red) and exponential (green)
distributions. Blue lines denote the observed statistics in (a)–(c) and denotes the diag-
onal line in (d).
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Appendix D: Convergence diagnostics

(a) Traceplots of b (b) Traceplot of η

(c) Geweke diagnostics for b (d) Geweke diagnostics for η and σ2
τ

Figure 9: Convergence diagnostics from log-normal distribution.
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