Broad-Based Side-Channel Defenses
for Modern Processor Architectures

Ashay Rane
Advisors: Calvin Lin and Mohit Tiwari
The University of Texas at Austin

guardian
Meltdown and Spectre: ‘worst ever’' CPU
bugs affect virtually all computers

TheiVashingtonPost

Huge security flaws revealed — and tech
companies can barely keep up

BUSINESS
INSIDER

chip maker faces 35 lawsuits over the attacks

Spectre,
Meltdown, ...

Spectre,
Meltdown, ...

Private Information in Various Applications

A0V -,
,:.‘i-.‘." LEERe
Aet-g ¢l 1ol s
H kA,
Lirw 1o Al v’
7&.(‘_;}"?‘ . «"'_.'.‘1

g e

:',;“o 4
’

o

Cryptography Web Browsers Machine Learning

Private Information in Various Applications

A0V -,
/:"..{‘b "Q“-'
A1 ¢l e h
s kA,
1o MY § v
.'k.tx},.." ."'-.'y'{

LK By

:'x;l'. 7
L

o

Cryptography Web Browsers Machine Learning

We want to prevent leakage of private information

Techniques to Maintain Privacy of Information

’ < > App = Data

Techniques to Maintain Privacy of Information

Encryption

’ < > App = Data

-
——

Techniques to Maintain

user: jane
pass: *xxxx
2FA: *x%x**x

9 % > App = Data

Privacy of Information

Encryption

Authentication +
Authorization

e ———
e —

Techniques to Maintain

user: jane
pass: *xxxx
2FA: *xxxx

e .

Virtual Machine

App = Data
'l

e ——

Privacy of Information

Encryption

Authentication +
Authorization

Sandboxing

Encryption
Virtual Machine

Authentication +
Authorization

Sandboxing

J J
A 4
Side Channels

Example Scenario

@

bank-stmt.pdf

Example Scenario

Account Number: 012345

Current Balance: $5,582

bank-stmt.pdf\‘\

Rendering Characters Using Lines and Curves

O

Rendering Characters Using Lines and Curves

Rendered using
O lines and curves
—)

Rendering Characters Using Lines and Curves

)

Rendered using
lines and curves

ﬁ

d

Rendering Characters Using Lines and Curves

Rendered using
‘ ; lines and curves
—)

Rendering Time (Cycles)

Execution Time for Rendering Characters

90,000 =

80,000 = 2

70000 = o

60,000 = o

50,000 =

Proof of Concept on a Font Renderer

Original Text:

hello world my social security number 1s 123 45 6789

Proof of Concept on a Font Renderer

Original Text:

hello world my social security number 1s 123 45 6789

Recovered Text:

Proof of Concept on a

Original Text:

hello world my social security

Recovered Text:

wello would my socqgal secuuqtk

-ont

number

kumweu

Renderer

1S

1t

123 45 6789

1r3 45 6789

Proof of Concept on a Font Renderer

Original Text:

hello world my social security number 1s 123 45 6789

Recovered Text:

ello would my socoal secuunt umue 1 13 45 6789

41 out of 52 characters correctly guessed

Attacker can measure execution time
to steal sensitive document contents

Real-World Attack on Freelype Renderer

Xu et al.,, Oakland-2015]

Application converts

document into an image
Text Document

B
I .-
= =
I .

Real-World Attack on

-reelype Renderer
[Xu et al., Oakland-2015]

SGX-Like Enclave Application converts

Text Document
I

- -
= =
.

document into an image

Application runs inside an
SGX-like enclave

Real-World Attack on Freelype Renderer

[Xu et al., Oakland-2015]

SGX-Like Enclave Application converts

document into an image
Text Document

—wgp = Application runs inside an

. — SGX-like enclave

= o
T — Malicious OS observes

page faults
Malicious Operating System

Real-World Attack on Freelype Renderer

[Xu et al., Oakland-2015]

SGX-Like Enclave Application converts

document into an image
Text Document

—wgp = Application runs inside an

. — SGX-like enclave

= o
T — Malicious OS observes

page faults

Malicious Operating System 100% text recovered by OS

Memory Address Trace While

Rendering Characters

Rendered Characterr I X BY Bz

—— R ESRET WD VT a5 O TP P P DS
c 1500 o —— . . O
o -
% . /' el
O @ @ .
3 1000 = — e -
a e — -,‘__:.: - E ; e 0 & - - o
o "—-— ——-' = A "0 A . -—’oo
g o = oo
— ¢ { {— c o e Dp—_

0 -1_l T - T T | E—
0 5000 10000 15000 20000

Memory Accesses (Time)

Instruction Trace \While Rendering Characters

Rendered Characterr Il X BY Bz

300 = ,
D J"f'l’f'dr' o i
= 27 y P P A4
< 200
O
o0
(&)
‘n 100 =
2 } r 7 1
O-L_l T 1 T T |

0 1000 2000 3000 4000 5000
Basic Block Execution (Time)

Information May Leak Through Many Side Channels

Application Program e.g. execution time
Instruction Set Arch e.g. page faults
Microarchitecture e.qg. branch predictor, cache, PC, DRAM addresses

Physical Hardware e.qg. power consumption, EM radiation

What is the Core Vulnerability”

-— - —a P
T —— — S
Kt N
- -~
- -
\ -
. \ 4 \
. . '
\ { .
\ \ \ : \
\ . \ \ \
o \
-
\, | .
/
| | \ \
| — \
- - \ \
T - \
—_— p— \
- o
,/ / '
| / \ f
] r 4 1
| , / \
| J / \ /
| | \ / J
I / g * ‘\‘ .‘ "’,
J K} \ \ f
/ / .‘ A | .
J /; \ il S — /‘. ',\ \ /
> e \ 7\ ! /
—— \ \ " .
— - — e - \. ‘f
—— —— o .1»- ot

Control Flow Graph

NTRY

"'."

Control Flow Graph

ENTRY
LAY,
i T
O T S
. || \
ii; —I | ‘
e T :
n
\ i -
! !
' I I
; g

Different input values execute different
paths, thus causing variations, which
create side channels.

Prior Side Channel Defenses

Focus on symptoms, thus providing point solutions

_y o ISCA12], [ASPLOS15], [CHES00],
Application Program 8'9' ICISCO3], [ICISCOo5], [ICISC10]
Instruction Set Arch e.g. page faults

Microarchitecture e.qg. branch predictor, cache, PC, DRAM addresses

Physical Hardware e.qg. power consumption, EM radiation

Prior Side Channel Defenses

Focus on symptoms, thus providing point solutions

Application Program e.g. execution time
Instruction Set Arch e.g. page faults
Microarchitecture e.q. branch predictor PC, DRAM addresses

[ISCAO07I, ISCA08], [HPCAO0Q9I, INDSS15], [CCS13a]
Physical Hardware e.qg. power consumption, EM radiation

Prior Side Channel Defenses

Focus on symptoms, thus providing point solutions

Application Program e.g. execution time

Instruction Set Arch e.g. page faults

Microarchitecture e.qg. branch predictor, cache, PC |DRAM addresses

[ISCA13], [CCS13b], [CCS13c], [ASIACRYPT11]
Physical Hardware e.qg. power consumption, EM radiation

Drawbacks of

Point Solutions

Drawbacks of Point Solutions

1. Focused on the symptoms not the root cause

. Y an B
,"13 e (\ ik J !’ -

— ——
\

, a completely

Al P § Al ol =<
.’t.f_"\ltf‘t-~-li_lﬂk,—‘<._l ~~-.<‘.)L.__.!l!x.,)r|

N\ T r ever
’

Drawbacks of Point Solutions

1. Focused on the symptoms not the root cause

Requires a completely redesigned solution for every side channel

2. Difficult to ensure end-to-end or comprehensive security

Drawbacks of Point Solutions

Focused on the symptoms not the root cause

N

Requires a completely redesigned solution for every side channel

Difficult to ensure end-to-end or comprehensive security
One point solution may negate the security guarantees of anothel

Require disabling of optimizations in the compiler and thus,
require redesigning the processor for each side channel

Since optimizations may break security guarantees

Drawbacks of Point Solutions
GhostRider [ASPLOS-15]

Original Program

if (secret == 0) {
X <- load ptr_1
y <- load ptr 2
} else {
z <- load ptr_3
}

Original Program

if (secret

}
}

Drawbacks of |

Ensure

0) {
X <- load ptr_1
y <- load ptr 2
else {

z <- load ptr_3

load Instructions

of each path
_—

Point Solutions

GhostRider [ASPLOS-15]

equal
if (sec
¥ <-
Y <=
} else
7 <-
d <-
}

Transformed Code

ret 0) {
load ptr 1
load ptr 2
{

load ptr 3
load dummy

Drawbacks of Point Solutions
GhostRider [ASPLOS-15]

Transformed Code

Original Program

Ensure equal

if (secret == 0) { load instructions if (secret == 0) {
x < load ptr 1 of each path x <- load ptr 1
y <- load ptr_2 — y <- load ptr_2
} else { } else {
<- load ptr_3
: z <- load ptr_3 Sead Code Z oad ptr_

Elimination }

Drawbacks of Point Solutions
GhostRider [ASPLOS-15]

Optimizing compilers may break the security guarantee

Original Program Transformed Code

Ensure equal

if (secret == 0) { load instructions if (secret == 0) {
x < load ptr 1 of each path x <- load ptr 1
y <- load ptr_2 — y <- load ptr_2
} else { } else {
<- load ptr_3
: z <- load ptr_3 Sead Code Z oad ptr_

Elimination }

Drawbacks of Point Solutions

GhostRider [ASPLOS-15]

Original Program Transformed Code
Ensure equal

if (secret == 0) { load Iinstructions if (secret == 0) {

x <- load ptr 1 of each path x <- load ptr_1 KoeaiLs

y <- load ptr_2 —— y <- load ptr_2
} else { } else {

z <- load ptr_3 z <- load Ptr_3m
} d <- load dummy

}

Drawbacks of Point Solutions

GhostRider [ASPLOS-15]

Original Program Transformed Code
Ensure equal

if (secret == 0) { load Iinstructions if (secret == 0) {
x <- load ptr_1 of each path x <- load ptr_1 XA
y <- load ptr_2 —— y <- load ptr_2
} else { } else {

z <- load ptr_3 z <- load Ptr-3m

} d <- load dummym
}

Drawbacks of Point Solutions

GhostRider [ASPLOS-15]

Caches and prefetchers may break the security guarantee

Original Program Transformed Code
Ensure equal

if (secret == 0) { load Iinstructions if (secret == 0) {
x <- load ptr_1 of each path x <- load ptr_1 XA
y <- load ptr_2 —— y <- load ptr_2
} else { } else {

z <- load ptr_3 z <- load Ptr-3m

} d <- load dummym
}

Performance Impact of Using Point Solution

Disabled optimizations result in significant performance overhead

1987

2000+

Sy
O,
o
o
1

495

Slowdown (X)
o
3

O,
o
o

147

S
N
D
(o o)
—
all
..s

0- —— E— —
P © Q < o z
- © O O 1))
x Q. a @ 8’ () =
= e < = 2 17} w
£ = O
@ a

Prior Side Channel

Defenses

Prior Side Channel Defenses

Are point solutions, since they focus on symptoms
and not the root cause, and they may not compose well.

Prior Side Channel Defenses

Are point solutions, since they focus on symptoms
and not the root cause, and they may not compose well.

Many require redesighed hardware, since the solution is
forced to disable optimizations in compiler and microarch.

Prior Side Channel Defenses

Are point solutions, since they focus on symptoms
and not the root cause, and they may not compose well.

Many require redesighed hardware, since the solution is
forced to disable optimizations in compiler and microarch.

Many are inflexible because they cannot be tailored to
the program or to portions of the program.

My Solutions

Closes a Broad Class

of Side Channels

My Solutions

Closes a Broad Class Executes on Modern

of Side Channels Microprocessors

My Solutions

Closes a Broad Class Executes on Modern Protects a Diverse

of Side Channels Microprocessors Set of Applications

My

Input program =

Research Contributions

Compiler —

Equivalent program that
does not leak info
through side channels

My

Input program =

Research Contributions

Lightweight

annotations ,l

Compiler —

Equivalent program that
does not leak info
through side channels

My

Input program =

Research Contributions

Lightweight
annotations I
Equivalent program that

Compiler -3 does not leak info
through side channels

ISA
Microarchitecture

Physical Hardware

My

Input program =

Verified Side-Channel
Leakage Analyzer

<

Research Contributions

Lightweight
annotations I
Equivalent program that

Compiler -3 does not leak info
through side channels

ISA
Microarchitecture

Physical Hardware

My Research Contributions

Raccoon Escort Vale Vantage

USENIX Security USENIX Security USENIX Security Work In Progress
Symposium 2015 Symposium 2016 Symposium 2017

My Research Contributions

Raccoon Escort

USENIX Security USENIX Security

Symposium 2015 Symposium 2016

Compilers for closing all
digital side channels

My Research Contributions

Raccoon Escort
USENIX Security USENIX Security
Symposium 2015 Symposium 2016
Compilers for closing all e.g. cache, address trace,

digital side channels branch predictor, TLB, etc.

Research Contributions

Vale
USENIX Security

Symposium 2017

Verified side channel
leakage analyzer

My Research Contributions

Vantage

Work In Progress

Compiler that mitigates power side channel attacks
In diverse programs and microarchitectures

Qutline

P Our Solution's Design

Outline

P Our Solution's Design

> Core Principles that Enable Generalization

QOutline

P Our Solution's Design
> Core Principles that Enable Generalization

> Performance Comparison

QOutline

Our Solution’'s Design
Core Principles that Enable Generalization

Performance Comparison

>
>
>
>

Future Work

Key Insight

Benhind Our Solutions

Key Insight Behind Our Solutions

A broad range of side channels arise
due to variations in source-level behavior.

Key Insight Behind Our Solutions

A broad range of side channels arise
due to variations in source-level behavior.

- Branch predictor side channel is caused by program path
- Memory trace channel is caused by pointer dereferences and program path

- Instruction count is caused by program path

Key Insight Behind Our Solutions

Source-Level Behavior

l Causes

Different Side Channels

Key Insight

Benind Our Solutions

Control Flow and Data Flow

l Causes

Source-Level Behavior

l Causes

Different Side Channels

Key Insight

Benind Our Solutions

Sensitive Values

l cause

Control Flow and Data Flow

l Causes

Source-Level Behavior

l Causes

Different Side Channels

Key Insight Behind Our Solutions

Sensitive Values

Control Flow and Data Flow

l Causes

Source-Level Behavior

l Causes

Different Side Channels

To close a broad class of side channels,
make control flow and data flow
independent of sensitive information.

Key Insight Behind Our Solutions

Sensitive Values

Control Flow and Data Flow

l Causes

Source-Level Behavior

l Causes

Point Solutions ----» Different Side Channels

To close a broad class of side channels,
make control flow and data flow
independent of sensitive information.

Solution: Execute All Paths

1f (secret bit == 1) {

z = (msg * z x z) mod n;
} else {

z =(z * z) mod n;

}

Solution: Execute All Paths

Adversary sees secret_bit = 1
if (secret bit == 1) {
m) ; - (msg * z » z) mod n;
} else {
z =(z * z) mod n;

}

Solution: Execute All Paths

Adversary sees secret_bit = 1

1f (secret_bit == 1) { and secret bit != 1.

z = (msg * z x z) mod n;
} else {

mm) z - (z » z) mod n;
}

Predication {0

Original Program

1f (secret bit == 1) {

} else {

}

Z = (msg * z *x z) mod n;

z = (z * z) mod n;

Patnhs

-xecute All |

Predication to Execute All Paths

Original Program Transformed Program

1f (secret bit == 1) { p = (secret_bit == 1)
z = (msg * z x z) mod n;
} else { — p :z=(msg » z » z) mod n;

z = (z * z) mod n; ~p: Z (z * z) mod n;

}

Key

Bullding

SBlock: Software Predication

Key Building Block: Software Predication
new —> Predicated Write
Operation

old —>

Key Building

cond ﬁ

new =——>»

SBlock: Software Predication

Predicated Write

old —>

Operation

Key Building Block: Software Predication

cond ﬁ

hew —> |
| . new if cond = TRUE
Predicated Write — output{

old —>» Operation old otherwise

Key Building Block: Software Predication

cond ﬁ

— '
new Predicated Write new if cond - TRUE

Operation QLRI

old —> old otherwise

Implementation in x64 assembly:

mov old -> output // Set destination
test cond, cond // Check if non-zero
cmovz new -> output // Conditional update
test 0, © // Overwrite flags

Also implemented using ARM v7, ARM v8, and RISC-V assembly instructions.

Key

Building

Slock: Software Predication

1. Straight-line control flow

mov old -> output // Set destination
test cond, cond // Check if non-zero
cmovz new -> output // Conditional update
test 0, © // Overwrite flags

Key

Bullding Block: Software Predication

2. All data in registers;
Nno pointer dereferences

mov old -> output // Set destination
test cond, cond // Check if non-zero
cmovz new -> output // Conditional update

test 0, © // Overwrite flags

Key

Bullding Block: Software Predication

3. Fixed execution time

mov old -> output
test cond, cond
cmovz new -> output
test 0, ©

// Set destination

// Check if non-zero
// Conditional update
// Overwrite flags

Software Predication to Execute All Paths

Original Program Transformed Program

1f (secret bit == 1) { p = (secret_bit == 1)

z = (msg * z ~ z) mod n 21 = (msg * z * z) mod n
} else { — z2 = (z * z) mod n

z = (z » z) mod n
}

pred write(p, z1, z)
pred write(!p, z2, z)

N N
I I

Software Predication to Execute All Paths

Original Program Transformed Program

1f (secret bit == 1) { p = (secret_bit == 1)

z = (msg * z ~ z) mod n 21 = (msg * z * z) mod n
} else { —: 2 = (z *» z) mod n
z = (z * z) mod n

N

} pred write(p, z1, z)

pred write(!p, z2, z)

Software Predication to Execute All Paths

Original Program

Transformed Program

1f (secret bit == 1) { n = (secret bit == 1

z = (msg * z ~ z) mod n Z (msg * z * z) mod n
} else { —: (z » z) mod n

z =(z * z) mod n

} pred write(p, z1, z)

pred write(!p, z2, z)

Software Predication to Execute All Paths

Original Program Transformed Program

1f (secret bit == 1) { p = (secret_bit == 1)
z = (msg * z ~ z) mod n 21 = (msg * z * z) mod n
} else { —: z2 = (z * z) mod n

z =(z » z) mod n

} z = pred write(p, z1, z)
=P

red write(!p, z2, z)

Software Predication to Execute All Paths

Original Program Transformed Program

1f (secret bit == 1) { p = (secret_bit == 1)

z = (msg * z ~ z) mod n 21 = (msg * z * z) mod n
} else { —: z2 = (z * z) mod n

z =(z * z) mod n

} z = pred write(p, z1, z)

But Predication May Crash the Program

Original Program

v = 0;
if (secret) {

}

Vv
y

10;
X f Vi

But Predication May Crash the Program

Original Program Transformed Program

0;
pred write(secret, 10, v);
pred _write(secret, x/v, Vy);

v = 0; v
1f (secret) { Vv

v = 10; — y
y = X/ Vv;

}

But Predication May Crash the Program

Original Program Transformed Program

v = 0; v = 0;
1f (secret) { v = pred write(secret, 10, v);
10; — y = pred write(secret, x/v, V);

V:
y = X / v;

}

But Predication May Crash the Program

Original Program Transformed Program
v = 0; v = 0;
1f (secret) { v = pred write(secret, 10, v);

v = 10; — y = pred_write(secret, x/v, Vy);
y = X / v;
} If secret is false, v is not
updated, hence v remains 0.

But Predication May Crash the Program

Original Program Transformed Program

v = 0; v = 0;
1f (secret) { v = pred write(secret, 10, v);
v = 10; — y = pred write(secret, V);
y = X/ Vv;
} If secret is false, v is not
updated, hence v remains 0.

Division by zero exception
causes program to terminate.

But Predication May Crash the Program

Original Program Transformed Program

v = 0; v = 0;

if (secret) { v = pred write(secret, 10, v);
v = 10; — y = pred_write(secret, x/v, Vy);
y = X/ v;

} ’

:@;
= pred write(secret, 10, v);

= pred_write(v == 0, 1, v);

= pred write(secret, x/t, y);

tI< <

-

But Predication May Crash the Program

Original Program Transformed Program

v = 0; v = 0;
if (secret) { v = pred write(secret, 10, v);
= 10; — y = pred write(secret, x/v, V);

\'}
y = X / Vv;
} '

:0;
= pred write(secret, 10, v);

covertly changing divisor value. = pred_write(v == 0, 1, v);

= pred write(secret, x/t, vy);

Our solution masks exceptions by

tI< <

-

But Predication May Crash the Program

Original Program Transformed Program
v = 0; 0;

V =
if (secret) { v = pred write(secret, 10, v);
v = 10; — y = pred_write(secret, x/v, Vy);
Vv = X / V;
} ’

pre-transformation program = pred write(secret, 10, v);

does not throw arch exceptions. = pred write(v == 0, 1, Vv);

= pred write(secret, x/t, vy);

I Our solution assumes that the =18

tI< <

o

Sut

Predication May Cause Infinite Loops

No

Yes

Sut

Predication May Cause Infinite Loops

No
Incorrect code
Yes transformation Infinite Y
* > Loop ;

Sut

Jredication May Cause Infinite Loops

No
Incorrect code
Yes transformation Infinite v
> Loop
¥ ¥
V 4

Loops require a different transformation.

Transforming Loops

loop i :: 0 to n
X * Y,
S I -

X
I "

Transforming Loops

loop i eto@
X =X ¥ Y,
1=i+1;:

|

|

Y

Assume n is secret.

Transformation should hide the
number of executed iterations.

Transforming Loops

Assume n is secret.

Transformation should hide the
number of executed iterations.

Our Solution’'s Approach

lteration Count

|—
® 10 20 N
€ ———————— >

Dummy lterations

Transforming Loops

Original Program

Transforming Loops

Original Program Transformed Program

—_— 1 =0

loop ctr :: 0 to C

ctr = ¢ctr + 1;

Transforming Loops

Original Program Transformed Program

loop i :: 0 to n —> 1 =0
X = X * Y;
i 2 i+ 13 loop ctr :: 0 to C
Newpredicate(___l p: X = X * y;
p: 1 =1+ 1;

for loop body

Ctr + 1;

ctr

Transforming Loops

Original Program Transformed Program

S 1 = 0
p = TRUE
loop ctr :: 0 to C
P X = X * ¥
p 1 =1+ 1;
ctr = ¢ctr + 1;

Transforming Loops

Original Program Transformed Program

1 =0
p = TRUE
loop ctr :: 0 to C
p: X = X * y;
} i + 1; Turn predicate OFF to
run dummy iterations.
1 == n: p = FALSE;
r + 1;

Transforming Loops

Original Program Transformed Program

1 =0
p = TRUE
1 -
oop ctr 0 t2£:>
p: X =X 29,
p: L7f+1;
’/

Annotated by user, for example: < = 5 __ . 0 = FALSE;
_loop_count(1024) v

Variations In

Control Flow

Program |

Data Flow

Behavior

Variations in Data Flow

result = table[secret];

Variations in Data Flow

addr <- base(table) + secret

result = table[secret]; === —-— > sasilt 2- ‘vead sddr

Variations in Data Flow

addr <- base(table) + secret

result = table[secret]; == =——-— P eesilt 2 vaad adde

An adversary that can observe
address, can also derive secret.

secret = addr - base(table)

Eliminating Variations in Data Flow

Solution #1.: Array Streaming

Accesses the entire array to read one
element of the array.

Expensive to access entire array, but
vector instructions, caches, and
prefetchers reduce latency.

Eliminating Variations in Data Flow

Solution #2: Software ORAM

Software version of Path ORAM [CCS'13],
which shuffles memory to hide location of
data.

Variations In

Control Flow

Program |

Data Flow

Behavior

Variations |In

Control Flow

Program

Data Flow

Behavior

ISA Instructions

Example #1: Latency of Integer Division

o Most-Significant Bit of Dividend

—

Most-Significant Bit of Divisor

31

Cleemput et al, “Compiler Mitigations for Time Attacks
on Modern x86 Processors’, ACM TACO 2012,

—

3

Most-Significant Bit of Divisor

Example #1: Latency of Integer Division

o Most-Significant Bit of Dividend

1

Cleemput et al, “Compiler Mitigations for Time Attacks
on Modern x86 Processors’, ACM TACO 2012,

31

Colors indicate different
execution times

Example #1: Latency of Integer Division

o Most-Significant Bit of Dividend

—

Colors indicate different
execution times

Execution time depends
on the operand values,
creating timing side channel

Most-Significant Bit of Divisor

31

Cleemput et al., “Compiler Mitigations for Time Attacks
on Modern x86 Processors’, ACM TACO 2012,

Example #1: Latency of Integer Division

o Most-Significant Bit of Dividend

—

Colors indicate different
execution times

Execution time depends
on the operand values,
creating timing side channel

Solution: Rewrite division
using bitwise arithmetic

Most-Significant Bit of Divisor

31

Cleemput et al., “Compiler Mitigations for Time Attacks
on Modern x86 Processors’, ACM TACO 2012,

Example #2:

result

Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3

= (secret != 3) movw dst <- #0
movne dst <- #1

Example #2: Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3
result = (secret != 3) movw dst <- #0
movne dst <- #1

Compares secret with the literal constant 3

Example #2: Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3
result = (secret != 3) movw dst <- #0
movne dst <- #1

Preemptively copies literal 0 into the destination

Example #2: Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3
result = (secret != 3) movw dst <- #0
movne dst <- #1

Conditionally copies literal 1 into the destination

Example #2:

result

Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3
= (secret != 3) movw dst <- #0

Example #2: Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3
result = (secret != 3) movw dst <- #0
movne dst <- #1

—’—’
—
— w— -
— —

: ; affect |
Register Write Ops === Power Consumption

Example #2: Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3
result = (secret != 3) movw dst <- #0

—’——
—
——_
— —

y o
ffect
Register Write Ops e i Power Consumption
N

Power Model
Analysis

Analysis of Power Models

Open Source
Power Model

Analysis of Power Models

Open Source
Power Model

We apply backward slicing to

identify the microarchitectural
metrics that affect dynamic

power consumption.

Analysis of Power Models

Open Source
Power Model

We apply backward slicing to
identify the microarchitectural
metrics that affect dynamic

power consumption.

Closed Source
Power Model

Analysis of Power Models

Open Source
Power Model

We apply backward slicing to
identify the microarchitectural
metrics that affect dynamic

power consumption.

Closed Source
Power Model

We fit a regression model to
the RAPL power model, and we
identify the inputs that have

non-zero regression coefficients.

Superoptimizers for Alternate Code Sequences

Original Transformed
Assembly Program Assembly Program

sub tmp <- srcl,src?2
cmp Srcl,src2

— sub dst <- src2,srcl
movw dst <- #0

b de 5. orr dst <- dst , tmp
lsr dst <- dst , #31

Outline

P Core Principles that Enable Generalization

Mapping between Instructions and Leakage

LLVM
Instructions

Side-Channel

Information

Leakage

Mapping between Instructions and Leakage

LLVM Side-Channel
Instructions Information Leakage

div numerator denominator numerator denominator

Mapping between Instructions and Leakage

LLVM a Side-Channel
. é .
Instructions Information Leakage

div numerator denominator numerator denominator

Mapping between Instructions and Leakage

LLVM a

Instructions /

Information

Microarch.

Side-Channel

Leakage

Mapping between Instructions and Leakage

LLVM
Instructions /
ISA

Automated

Analysis

&

»\ Informatior

Microarch.

Side-Channel

Leakage

f : I - O

secret output

computation input data results

f : I - O

secret output

computation input data results

X

f

computation

X

[

iInformation
leakage

[-

secret
input data

: I -

secret
input data

O

output
results

S

side channel
observations

f

computation

X

[

iInformation
leakage

[l - O

secret output
input data results

3
. 1 - S
fﬂ__=

secret side channel x
input data observations

Original Program
/(@)

Initial Approach to Close Side Channel

Original Program

/()

Initial Approach to Close Side Channel

Original Program

f (@) Y iel f6

Initial Approach to Close Side Channel

Original Program

f (@) Y iel f6

Inefficient If set of all possible inputs is large.

Approach #2: Slight Optimization

Approach #2: Slight Optimization

T S
side channel
observations

Approach #2: Slight Optimization

I S
it side channel
P observations

Approach #2: Slight Optimization

I S
side channel
observations

iInputs

Use one representative input from each partition.

Approach #2: Slight Optimization

f(x) Y iet—FH)
Y iel/- £6)

Approach #3:
f:1 - O,

-urther Optimization

[: 1 - S

Approach #3: Further Optimization

f:1 - O, [:1 - S
f: 1 - O, [’7: 1 - S with|S] =1
ianuts side cShannel

observations

*e

Approach #3: Further Optimization
a1 -~ O [7: 1 - S with S| =1
f@ 0 NHer—t

e
[(@)

Implementation

Close a Broad Class

of Side Channels

Digital Side Channels

e.g. address trace, cache,
branch predictor, etc.

Implementation

Close a Broad Class

of Side Channels

Digital Side Channels and
some Non-Digital Side Channels

e.g. instruction-level
power consumption

Implementation

Execute on Modern

Microprocessors

Microarchitectural Implementations of
X64, 32-bit ARM, and 64-bit ARM |SAs

Implementation

Protect a Diverse

Set of Applications

Not just Cryptographic Implementations, but also
Graph Kernels, Machine-Learning Libraries, etc.

Qutline

P Performance Comparison

Comparison With GhostRider

2000-) I GhostRider
< .Our Solution
< 1500 -
= 1294
S
© 1000
3
O 495
500 311 320 s

o] =cs. T SIS e 0 1+ mmo
P o x ke Q e Q 2 :%
% % CEU < o g g = g
s D O Q. Q- e X
G2 o k= S > 1z = o
s 2 = ¢
0 0

Evaluation Programs

Cryptography GhostRider Graph Kernels Machine Utility Programs

Learning

- Lattice Crypto - Binary Search - Top-K Search - Font Renderer

- Curve-25519 - Heap Add - Bellman Ford - Motion Tracking - Hash Table
- Poly-1305 - Matrix Mult - PageRank - SVM Classifier - Bloom Filter

valuation

—
—
—

GhostRider

" GhostRider Kernels

" Crypto

(®))
g -
o € 3
o ©
c o 2
(¢)) ug-
x 2 3
£ = e
o £ 2>
c S = 9
= O = O

112

3 szlﬁﬂXXXXXXXXXX

-NV3IN O3O

L SUBBIN-Y
- NAS

L Bujoes] uonow
- 1914 Woo|g
-9|qeL YSeH

L 19A|0S XB|
Lyuelabed

L p104 uew|ag
L yoJeas y-do|
NN XLTB
-ppy desH

L yoieasg Areulg

Fsogl Alod

-6 1652 9AIND
L 01dAID 8o1meT

Hardware-Only Solution Evaluation

w

Q O

| o = o

p - * o a

Q »n £ ©

X o238 s

~ C O

QO = _] O

T Q9 "=
o oC = (<5}
- = L = m
a 2 gt 2

161

373 3999
I i I

208
I ig

2I77

67
N

i

177
143
99 94
111

-NV3IW O3O

- SUBSIA-Y
-NAS

L Bunjoel] uonow
- 18|14 Wwoo|g
-9|geL YSeH

| 1I9A|0S XB |
Lyuelabed

L p104 uew||ag

L yoJeas y-do|
NN XUTBIN
-ppy desH

L yoseag Areulg
-GOE L Ajod
-61GG2 9AIND

L 01dA1D 8211e

All Digital Side Channels

Our Solution

.Crypto

" GhostRider Kernels
" Graph Kernels

*Machine Learning

= Utility

.Geometric Mean

-NV3IN O39O

L SUBSIN-Y

-INAS

L Buijoes| Uuonow

a4 wooig

9| yseH

'} J19A|0S XB|

Lyuelabed

't plo4 uew|eg

L yoJeas y-do|
-HNN XIEN

L ppy deaH

L yoteasg Areulg
-GOE L Ajod

-6 1GG2 9AIND
L 01dAID 8o1eT

w

o) ()

m om n
C w €
X o a8 S
- C O

O = _J O
S g o =
X _-—c ©°
O @ Q = O
L = © = O

.Crypto

Our Solution: Timing Side Channel

o FNVIN 03D
~ FSueay-y

<| FNAS

~ FBunjoel] uonoy
o A8 woolg
©| r9|Je] YSeH
~ FJOA|0S XB|

~ Fyuelabed

o | pio4 uew|eg
<| F yoJeas y-do|
~ FUNA XLIBN

~ | ppy desH

~ tyolesag Aieulg
~ +G0¢€1 Alod

— F61GGC 9AIND
~ | 01dA1n 8onie

Our Solution: Microarch. Power Side Channel

.Crypto
" GhostRider Kernels
" Graph Kernels

*Machine Learning

= Utility

" Geometric Mean

-NV3IW O39

L SUBBIN-Y
- NAS

L Bupjoel] uonow
- 1914 Woo|g
-9|qeL YSeH

L 1OA|0S XB|
Lyuelabed

L p104 uew|ag

L yoJeas y-doj
LN X1

- PPy desH

L yoieas Areulg
-GOE L Alod

-6 1952 dAIND

L 01dA1D 8211

Qutline

p Future Work

Our Solution: Microarch. Power Side Channel

.Crypto
" GhostRider Kernels
" Graph Kernels

*Machine Learning

= Utility

" Geometric Mean

-NV3IW O39

L SUBBIN-Y
- NAS

L Bupjoel] uonow
- 1914 Woo|g
-9|qeL YSeH

L 1OA|0S XB|
Lyuelabed

L p104 uew|ag

L yoJeas y-doj
LN X1

- PPy desH

L yoieas Areulg
-GOE L Alod

-6 1952 dAIND

L 01dA1D 8211

All Digital Side Channels

Our Solution

.Crypto

" GhostRider Kernels
" Graph Kernels

*Machine Learning

= Utility

.Geometric Mean

-NV3IN O39O

L SUBSIN-Y

-INAS

L Buijoes| Uuonow

a4 wooig

9| yseH

'} J19A|0S XB|

Lyuelabed

't plo4 uew|eg

L yoJeas y-do|
-HNN XIEN

L ppy deaH

L yoteasg Areulg
-GOE L Ajod

-6 1GG2 9AIND
L 01dAID 8o1eT

w

o) ()

m om n
C w €
X o a8 S
- C O

O = _J O
S g o =
X _-—c ©°
O @ Q = O
L = © = O

.Crypto

Our Solution: Timing Side Channel

o FNVIN 03D
~ FSueay-y

<| FNAS

~ FBunjoel] uonoy
o A8 woolg
©| r9|Je] YSeH
~ FJOA|0S XB|

~ Fyuelabed

o | pio4 uew|eg
<| F yoJeas y-do|
~ FUNA XLIBN

~ | ppy desH

~ tyolesag Aieulg
~ +G0¢€1 Alod

— F61GGC 9AIND
~ | 01dA1n 8onie

All Digital Side Channels

Our Solution

.Crypto

" GhostRider Kernels
" Graph Kernels

*Machine Learning

= Utility

.Geometric Mean

-NV3IN O39O

L SUBSIN-Y

-INAS

L Buijoes| Uuonow

a4 wooig

9| yseH

'} J19A|0S XB|

Lyuelabed

't plo4 uew|eg

L yoJeas y-do|
-HNN XIEN

L ppy deaH

L yoteasg Areulg
-GOE L Ajod

-6 1GG2 9AIND
L 01dAID 8o1eT

w

o) ()

m om n
C w €
X o a8 S
- C O

O = _J O
S g o =
X _-—c ©°
O @ Q = O
L = © = O

.Crypto

Our Solution: Timing Side Channel

o FNVIN 03D
~ FSueay-y

<| FNAS

~ FBunjoel] uonoy
o A8 woolg
©| r9|Je] YSeH
~ FJOA|0S XB|

~ Fyuelabed

o | pio4 uew|eg
<| F yoJeas y-do|
~ FUNA XLIBN

~ | ppy desH

~ tyolesag Aieulg
~ +G0¢€1 Alod

— F61GGC 9AIND
~ | 01dA1n 8onie

Qutline

p Future Work

Future Work in Side-Channel Defenses

Automation Precision Performance

Synthesizing program Integrating better Aggressive compiler
transformations models of information optimizations and
leakage modest microarch.

modifications

f : I - O

desired secret output
computation input data results

J
f: I - O
transformed secret output
computation input data results

such that f does not leak information through side channels

Synthesizing Side-Channel Defenses

J
. I - O
transformed secret output
computation input data results

such that f~ does not leak information through side channels

Synthesizing Side-Channel Defenses

’ I O
I -
transformed secret output
computation input data results

such that f~ does not leak information through side channels

Goal: Adapt research in superoptimizers and program synthesis

Synthesis for Stronger Guarantees

Microarchitectural Specification

l

Domain-Specific Language
for Compiler Transformations

l

Executable Code for Program Transformations

Synthesis for Stronger Guarantees

Microarchitectural Specification

l

Domain-Specific Language
for Compiler Transformations

+ Type Analysis
+ Solver-Based Verification

Executable Code for Program Transformations

Precision of Side-Channel Defenses

I
‘-

Precision of Side-Channel Defenses

We need to tell compilers
about potential side channels.

. S
#
B

Precision of Side-Channel Defenses

We need to tell compilers
about potential side channels.

Compiler

Our current approach is
an ad-hoc mix of program
analysis, statistics, and
manual inspection.

ISA

Microarchitecture

Physical Hardware

Precision of Side-Channel Defenses

We need to tell compilers
about potential side channels.

Compiler

Our current approach is
an ad-hoc mix of program
analysis, statistics, and
manual inspection.

ISA

Microarchitecture
Goal: Precise abstractions of

underlying layers. Physical Hardware

Performance of Side-Channel Defenses

Compiler

i \ 4

Microarchitecture

Physical Hardware

Performance of Side-Channel Defenses

Compilers currently are at the
mercy of the ISA.

Compiler

i \ 4

Microarchitecture

Physical Hardware

Performance of Side-Channel Defenses

Compilers currently are at the
mercy of the ISA.

We need more control of the '
microarchitecture and

ISA
hardware.

Compiler

Microarchitecture

Physical Hardware

Performance of Side-Channel Defenses

Compilers currently are at the
mercy of the ISA

We need more control of the ’
microarchitecture and

ISA
hardware.

Compiler

Goal: Broaden the definition
of the ISA beyond just a
functional interface.

Microarchitecture

Physical Hardware

Layers of Abstraction as a Liability

Layer #1

vl

Layer #2

vl

Layers of Abstraction as a Liability

Debugging for security sometimes requires
knowing a little about the iImplementation.

Layer #1

vl

Layer #2

vl

Layers of Abstraction as a Liability

Debugging for security sometimes requires

| i - - Layer #
knowing a little about the iImplementation. SYSHES

But abstractions explicitly disable peeking
iInto the iImplementation! Layer #2

ol

Layers of Abstraction as a Liability

Debugging for security sometimes requires

Layer #
knowing a little about the implementation. SYSHES

But abstractions explicitly disable peeking
iInto the iImplementation! Layer #2

ol

This problem affects performance
debugging as well

Peeking Inside the Hardware Implementation

= ——— = — - - -
| Instruction Set Architecture

Peeking Inside the Hardware Implementation

. . r _________ =
Can assist In: | Instruction Set Architecture :
e Y S e——
e Discovering Denial-of-Service attacks H
Zaalatwinivatninie r
e Locating Confused-Deputy problems ! Microarchitecture I
e e e —
e Tuning performance and energy T
= ————— - =

consumption] Physical Hardware '

Program Analysis for Hardware Design

ot

vt

Physical Hardware

Peeking Inside the Hardware Implementation

. . r _________ =
Can assist In: | Instruction Set Architecture :
e Y S e——
e Discovering Denial-of-Service attacks H
Zaalatwinivatninie r
e Locating Confused-Deputy problems ! Microarchitecture I
e e e —
e Tuning performance and energy T
= ————— - =

consumption] Physical Hardware '

Program Analysis for Hardware Design

ot

vt

Physical Hardware

Program Analysis for Hardware Design

Functional programming for hardware

design [e.g. CAash, Floh, S

ard, and FLaS

ot

vt

] Physical Hardware

Program Analysis for Hardware Design

Research Questions:

e How can we quantify security?

ot

e How can we transform programs
for energy efficiency?

vt

Functional programming for hardware
design le.g. CAash, Floh, SHard, and FLaSH]

Type Systems and
Program Verifiers

Microarchitectures

Hardware Design

Thanks to My Collaborators and Sponsors

Calvin Lin, PhD Advisor, UT Austin
Mohit Tiwari, PhD Advisor, UT Austin

K Rustan M. Leino, Amazon

Chris Hawblitzel, Microsoft Research

Laure Thompson, Cornell University

Joshua Eversmann, Civitas Learning

Greg McDonald, HBK Investments

Q LUALCOMM

Bryan Parno, Carnegie Mellon University
Jacob R. Lorch, Microsoft Research
Srinath Setty, Microsoft Research

Manos Kapritsos, University of Michigan
Barry Bond, Microsoft Research

Raymond Chee, Carnegie Mellon University

Varun Adiga and Kasra Sadeghi, UT Austin

5

STARnet

