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Private Information in Various Applications
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We want to prevent leakage of private information
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Example Scenario
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Example Scenario

Account Number: 012345

Current Balance: $5,582

bank-stmt.pdf\‘\
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Rendering Time (Cycles)

Execution Time for Rendering Characters
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Proof of Concept on a Font Renderer

Original Text:

hello world my social security number 1s 123 45 6789
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Original Text:

hello world my social security number 1s 123 45 6789

Recovered Text:




Proof of Concept on a

Original Text:

hello world my social security

Recovered Text:

wello would my socqgal secuuqtk

-ont

number
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Proof of Concept on a Font Renderer

Original Text:

hello world my social security number 1s 123 45 6789

Recovered Text:

ello would my socoal secuunt umue 1 13 45 6789

41 out of 52 characters correctly guessed




Attacker can measure execution time
to steal sensitive document contents




Real-World Attack on Freelype Renderer

Xu et al.,, Oakland-2015]
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Real-World Attack on Freelype Renderer

[Xu et al., Oakland-2015]

SGX-Like Enclave Application converts

document into an image
Text Document

—wgp = Application runs inside an

. — SGX-like enclave

= o
T — Malicious OS observes

page faults

Malicious Operating System 100% text recovered by OS




Memory Address Trace While

Rendering Characters

Rendered Characterr I X BY Bz

—— R ESRET WD VT a5 O TP P P DS
c 1500 o —— . . O
o -
% . /' el
O @ @ .
3 1000 = — e -
a e — -,‘__:.: - E ; e 0 & - - o
o "—-— ——-' = A "0 A . -—’oo
g o = oo
— ¢ { {— c o e Dp—_

0 -1_l T - T T | E—
0 5000 10000 15000 20000

Memory Accesses (Time)




Instruction Trace \While Rendering Characters
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Information May Leak Through Many Side Channels

Application Program e.g. execution time
Instruction Set Arch e.g. page faults
Microarchitecture e.qg. branch predictor, cache, PC, DRAM addresses

Physical Hardware e.qg. power consumption, EM radiation




What is the Core Vulnerability”
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Control Flow Graph
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Control Flow Graph
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Different input values execute different
paths, thus causing variations, which
create side channels.




Prior Side Channel Defenses

Focus on symptoms, thus providing point solutions
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Instruction Set Arch e.g. page faults

Microarchitecture e.qg. branch predictor, cache, PC, DRAM addresses

Physical Hardware e.qg. power consumption, EM radiation
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Physical Hardware e.qg. power consumption, EM radiation




Prior Side Channel Defenses

Focus on symptoms, thus providing point solutions

Application Program e.g. execution time

Instruction Set Arch e.g. page faults

Microarchitecture e.qg. branch predictor, cache, PC |DRAM addresses

[ISCA13], [CCS13b], [CCS13c], [ASIACRYPT11]
Physical Hardware e.qg. power consumption, EM radiation
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1. Focused on the symptoms not the root cause
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Drawbacks of Point Solutions

1. Focused on the symptoms not the root cause

Requires a completely redesigned solution for every side channel

2. Difficult to ensure end-to-end or comprehensive security




Drawbacks of Point Solutions

Focused on the symptoms not the root cause

N

Requires a completely redesigned solution for every side channel

Difficult to ensure end-to-end or comprehensive security
One point solution may negate the security guarantees of anothel

Require disabling of optimizations in the compiler and thus,
require redesigning the processor for each side channel

Since optimizations may break security guarantees




Drawbacks of Point Solutions
GhostRider [ASPLOS-15]

Original Program

if (secret == 0) {
X <- load ptr_1
y <- load ptr 2
} else {
z <- load ptr_3
}




Original Program

if (secret

}
}

Drawbacks of |

Ensure

0) {
X <- load ptr_1
y <- load ptr 2
else {

z <- load ptr_3

load Instructions

of each path
_—

Point Solutions

GhostRider [ASPLOS-15]

equal
if (sec
¥ <-
Y <=
} else
7 <-
d <-
}

Transformed Code

ret 0) {
load ptr 1
load ptr 2
{

load ptr 3
load dummy




Drawbacks of Point Solutions
GhostRider [ASPLOS-15]

Transformed Code

Original Program

Ensure equal

if (secret == 0) { load instructions if (secret == 0) {
x < load ptr 1 of each path x <- load ptr 1
y <- load ptr_2 — y <- load ptr_2
} else { } else {
<- load ptr_3
: z <- load ptr_3 Sead Code Z oad ptr_

Elimination }




Drawbacks of Point Solutions
GhostRider [ASPLOS-15]

Optimizing compilers may break the security guarantee

Original Program Transformed Code

Ensure equal

if (secret == 0) { load instructions if (secret == 0) {
x < load ptr 1 of each path x <- load ptr 1
y <- load ptr_2 — y <- load ptr_2
} else { } else {
<- load ptr_3
: z <- load ptr_3 Sead Code Z oad ptr_

Elimination }




Drawbacks of Point Solutions

GhostRider [ASPLOS-15]

Original Program Transformed Code
Ensure equal

if (secret == 0) { load Iinstructions if (secret == 0) {

x <- load ptr 1 of each path x <- load ptr_1 KoeaiLs

y <- load ptr_2 —— y <- load ptr_2
} else { } else {

z <- load ptr_3 z <- load Ptr_3m
} d <- load dummy

}




Drawbacks of Point Solutions

GhostRider [ASPLOS-15]

Original Program Transformed Code
Ensure equal

if (secret == 0) { load Iinstructions if (secret == 0) {
x <- load ptr_1 of each path x <- load ptr_1 XA
y <- load ptr_2 —— y <- load ptr_2
} else { } else {

z <- load ptr_3 z <- load Ptr-3m

} d <- load dummym
}




Drawbacks of Point Solutions

GhostRider [ASPLOS-15]

Caches and prefetchers may break the security guarantee

Original Program Transformed Code
Ensure equal

if (secret == 0) { load Iinstructions if (secret == 0) {
x <- load ptr_1 of each path x <- load ptr_1 XA
y <- load ptr_2 —— y <- load ptr_2
} else { } else {

z <- load ptr_3 z <- load Ptr-3m

} d <- load dummym
}




Performance Impact of Using Point Solution

Disabled optimizations result in significant performance overhead
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Prior Side Channel Defenses

Are point solutions, since they focus on symptoms
and not the root cause, and they may not compose well.
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Are point solutions, since they focus on symptoms
and not the root cause, and they may not compose well.

Many require redesighed hardware, since the solution is
forced to disable optimizations in compiler and microarch.




Prior Side Channel Defenses

Are point solutions, since they focus on symptoms
and not the root cause, and they may not compose well.

Many require redesighed hardware, since the solution is
forced to disable optimizations in compiler and microarch.

Many are inflexible because they cannot be tailored to
the program or to portions of the program.
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Closes a Broad Class

of Side Channels




My Solutions

Closes a Broad Class Executes on Modern

of Side Channels Microprocessors




My Solutions

Closes a Broad Class Executes on Modern Protects a Diverse

of Side Channels Microprocessors Set of Applications
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USENIX Security USENIX Security USENIX Security Work In Progress
Symposium 2015 Symposium 2016 Symposium 2017
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digital side channels




My Research Contributions

Raccoon Escort
USENIX Security USENIX Security
Symposium 2015 Symposium 2016
Compilers for closing all e.g. cache, address trace,

digital side channels branch predictor, TLB, etc.




Research Contributions

Vale
USENIX Security

Symposium 2017

Verified side channel
leakage analyzer




My Research Contributions

Vantage

Work In Progress

Compiler that mitigates power side channel attacks
In diverse programs and microarchitectures
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Key Insight Behind Our Solutions

A broad range of side channels arise
due to variations in source-level behavior.




Key Insight Behind Our Solutions

A broad range of side channels arise
due to variations in source-level behavior.

- Branch predictor side channel is caused by program path
- Memory trace channel is caused by pointer dereferences and program path

- Instruction count is caused by program path
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Different Side Channels
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Key Insight Behind Our Solutions

Sensitive Values

Control Flow and Data Flow

l Causes

Source-Level Behavior

l Causes

Different Side Channels

To close a broad class of side channels,
make control flow and data flow
independent of sensitive information.




Key Insight Behind Our Solutions

Sensitive Values

Control Flow and Data Flow

l Causes

Source-Level Behavior

l Causes

Point Solutions ----» Different Side Channels

To close a broad class of side channels,
make control flow and data flow
independent of sensitive information.




Solution: Execute All Paths

1f (secret bit == 1) {

z = (msg * z x z) mod n;
} else {

z =(z * z) mod n;

}
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Adversary sees secret_bit = 1
if (secret bit == 1) {
m) ; - (msg * z » z) mod n;
} else {
z =(z * z) mod n;

}




Solution: Execute All Paths

Adversary sees secret_bit = 1

1f (secret_bit == 1) { and secret bit != 1.

z = (msg * z x z) mod n;
} else {

mm) z - (z » z) mod n;
}




Predication {0

Original Program

1f (secret bit == 1) {

} else {

}

Z = (msg * z *x z) mod n;

z = (z * z) mod n;

Patnhs

-xecute All |




Predication to Execute All Paths

Original Program Transformed Program

1f (secret bit == 1) { p = (secret_bit == 1)
z = (msg * z x z) mod n;
} else { — p :z=(msg » z » z) mod n;

z = (z * z) mod n; ~p: Z (z * z) mod n;

}
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Key Building Block: Software Predication
new —> Predicated Write
Operation

old —>
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Key Building Block: Software Predication

cond ﬁ
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| . new if cond = TRUE
Predicated Write — output{
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Key Building Block: Software Predication

cond ﬁ

— '
new Predicated Write new if cond - TRUE

Operation QLRI

old —> old otherwise

Implementation in x64 assembly:

mov old -> output // Set destination
test cond, cond // Check if non-zero
cmovz new -> output // Conditional update
test 0, © // Overwrite flags

Also implemented using ARM v7, ARM v8, and RISC-V assembly instructions.




Key

Building

Slock: Software Predication

1. Straight-line control flow

mov old -> output // Set destination
test cond, cond // Check if non-zero
cmovz new -> output // Conditional update
test 0, © // Overwrite flags




Key

Bullding Block: Software Predication

2. All data in registers;
Nno pointer dereferences

mov old -> output // Set destination
test cond, cond // Check if non-zero
cmovz new -> output // Conditional update

test 0, © // Overwrite flags




Key

Bullding Block: Software Predication

3. Fixed execution time

mov old -> output
test cond, cond
cmovz new -> output
test 0, ©

// Set destination

// Check if non-zero
// Conditional update
// Overwrite flags




Software Predication to Execute All Paths

Original Program Transformed Program

1f (secret bit == 1) { p = (secret_bit == 1)

z = (msg * z ~ z) mod n 21 = (msg * z * z) mod n
} else { — z2 = (z * z) mod n

z = (z » z) mod n
}

pred write(p, z1, z)
pred write(!p, z2, z)

N N
I I




Software Predication to Execute All Paths

Original Program Transformed Program

1f (secret bit == 1) { p = (secret_bit == 1)

z = (msg * z ~ z) mod n 21 = (msg * z * z) mod n
} else { —: 2 = (z *» z) mod n
z = (z * z) mod n

N

} pred write(p, z1, z)

pred write(!p, z2, z)




Software Predication to Execute All Paths

Original Program

Transformed Program

1f (secret bit == 1) { n = (secret bit == 1

z = (msg * z ~ z) mod n Z (msg * z * z) mod n
} else { —: (z » z) mod n

z =(z * z) mod n

} pred write(p, z1, z)

pred write(!p, z2, z)




Software Predication to Execute All Paths

Original Program Transformed Program

1f (secret bit == 1) { p = (secret_bit == 1)
z = (msg * z ~ z) mod n 21 = (msg * z * z) mod n
} else { —: z2 = (z * z) mod n

z =(z » z) mod n

} z = pred write(p, z1, z)
=P

red write(!p, z2, z)




Software Predication to Execute All Paths

Original Program Transformed Program

1f (secret bit == 1) { p = (secret_bit == 1)

z = (msg * z ~ z) mod n 21 = (msg * z * z) mod n
} else { —: z2 = (z * z) mod n

z =(z * z) mod n

} z = pred write(p, z1, z)




But Predication May Crash the Program

Original Program

v = 0;
if (secret) {

}

Vv
y

10;
X f Vi




But Predication May Crash the Program

Original Program Transformed Program

0;
pred write(secret, 10, v);
pred _write(secret, x/v, Vy);

v = 0; v
1f (secret) { Vv

v = 10; — y
y = X/ Vv;

}




But Predication May Crash the Program

Original Program Transformed Program

v = 0; v = 0;
1f (secret) { v = pred write(secret, 10, v);
10; — y = pred write(secret, x/v, V);

V:
y = X / v;

}




But Predication May Crash the Program

Original Program Transformed Program
v = 0; v = 0;
1f (secret) { v = pred write(secret, 10, v);

v = 10; — y = pred_write(secret, x/v, Vy);
y = X / v;
} If secret is false, v is not
updated, hence v remains 0.




But Predication May Crash the Program

Original Program Transformed Program

v = 0; v = 0;
1f (secret) { v = pred write(secret, 10, v);
v = 10; — y = pred write(secret, V);
y = X/ Vv;
} If secret is false, v is not
updated, hence v remains 0.

Division by zero exception
causes program to terminate.




But Predication May Crash the Program

Original Program Transformed Program

v = 0; v = 0;

if (secret) { v = pred write(secret, 10, v);
v = 10; — y = pred_write(secret, x/v, Vy);
y = X/ v;

} ’

:@;
= pred write(secret, 10, v);

= pred_write(v == 0, 1, v);

= pred write(secret, x/t, y);

tI< <

-




But Predication May Crash the Program

Original Program Transformed Program

v = 0; v = 0;
if (secret) { v = pred write(secret, 10, v);
= 10; — y = pred write(secret, x/v, V);

\'}
y = X / Vv;
} '

:0;
= pred write(secret, 10, v);

covertly changing divisor value. = pred_write(v == 0, 1, v);

= pred write(secret, x/t, vy);

Our solution masks exceptions by

tI< <

-




But Predication May Crash the Program

Original Program Transformed Program
v = 0; 0;

V =
if (secret) { v = pred write(secret, 10, v);
v = 10; — y = pred_write(secret, x/v, Vy);
Vv = X / V;
} ’

pre-transformation program = pred write(secret, 10, v);

does not throw arch exceptions. = pred write(v == 0, 1, Vv);

= pred write(secret, x/t, vy);

I Our solution assumes that the =18

tI< <

o
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Sut

Jredication May Cause Infinite Loops

No
Incorrect code
Yes transformation Infinite v
> Loop
¥ ¥
V 4

Loops require a different transformation.




Transforming Loops

loop i :: 0 to n
X * Y,
S I -

X
I "




Transforming Loops

loop i eto@
X =X ¥ Y,
1=i+1;:

|

|

Y

Assume n is secret.

Transformation should hide the
number of executed iterations.




Transforming Loops

Assume n is secret.

Transformation should hide the
number of executed iterations.

Our Solution’'s Approach

lteration Count

|—
® 10 20 N
€ ———————— >

Dummy lterations




Transforming Loops

Original Program




Transforming Loops

Original Program Transformed Program

—_— 1 =0

loop ctr :: 0 to C

ctr = ¢ctr + 1;




Transforming Loops

Original Program Transformed Program

loop i :: 0 to n —> 1 =0
X = X * Y;
i 2 i+ 13 loop ctr :: 0 to C
Newpredicate(___l p: X = X * y;
p: 1 =1+ 1;

for loop body

Ctr + 1;

ctr




Transforming Loops

Original Program Transformed Program

S 1 = 0
p = TRUE
loop ctr :: 0 to C
P X = X * ¥
p 1 =1+ 1;
ctr = ¢ctr + 1;




Transforming Loops

Original Program Transformed Program

1 =0
p = TRUE
loop ctr :: 0 to C
p: X = X * y;
} i + 1; Turn predicate OFF to
run dummy iterations.
1 == n: p = FALSE;
r + 1;




Transforming Loops

Original Program Transformed Program

1 =0
p = TRUE
1 -
oop ctr 0 t2£:>
p: X =X 29,
p: L7f+1;
’/

Annotated by user, for example: < = 5 __ . 0 = FALSE;
_loop_count(1024) v
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Variations in Data Flow

result = table[secret];




Variations in Data Flow

addr <- base(table) + secret

result = table[secret]; === —-— > sasilt 2- ‘vead sddr




Variations in Data Flow

addr <- base(table) + secret

result = table[secret]; == =——-— P eesilt 2 vaad adde

An adversary that can observe
address, can also derive secret.

secret = addr - base(table)




Eliminating Variations in Data Flow

Solution #1.: Array Streaming

Accesses the entire array to read one
element of the array.

Expensive to access entire array, but
vector instructions, caches, and
prefetchers reduce latency.




Eliminating Variations in Data Flow

Solution #2: Software ORAM

Software version of Path ORAM [CCS'13],
which shuffles memory to hide location of
data.
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Behavior
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Program

Data Flow

Behavior

ISA Instructions




Example #1: Latency of Integer Division

o Most-Significant Bit of Dividend

—

Most-Significant Bit of Divisor

31

Cleemput et al, “Compiler Mitigations for Time Attacks
on Modern x86 Processors’, ACM TACO 2012,
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Most-Significant Bit of Divisor

Example #1: Latency of Integer Division

o Most-Significant Bit of Dividend

1

Cleemput et al, “Compiler Mitigations for Time Attacks
on Modern x86 Processors’, ACM TACO 2012,

31

Colors indicate different
execution times




Example #1: Latency of Integer Division

o Most-Significant Bit of Dividend

—

Colors indicate different
execution times

Execution time depends
on the operand values,
creating timing side channel

Most-Significant Bit of Divisor

31

Cleemput et al., “Compiler Mitigations for Time Attacks
on Modern x86 Processors’, ACM TACO 2012,




Example #1: Latency of Integer Division

o Most-Significant Bit of Dividend

—

Colors indicate different
execution times

Execution time depends
on the operand values,
creating timing side channel

Solution: Rewrite division
using bitwise arithmetic

Most-Significant Bit of Divisor

31

Cleemput et al., “Compiler Mitigations for Time Attacks
on Modern x86 Processors’, ACM TACO 2012,
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result

Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3

= (secret != 3) movw dst <- #0
movne dst <- #1




Example #2: Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3
result = (secret != 3) movw dst <- #0
movne dst <- #1

Compares secret with the literal constant 3




Example #2: Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3
result = (secret != 3) movw dst <- #0
movne dst <- #1

Preemptively copies literal 0 into the destination




Example #2: Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3
result = (secret != 3) movw dst <- #0
movne dst <- #1

Conditionally copies literal 1 into the destination




Example #2:

result

Power Consumption of Comparisons

C Program Assembly Program
cmp src , #3
= (secret != 3) movw dst <- #0
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Analysis of Power Models

Open Source
Power Model

We apply backward slicing to
identify the microarchitectural
metrics that affect dynamic

power consumption.

Closed Source
Power Model

We fit a regression model to
the RAPL power model, and we
identify the inputs that have

non-zero regression coefficients.




Superoptimizers for Alternate Code Sequences

Original Transformed
Assembly Program Assembly Program

sub tmp <- srcl,src?2
cmp Srcl,src2

— sub dst <- src2,srcl
movw dst <- #0

b de 5. orr dst <- dst , tmp
lsr dst <- dst , #31
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Mapping between Instructions and Leakage

LLVM
Instructions /
ISA

Automated

Analysis
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»\ Informatior

Microarch.

Side-Channel

Leakage
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Initial Approach to Close Side Channel

Original Program

f (@) Y iel f6

Inefficient If set of all possible inputs is large.
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Approach #2: Slight Optimization

I S
side channel
observations

iInputs

Use one representative input from each partition.
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Approach #3: Further Optimization
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Implementation

Close a Broad Class

of Side Channels

Digital Side Channels

e.g. address trace, cache,
branch predictor, etc.




Implementation

Close a Broad Class

of Side Channels

Digital Side Channels and
some Non-Digital Side Channels

e.g. instruction-level
power consumption




Implementation

Execute on Modern

Microprocessors

Microarchitectural Implementations of
X64, 32-bit ARM, and 64-bit ARM |SAs




Implementation

Protect a Diverse

Set of Applications

Not just Cryptographic Implementations, but also
Graph Kernels, Machine-Learning Libraries, etc.
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Evaluation Programs

Cryptography GhostRider Graph Kernels Machine Utility Programs

Learning
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Our Solution: Microarch. Power Side Channel
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Future Work in Side-Channel Defenses

Automation Precision Performance

Synthesizing program Integrating better Aggressive compiler
transformations models of information optimizations and
leakage modest microarch.

modifications
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Synthesizing Side-Channel Defenses
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Synthesizing Side-Channel Defenses

’ I O
I -
transformed secret output
computation input data results

such that f~ does not leak information through side channels

Goal: Adapt research in superoptimizers and program synthesis
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Synthesis for Stronger Guarantees

Microarchitectural Specification

l

Domain-Specific Language
for Compiler Transformations

+ Type Analysis
+ Solver-Based Verification

Executable Code for Program Transformations
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Precision of Side-Channel Defenses

We need to tell compilers
about potential side channels.

Compiler

Our current approach is
an ad-hoc mix of program
analysis, statistics, and
manual inspection.

ISA

Microarchitecture
Goal: Precise abstractions of

underlying layers. Physical Hardware
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Performance of Side-Channel Defenses

Compilers currently are at the
mercy of the ISA

We need more control of the ’
microarchitecture and

ISA
hardware.

Compiler

Goal: Broaden the definition
of the ISA beyond just a
functional interface.

Microarchitecture

Physical Hardware
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Layers of Abstraction as a Liability

Debugging for security sometimes requires

Layer #
knowing a little about the implementation. SYSHES

But abstractions explicitly disable peeking
iInto the iImplementation! Layer #2

ol

This problem affects performance
debugging as well
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Program Analysis for Hardware Design

Functional programming for hardware

design [e.g. CAash, Floh, S

ard, and FLaS
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Program Analysis for Hardware Design

Research Questions:

e How can we quantify security?

ot

e How can we transform programs
for energy efficiency?

vt

Functional programming for hardware
design le.g. CAash, Floh, SHard, and FLaSH]




Type Systems and
Program Verifiers

Microarchitectures

Hardware Design




Thanks to My Collaborators and Sponsors

Calvin Lin, PhD Advisor, UT Austin
Mohit Tiwari, PhD Advisor, UT Austin

K Rustan M. Leino, Amazon

Chris Hawblitzel, Microsoft Research

Laure Thompson, Cornell University

Joshua Eversmann, Civitas Learning

Greg McDonald, HBK Investments

Q LUALCOMM

Bryan Parno, Carnegie Mellon University
Jacob R. Lorch, Microsoft Research
Srinath Setty, Microsoft Research

Manos Kapritsos, University of Michigan
Barry Bond, Microsoft Research

Raymond Chee, Carnegie Mellon University

Varun Adiga and Kasra Sadeghi, UT Austin

5

STARnet




