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Abstract
This paper considers Safe Policy Improvement
(SPI) in Batch Reinforcement Learning (Batch
RL): from a fixed dataset and without direct ac-
cess to the true environment, train a policy that
is guaranteed to perform at least as well as the
baseline policy used to collect the data. Our ap-
proach, called SPI with Baseline Bootstrapping
(SPIBB), is inspired by the knows-what-it-knows
paradigm: it bootstraps the trained policy with
the baseline when the uncertainty is high. Our
first algorithm, Πb-SPIBB, comes with SPI theo-
retical guarantees. We also implement a variant,
Π≤b-SPIBB, that is even more efficient in prac-
tice. We apply our algorithms to a motivational
stochastic gridworld domain and further demon-
strate on randomly generated MDPs the supe-
riority of SPIBB with respect to existing algo-
rithms, not only in safety but also in mean perfor-
mance. Finally, we implement a model-free ver-
sion of SPIBB and show its benefits on a navi-
gation task with deep RL implementation called
SPIBB-DQN, which is, to the best of our knowl-
edge, the first RL algorithm relying on a neural
network representation able to train efficiently
and reliably from batch data, without any inter-
action with the environment.

1. Introduction
Most real-world Reinforcement Learning agents (Sutton &
Barto, 1998, RL) are to be deployed simultaneously on nu-
merous independent devices and cannot be patched quickly.
In other practical applications, such as crop management
or clinical tests, the outcome of a treatment can only be
assessed after several years. Consequently, a bad update
could be in effect for a long time, potentially hurting the
user’s trust and/or causing irreversible damages. Devising
safe algorithms with guarantees on the policy performance
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is a key challenge of modern RL that needs to be tackled
before any wide-scale adoption.

Batch RL is an existing approach to such offline settings
and consists in training a policy on a fixed set of observa-
tions without access to the true environment (Lange et al.,
2012). It should not be mistaken with the multi-batch set-
ting where the learner trains successive policies from small
batches of interactions with the environment (Duan et al.,
2016). Current Batch RL algorithms are however either un-
safe or too costly computationally to be used in real-world
applications. Safety in RL (Garcı́a & Fernández, 2015) is
an overloaded term, as it may be considered with respect to
parametric uncertainty (Thomas et al., 2015a; Petrik et al.,
2016), internal uncertainty (Altman, 1999; Carrara et al.,
2019), interruptibility (Orseau & Armstrong, 2016; Guer-
raoui et al., 2017), or as exploration in a hazardous envi-
ronment (Schulman et al., 2015; 2017; Fatemi et al., 2019).
We focus on the former.

In this paper, we develop novel safe and efficient Batch RL
algorithms. Our methodology for Safe Policy Improvement
(SPI), called SPI with Baseline Bootstrapping (SPIBB), is
introduced in Section 2. It consists in bootstrapping the
trained policy with the behavioral policy, called baseline,
in the state-action pair transitions that were not probed
enough in the dataset. It therefore assumes access to the
baseline, an assumption already made in the SPI litera-
ture (Petrik et al., 2016). Other SPI algorithms assume
knowledge of the baseline performance instead (Thomas
et al., 2015a;b). We argue that our assumption is more nat-
ural since SPI aims to improve an existing policy. This sce-
nario is typically encountered when a policy is trained in a
simulator and then run in its real environment, for instance
in Transfer RL (Taylor & Stone, 2009); or when a system
is designed with expert knowledge and then optimized, for
example in Dialogue applications (Laroche et al., 2010).

Still in Section 2, we implement a computationally efficient
algorithm, Πb-SPIBB, that provably approximately outper-
forms the baseline with high confidence. At the expense
of theoretical guarantees, we design a variant, Π≤b-SPIBB,
that is even more efficient in practice. Moreover, we im-
plement an equivalent model-free version. Coupled with
a pseudo-count implementation (Bellemare et al., 2016),
it allows applying SPIBB algorithms to tasks requiring a
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neural network representation. Finally, we position our al-
gorithm with respect to competing SPI algorithms found in
the literature.

Then, in Section 3, we motivate our approach on a small
stochastic gridworld domain and further demonstrate on
randomly generated MDPs the superiority of SPIBB com-
pared to existing algorithms, not only in safety but also in
mean performance. Furthermore, we apply the model-free
version to a continuous navigation task. It is, to the best of
our knowledge, the first RL algorithm relying on a neural
network representation able to train efficiently and reliably
from batch data, without any interaction with the environ-
ment (Duan et al., 2016).

Finally, Section 4 concludes the paper. The appendix
includes the proofs, thorough experiment details, and the
complete results of experiments. The code may be found at
https://github.com/RomainLaroche/SPIBB
and https://github.com/rems75/SPIBB-DQN.

2. SPI with Baseline Bootstrapping
A proper introduction to Markov Decision Processes (Bell-
man, 1957, MDPs) and Reinforcement Learning (Sutton
& Barto, 1998, RL) is available in Appendix A.1. Due to
space constraint, we only define our notations here.

An MDP is denoted by M = 〈X ,A, R, P, γ〉, where
X is the state space, A is the action space, R∗(x, a) ∈
[−Rmax, Rmax] is the bounded stochastic reward function,
P ∗(·|x, a) is the transition distribution, and γ ∈ [0, 1) is
the discount factor. The true environment is modelled as
an unknown finite MDP M∗ = 〈X ,A, R∗, P ∗, γ〉 with
R∗(x, a) ∈ [−Rmax, Rmax]. Π = {π : X → ∆A} is
the set of stochastic policies, where ∆A denotes the set of
probability distributions over the set of actions A.

The state and state-action value functions are respectively
denoted by V πM (x) and QπM (x, a). We define the perfor-
mance of a policy by its expected return, starting from
the initial state x0: ρ(π,M) = V πM (x0). Given a policy
subset Π′ ⊆ Π, a policy π′ is said to be Π′-optimal for
an MDP M when it maximizes its performance on Π′:
ρ(π′,M) = maxπ∈Π′ ρ(π,M). We will also make use of
the notation Vmax as a known upper bound of the return’s
absolute value: Vmax ≤ Rmax

1−γ .

In this paper, we focus on the batch RL setting where
the algorithm does its best at learning a policy from a
fixed set of experience. Given a dataset of transitions D =
〈xj , aj , rj , x′j〉j∈J1,NK, we denote by ND(x, a) the state-
action pair counts; and by M̂ = 〈X ,A, R̂, P̂ , γ〉 the Max-
imum Likelihood Estimation (MLE) MDP of the environ-
ment, where R̂ is the reward mean and P̂ is the transition
statistics observed in the dataset. Vanilla batch RL, referred

hereinafter as Basic RL, looks for the optimal policy in M̂ .
This policy may be found indifferently using dynamic pro-
gramming on the explicitly modelled MDP M̂ , Q-learning
with experience replay until convergence (Sutton & Barto,
1998), or Fitted-Q Iteration with a one-hot vector represen-
tation of the state space (Ernst et al., 2005).

2.1. Percentile criterion and Robust MDPs

We start from the percentile criterion (Delage & Mannor,
2010) on the safe policy improvement over the baseline πb:

πC = argmax
π∈Π

E [ρ(π,M) |M ∼ PMDP(·|D)] , (1)

s.t. P (ρ(π,M) ≥ ρ(πb,M)− ζ |M ∼ PMDP(·|D)) ≥ 1− δ,
where PMDP(·|D) is the posterior probability of the MDP
parameters, 1 − δ is the high probability meta-parameter,
and ζ is the approximation meta-parameter. (Petrik et al.,
2016) use Robust MDP (Iyengar, 2005; Nilim & El Ghaoui,
2005) to bound from below the constraint in (1) by consid-
ering a set of admissible MDPs Ξ = Ξ(M̂, e) defined as:

Ξ(M̂, e) := {M = 〈X ,A, R, P, γ〉 s.t. ∀(x, a) ∈ X ×A,
||P (·|x, a)− P̂ (·|x, a)||1 ≤ e(x, a),

|R(x, a)− R̂(x, a)| ≤ e(x, a)Rmax

}
(2)

where e : X × A → R is an error function depending on
D and δ. In place of the intractable expectation in Equa-
tion (1), Robust MDP classically consider optimizing the
policy performance ρ(π,M) of the worst-case scenario in
Ξ:

πR = argmax
π∈Π

min
M∈Ξ

ρ(π,M). (3)

In our benchmarks, we use the Robust MDP solver de-
scribed in Petrik et al. (2016). Petrik et al. (2016) also con-
template the policy improvement worst-case scenario:

πS = argmax
π∈Π

min
M∈Ξ

(ρ(π,M)− ρ(πb,M)) . (4)

They prove that this optimization is an NP-hard problem
and propose an algorithm approximating the solution with-
out any formal proof: Approximate Robust Baseline Regret
Minimization (ARBRM). There are three problems with
ARBRM. First, it assumes that there is no error in the tran-
sition probabilities of the baseline, which is very restrictive
and amounts to Basic RL when the support of the base-
line is the full action space in each state (as is the case
in all our experiments). Second, given its high complex-
ity, it is difficult to empirically assess its percentile crite-
rion safety except on simple tasks. Third, in order to retain
safety guarantees, ARBRM requires a conservative safety
test that consistently fails in our experiments. These are the
reasons why our benchmarks do not include ARBRM.
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2.2. SPIBB methodology

In this section, we reformulate the percentile criterion to
make searching for an efficient and provably-safe policy
tractable in terms of computer time. Our new criterion con-
sists in optimizing the policy with respect to its perfor-
mance in the MDP estimate M̂ , while guaranteeing it to
be ζ-approximately at least as good as πb in the admissible
MDP set Ξ. Formally, we write it as follows:

max
π∈Π

ρ(π, M̂), s.t. ∀M ∈ Ξ, ρ(π,M) ≥ ρ(πb,M)− ζ.
(5)

From Theorem 8 of Petrik et al. (2016), it is direct to guar-
antee that, if all the state-action pair counts satisfy:

ND(x, a) ≥ N∧ =
8V 2

max

ζ2(1− γ)2
log

2|X ||A|2|X |
δ

, (6)

and if M̂ is the Maximum Likelihood Estimation (MLE)
MDP, then, with high probability 1− δ, the optimal policy
π� = argmaxπ∈Π ρ(π, M̂) in M̂ is ζ-approximately safe
with respect to the true environment M∗:

ρ(π�,M∗) ≥ ρ(π∗,M∗)− ζ ≥ ρ(πb,M
∗)− ζ. (7)

In the following, we extend this result by allowing con-
straint (6) to be violated on a subset of the state-action pairs
X ×A, called the bootstrapped set and denoted by B. B is
the set of state-action pairs with counts smaller than N∧.

2.3. Πb-SPIBB

In this section, we develop two novel algorithms based
on policy bootstrapping and prove associated SPI bounds.
More precisely, when a state-action pair (x, a) is rarely
seen in the dataset, we propose to rely on the baseline by
copying its probability to take action a:

π�spibb(a|x) = πb(a|x) if (x, a) ∈ B. (8)

We let Πb denote the set of policies that verify (8) for all
state-action pairs. Our first algorithm, coined Πb-SPIBB,
consists in the usual policy optimization of the expected
return ρ(π, M̂) under constraint (8). In practice, it may be
achieved in a model-based manner by explicitly computing
the MDP model M̂ , constructing the set of allowed policies
Πb and finally searching for the Πb-optimal policy π�spibb
in M̂ using policy iteration over Πb (Howard, 1966; Puter-
man & Brumelle, 1979). In the policy evaluation step, the
current policy π(i) is evaluated as Q(i)

M̂
. In the policy im-

provement step, π(i+1) is defined as the greedy policy with
respect to Q(i) under the constraint of belonging to Πb (Al-
gorithm 1 describes how to enforce this constraint in linear
time).

Algorithm 1 Greedy projection of Q(i) on Πb

Input: Baseline policy πb
Input: Last iteration value function Q(i)

Input: Set of bootstrapped state-action pairs B
Input: Current state x and action set A
Initialize π(i)

spibb = 0

for (x, a) ∈ B do π
(i)
spibb(a|x) = πb(a|x) ;

π
(i)
spibb

(
x, argmax
a|(x,a)/∈B

Q(i)(x, a)

)
=

∑
a|(x,a)/∈B

πb(a|x)

return π(i)
spibb

The following theorems prove that Πb-SPIBB converges to
a Πb-optimal policy π�spibb, and that π�spibb is a safe policy
improvement over the baseline in the true MDP M∗.

Theorem 1 (Convergence). Πb-SPIBB converges to a pol-
icy π�spibb that is Πb-optimal in the MLE MDP M̂ .

Theorem 2 (Safe policy improvement). Let Πb be the
set of policies under the constraint of following πb when
(x, a) ∈ B. Then, π�spibb is a ζ-approximate safe policy im-
provement over the baseline πb with high probability 1− δ,
where:

ζ =
4Vmax

1− γ

√
2

N∧
log

2|X ||A|2|X |
δ

−ρ(π�spibb, M̂)+ρ(πb, M̂)

Proofs of both theorems are available in Appendix A.3.
Theorem 1 is a direct application of the classical policy iter-
ation theorem. Theorem 2 is a generalization of Theorem 8
in Petrik et al. (2016). The resulting bounds may look very
similar at first. The crucial difference is that, in our case,
N∧ is not a property of the dataset, but a hyper-parameter
of the algorithm. In all our experiments, ‖e‖∞ from The-
orem 8 would be equal to 2, leading to a trivial bound. In
comparison, Πb-SPIBB allows safe improvement if N∧ is
chosen large enough to ensure safety and small enough to
ensure improvement.

SPIBB takes inspiration from Petrik et al. (2016)’s idea of
finding a policy that is guaranteed to be an improvement
for any realization of the uncertain parameters, and simi-
larly estimates the error on those parameters, as a function
of the state-action pair counts. But instead of searching for
the analytic optimum, SPIBB looks for a solution that im-
proves the baseline when it can guarantee improvement and
falls back on the baseline when the uncertainty is too high.
One can see it as a knows-what-it-knows algorithm, asking
for help from the baseline when it does not know whether it
knows (Li et al., 2008). As such, our algorithms can be seen
as pessimistic, the flip side of optimism in the face of un-
certainty (Szita & Lőrincz, 2008). As a consequence, Πb-
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SPIBB is not optimal with respect to the criterion in Equa-
tion (5). But in return, it is inherently safe as it only allows
to search in a set of policies for which the improvement
over the baseline can be safely evaluated (Thomas et al.,
2017). It is also worth mentioning that SPIBB is compu-
tationally simple, which allows us to develop the SPIBB-
DQN algorithm in the next section.

2.4. Model-free Πb-SPIBB and SPIBB-DQN

The Πb-SPIBB policy optimization may indifferently be
achieved in a model-free manner by fitting the Q-function
to the following target y(i)

j over the transition samples in
the dataset D = 〈xj , aj , rj , x′j〉j∈J1,NK:

y
(i)
j = rj + γ

∑
a′|(x′j ,a′)∈B

πb(a
′|x′j)Q(i)(x′j , a

′) (9)

+ γ

 ∑
a′|(x′j ,a′)/∈B

πb(a
′|x′j)

 max
a′|(x′j ,a′)/∈B

Q(i)(x′j , a
′)

The first term rj is the immediate reward observed during
the recorded transition, the second term is the return esti-
mate of the bootstrapped actions (where the trained policy
is constrained to the baseline policy), and the third term is
the return estimate maximized over the non-bootstrapped
actions. SPIBB-DQN is the DQN algorithm fitted to these
targets y(i)

j (Mnih et al., 2015). Note that computing the
SPIBB targets requires determining the bootstrapped set
B, which relies on an estimate of the state-action counts
ÑD(x, a), also called pseudo-counts (Bellemare et al.,
2016; Fox et al., 2018; Burda et al., 2019).
Theorem 3. In finite MDPs, Equation 9 admits a unique
fixed point that coincides with the Q-value of the policy
trained with model-based Πb-SPIBB.

2.5. Π≤b-SPIBB

In our empirical evaluation, we consider a variant of Πb-
SPIBB: the space of policies to search is relaxed to Π≤b,
the set of policies that do not to give more weight than πb
to bootstrapped actions. As a consequence, in comparison
with Πb-SPIBB, it allows to cut off bad performing actions
even when their estimate is imprecise:

Π≤b = {π ∈ Π |π(a|x) ≤ πb(a|x) if (x, a) ∈ B} (10)

The resulting algorithm is referred as Π≤b-SPIBB and
amounts, as for Πb-SPIBB, to perform a policy iteration
under the policy constraint to belong to Π≤b. The conver-
gence guarantees of Theorem 1 still apply to Π≤b-SPIBB,
but we lose the SPI ones.

Algorithm 2 in Appendix A.4, describes the greedy projec-
tion ofQ(i) on Π≤b. Appendix A.5 also includes a compre-

hensive example that illustrates the difference between the
Πb-SPIBB and Π≤b-SPIBB policy improvement steps. De-
spite the lack of safety guarantees, our experiments show
Π≤b-SPIBB to be even safer than Πb-SPIBB while outper-
forming it in most scenarios. Multi-batch settings – where
it may be better to keep exploring the bootstrapped pairs –
might be an exception (Lange et al., 2012).

2.6. Other related works

High-Confidence PI refers to the family of algorithms in-
troduced in Paduraru (2013); Mandel et al. (2014); Thomas
et al. (2015a), which rely on the ability to produce high-
confidence lower bound on the Importance Sampling (IS)
estimate of the trained policy performance. IS and SPIBB
approaches are very different in nature: IS provides fre-
quentist bounds, while SPIBB provides Bayesian bounds.
In comparison to SPIBB, IS has the advantage of not de-
pending on the MDP model and as a consequence may be
applied to infinite MDPs with guarantees. However, the IS
estimates are known to be high variance. Another drawback
of the IS approach is that it fails for long horizon problem.
Indeed, Guo et al. (2017) show that the amount of data
required by IS-based SPI algorithms scales exponentially
with the horizon of the MDP. Regarding the dependency in
the horizon of SPIBB algorithms, the discount factor γ is
often translated as a planning horizon: H = 1

1−γ . This is
the case in UCT for instance (Kocsis & Szepesvári, 2006).
As a consequence, Theorem 2 tells us that the safety is lin-
ear in the horizon (given a fixed Vmax).

In Kakade & Langford (2002), Conservative Policy Itera-
tion (CPI) not only assumes access to the environment, but
also to a µ-restart mechanism which can basically sample
at will from the environment according to a distribution µ.
This is used in step (2) of the CPI algorithm to build an es-
timate of the advantage function precise enough to ensure
policy improvement with high probability. SPIBB does not
have access to the true environment: all it sees are the finite
samples from the batch. Similarly, Pirotta et al. (2013a;b)
consider a single safe policy improvement in order to speed
up training of policy gradients (use less policy iterations).
These are however not safe in the sense of finding a pol-
icy that improves a previous policy with high confidence:
they will converge to the same policy asymptotically, the
optimal one in the MLE MDP. Additionally, they are not
considering the batch setting.

3. SPIBB Empirical Evaluation
The performance of Batch RL algorithms can vary greatly
from one dataset to another. To properly assess existing
and SPIBB algorithms, we evaluate their ability to gener-
ate policies that consistently outperform the baseline. Prac-
tically, we repeated 100k times the following procedure on



Safe Policy Improvement with Baseline Bootstrapping

S

G

S

G

(a) Gridworld domain.
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(b) 1%-CVaR heatmap: Πb-SPIBB.

10 20 50 100 200 500 1000 2000 5000 10000

Number of trajectories

5

7

10

15

20

30

50

70

100

N
∧

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Normalized performance of the target policy π: ρ =
ρ(π,M∗)− ρb

ρ∗ − ρb

(c) 1%-CVaR heatmap: Π≤b-SPIBB.
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(e) 1%-CVaR: benchmark with N∧ = 5.
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Figure 1. Gridworld experiment: Figure (a) illustrates the domain with an optimal trajectory. Figures (b-c) are heatmaps of the 1%-CVaR
normalized performance of the SPIBB algorithms as a function of N∧. Figures (d-e) show the benchmark for the mean and 1%-CVaR
performance. Figure (f) displays additional curves for another value of N∧.

various environments: randomly generate a dataset, train a
policy on that dataset using each algorithm and each hyper-
parameter in the benchmark and compute the performance
of the trained policy (with γ = 0.95). We formalize this
experimental protocol in Appendix B.1.1. The algorithms
are then evaluated using the mean performance and con-
ditional value at risk performance (CVaR, also called ex-
pected shortfall) of the policies they produced. The X%-
CVaR is the mean performance over the X% worst runs.
Given the high number of runs, all the results that are visi-
ble to the naked eye are significant.

In addition to the SPIBB algorithms, our finite MDP bench-
mark contains four algorithms: Basic RL, HCPI (Thomas
et al., 2015a), Robust MDP, and RaMDP (Petrik et al.,
2016). RaMDP stands for Reward-adjusted MDP and ap-
plies an exploration penalty when performing actions rarely
observed in the dataset. At the exception of Basic RL, they
all rely on one hyper-parameter: δhcpi, δrob and κadj re-
spectively. We performed a grid search on those parame-
ters and for HCPI compared 3 versions. In the main text,
we only report the best performance we found (δhcpi = 0.9,
δrob = 0.1, and κadj = 0.003), the full results can be found
in Appendix B.2. Additionally, Robust MDP and RaMDP
depend on a safety test that always failed in our experi-
ments. We still report their performance.

3.1. Does SPIBB outperform existing algorithms?

Our first domain is a discrete, stochastic, 5 × 5 gridworld
(see Figure 1(a)), with 4 actions: up, down, left and right.
The transitions are stochastic: the agent moves in the re-
quested direction with 75% chance, in the opposite one
with 5% chance and to either side with 10% chance each.
The initial and final states are respectively the bottom left
and top right corners. The reward function is +1 when the
final state is reached and 0 everywhere else. The baseline
we use in this experiment is a fixed stochastic policy with a
0.4 performance, the optimal policy has a 0.6 performance.

We start by analysing the sensitivity of Πb-SPIBB and
Π≤b-SPIBB with respect to N∧. We visually represent the
results as two 1%-CVaR heatmaps: Figures 1(b) and 1(c)
for Πb-SPIBB and Π≤b-SPIBB. They read as follows: the
colour of a cell indicates the improvement over the base-
line normalized with respect to the optimal performance:
red, yellow, and green respectively mean below, equal to,
and above baseline performance. We observe for SPIBB al-
gorithms that the policy improvement is safe (at the slight
exception of Πb-SPIBB with a low N∧ on 10-trajectory
datasets), that the bigger the N∧, the more conservative
SPIBB gets, and that Π≤b-SPIBB outperforms Πb-SPIBB.

In Figure 1(d), we see that Basic RL improves the base-
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(a) 1%-CVaR benchmark with N∧ = 20.
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(b) 1%-CVaR heatmap: Πb-SPIBB.
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(c) 1%-CVaR heatmap: Π≤b-SPIBB.

Figure 2. Gridworld experiment with random behavioural policy: Figure (a) shows the benchmark for the 1%-CVaR performance, with
SPIBB using N∧ = 20. Figures (b-c) are the heatmaps of the 1%-CVaR normalized performance of the SPIBB algorithms as a function
of N∧ (same heat colours as in Figures 1(b) and 1(c)).

line on average, but not monotonically with the size of the
dataset, and remains quite far from optimal. That fact is
explained by the fairly frequent learning of catastrophic
policies and will be analyzed in details with the 1%-CVaR
results. HCPI is more conservative for small datasets but
slightly outperforms Basic RL for bigger ones, still re-
maining away from optimal. We also observe that Robust
MDPs do even worse than Basic RL; in fact, they learn
policies that remain at the center of the grid where the
dataset contains a maximum of transitions and therefore
where the Robust MDPs have a minimal estimate error,
and completely ignore the goal. A similar behaviour is ob-
served with RaMDP when its hyper-parameter is set too
high (≥ 0.004). Inversely, when it is set too low (≤ 0.002),
RaMDP behaves like Basic RL. But in the tight spot of
0.003, RaMDP is very efficient. We refer the interested
reader to Appendix B.2 for the analysis of hyper-parameter
search for the benchmark algorithms. Overall, RaMDP and
Π≤b-SPIBB win this benchmark based on mean perfor-
mance, with Πb-SPIBB not far behind.

Figure 1(e) displays the 1%-CVaR performance of the al-
gorithms. We observe that the very good mean performance
of RaMDP hides some catastrophic runs where the trained
policy under-performs for small datasets. In contrast, Π≤b-
SPIBB’s curve remains over the baseline. Πb-SPIBB is
again a bit behind. HCPI also proves to be near safe. We
explained in the previous paragraph why Robust MDP of-
ten generates bad policies. It actually does it so often, and
the policies are so bad, that its curve does not even show on
the graph. Let us now consider Basic RL and explain why it
does so poorly, even at times on very large datasets (consid-
ering that the MDP has 25 states and 4 actions). The dataset
is collected using a baseline that performs some actions
only very rarely. As a consequence, even in big datasets,
some state-action pairs are observed only once or twice.
Given the stochasticity of the environment, the MLE MDP
might be quite different from the true MDP in those states,
leading to policies falsely taking advantage of those chi-

maeras. SPIBB algorithms are not allowed to jump to con-
clusions without sufficient proof and have to conservatively
reproduce the baseline policy in those configurations.

Figure 1(f) shows the SPIBB curves for a higher value of
N∧ = 20. There, the algorithms are more conservative and
therefore safe, while still achieving near optimality on big
datasets. Full results may be found in Appendix C.1.

3.2. Must the dataset be collected with the baseline?

SPIBB theory relies on the assumption that the baseline
was used for the data collection, which is a limiting fac-
tor of the method. In practice, this assumption simply en-
sures that the preferential trajectories of the baseline are
experienced in the batch of trajectories used for training.
We modify the previous experiment by producing datasets
using a uniform random policy, while keeping the same
Gridworld environment and the same baseline for boot-
strapping. In this setting, Basic RL does not have its non-
monotonic behaviour anymore, but both our algorithms,
Πb-SPIBB and Π≤b-SPIBB, still significantly outperform
their competitors (see Figure 2(a)). Note however the fol-
lowing differences: Basic RL becomes safe with 100 trajec-
tories, RaMDP does not improve Basic RL anymore, and
HCPI has more difficulty improving the baseline. Robust
MDP still does not show on the 1%-CVaR figure. Focusing
more specifically on the SPIBB algorithms and their N∧
sensitivity, Figures 2(b) and 2(c) show that they fail to be
completely safe when N∧ ≤ 10 and |D| ≤ 20; and that
Πb-SPIBB slightly outperforms Π≤b-SPIBB. Indeed, Π≤b-
SPIBB cannot take advantage anymore of the bias that the
behavioural policy tends to take actions that are better than
average. Full results may be found in Appendix C.2.

3.3. Does SPIBB achieve SPI in most domains?

In this section, we study the conditions required on the en-
vironment and on the baseline for SPIBB to be helpful.
To do so, we use a generator of Random MDPs where the
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(d) 1%-CVaR: RaMDP with δadj = 0.003.
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(e) 1%-CVaR: Π≤b-SPIBB with N∧ = 10.
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(f) 1%-CVaR: Π≤b-SPIBB with η = 0.9.

Figure 3. Random MDPs domain: Figures (a-c) show the mean and 1%-CVaR performances for η values of 0.1 and 0.9 and SPIBB
with N∧ = 10. Figures (d-e) are the 1%-CVaR as a function of η for RaMDP and Π≤b-SPIBB respectively. Figure (f) is the 1%-CVaR
heatmap for Π≤b-SPIBB as a function of N∧ with η = 0.9.

number of states has been fixed to |X | = 50, the number
of actions to |A| = 4 and the connectivity of the transition
function to 4. This means that for a given state-action pair
(x, a), its transition function P (x′|x, a) is non-zero on four
states x′ only. The initial state is fixed at x0. The reward
function is 0 everywhere except when entering the termi-
nal state, where it equals 1. The terminal state is chosen in
such a way that the optimal value function is minimal. It
coarsely amounts to choosing the state that is the hardest to
reach/farthest from x0. For a randomly generated MDP M ,
we generate baselines with different levels of performance
(the process is detailed in Appendix B.1.4). Specifically, we
set a target performance for the baseline based on a hyper-
parameter η ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}:
ρ(πb,M) = ηρ(π∗,M) + (1 − η)ρ(π̃,M), where π∗ and
π̃ are respectively the optimal and the uniform policies.

Figure 3(a) shows the mean results with a bad, highly
stochastic baseline (η = 0.1). Since, the baseline is bad, it
is an easy task to safely improve it. Basic RL and RaMDP
dominate the benchmark in mean, but also in safety (not
shown). SPIBB algorithms are too conservative for small
datasets but catch up on the bigger ones. Figure 3(b) shows
the mean results with a very good baseline, therefore very
hard task to safely improve. On average, the podium is
composed by Π≤b-SPIBB, RaMDP, Πb-SPIBB, followed
closely by Basic RL. But, when one considers more specif-
ically the 1%-CVaR performance, all fail to be safe but

the SPIBB algorithms. Note that a -0.5 normalized per-
formance is still a good performance, and that this loss is
actually predicted by the theory: Theorem 2 proves a ζ-
approximate safe policy improvement.

The heatmaps shown in Figures 3(d) and 3(e) allow us
to compare more globally the 1%-CVaR performance of
RaMDP and Π≤b-SPIBB. One observes that the former is
unsafe in a large area of the map (where it is red, for high η
or small datasets), while the latter is safe everywhere. Fig-
ure 3(f) displays a heatmap of the Π≤b-SPIBB 1%-CVaR
performance in the hardest scenario (η = 0.9) in function
of its N∧ hyper-parameter. Unsurprisingly, the algorithm
becomes slightly unsafe when N∧ gets too low. As it in-
creases, the red stains disappear meaning that it becomes
completely safe. The green sections show that it still allows
for some policy improvement. Full results may be found in
Appendix C.3.

3.4. Does SPIBB scale to larger tasks?

For the sake of simplicity and to be able to repeat sev-
eral runs of each experiment efficiently, instead of apply-
ing pseudo-count methods from the literature (Bellemare
et al., 2016; Fox et al., 2018; Burda et al., 2019), we con-
sider here a pseudo-count heuristic based on the Euclidean
state-distance, and a task where it makes sense to do so. The
pseudo-count of a state-action (x, a) is defined as the sum
of its similarity with the state-action pairs (xi, ai) found
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Figure 4. SPIBB-DQN experiments: Figure (a) is an illustration of the environment. Figure (b) displays the mean and 10%-CVaR per-
formance as a function of N∧ for three dataset sizes. Figure (c) displays the mean and 10%-CVaR performance for the baseline, vanilla
DQN, RaMDP with κadj = 0.01, SPIBB-DQN with N∧ = 5, and with N∧ = 10, as a function of the transition noise factor.

in the dataset. The similarity between (x, a) and (xi, ai) is
equal to 0 if ai 6= a, and to max(0, 1−d(x, xi)) otherwise,
where d(·, ·) is the Euclidean distance between two states.

We consider a helicopter navigation task (see Figure 4(a)).
The helicopter starts from a random position in the teal
area, with a random initial velocity. The 9 available actions
consist in applying thrust: backward, no, or forward accel-
eration, along the two dimensions. The episode terminates
when the velocity exceeds some maximal value, in which
case it gets a -1 reward, or when the helicopter leaves the
blue area, in which case it gets a reward as chromatically
indicated on Figure 4(a). The dynamics of the domain fol-
low the basic laws of physics with a Gaussian centered ad-
ditive noise both on the position and the velocity, see Ap-
pendix D.1 for full details of the domain. To train our al-
gorithms, we use a discount factor γ = 0.9, but we report
in our results the undiscounted final reward. The baseline
is generated as follows: we first train a policy with on-
line DQN, stop before full convergence and then apply a
softmax on the obtained Q-network. Our experiments con-
sist in 300 runs on SPIBB-DQN with a range of N∧ values
and for different dataset sizes. SPIBB-DQN with N∧ = 0
is equivalent to vanilla DQN. We also tried RaMDP with
several values of κadj ∈ [0.001, 0.1] without any success.
For figure clarity, we do not report RaMDP in the Main
Document figures. The set of used parameters and the re-
sults of the preliminary experiments are reported in Appen-
dices D.3 and D.4.

Figure 4(b) displays the mean and 10%-CVaR perfor-
mances in function of N∧ for three dataset sizes (10k, 20k,
and 30k). We observe that vanilla DQN (N∧ = 0) signifi-
cantly worsens the baseline in mean and achieves the worst
possible 10%-CVaR performance. SPIBB-DQN not only
significantly improves the baseline in mean performance
for N∧ ≥ 1, but also in 10%-CVaR when N∧ ≥ 8. The
discerning reader might wonder about the CVaR curve for

the baseline. It is explained by the fact that the evaluation
of the policies are not exact. The curve accounts for the
evaluation errors, errors also obviously encountered with
the trained policies.

We performed an additional experiment. Keeping the base-
line identical, we trained on 10k-transitions datasets ob-
tained from environments with a different transition noise.
Figure 4(c) shows the mean and 10%-CVaR performances
for the baseline, vanilla DQN, and SPIBB-DQN with
N∧ ∈ {5, 10}. First, we observe that vanilla DQN performs
abysmally. Second, we see that the baseline quickly gets
more efficient when the noise is removed making the safe
policy improvement task harder for SPIBB-DQN. SPIBB is
efficient at dealing with stochasticity, the noise attenuation
reduces its usefulness. Third, as we get to higher noise fac-
tors, the stochasticity becomes too high to efficiently aim
at the goal, but SPIBB algorithms still succeed at safely
improving the baseline.

4. Conclusion and Future Work
In this paper, we tackle the problem of safe Batch Rein-
forcement Learning. We reformulate the percentile crite-
rion without compromising its safety. We lose optimality
that way but keep a PAC-style guarantee of policy im-
provement. It allows the implementation of an algorithm
Πb-SPIBB that run as fast as a vanilla model-based RL al-
gorithm, while generating a provably safe policy improve-
ment over a known baseline πb. A variant algorithm Π≤b-
SPIBB is shown to perform better and safer on a wide range
of domains, but does not come with safety guarantees. Ba-
sic Batch RL and the other benchmark competitors are
shown to fall short on at least one, and generally two, of the
following criteria: mean performance, safety, or domain-
dependent hyper-parameter sensitivity. Finally, we imple-
ment a DQN version of SPIBB that is the first deep batch
algorithm allowing policy improvement in a safe manner.
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Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In European conference on machine learning,
pp. 282–293. Springer, 2006.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning. Springer,
2012.



Safe Policy Improvement with Baseline Bootstrapping

Laroche, R., Putois, G., and Bretier, P. Optimising a
handcrafted dialogue system design. In Proceedings of
the 11th Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2010.

Li, L., Littman, M. L., and Walsh, T. J. Knows what it
knows: a framework for self-aware learning. In Proceed-
ings of the 25th International Conference on Machine
Learning (ICML), 2008.

Mandel, T., Liu, Y.-E., Levine, S., Brunskill, E., and
Popovic, Z. Offline policy evaluation across represen-
tations with applications to educational games. In Pro-
ceedings of the 13th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS),
2014.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 2015.

Nilim, A. and El Ghaoui, L. Robust control of markov de-
cision processes with uncertain transition matrices. Op-
erations Research, 2005.

Orseau, L. and Armstrong, S. Safely interruptible
agents. In Proceedings of the Thirty-Second Confer-
ence on Uncertainty in Artificial Intelligence (UAI),
UAI’16, pp. 557–566, Arlington, Virginia, United
States, 2016. AUAI Press. ISBN 978-0-9966431-1-
5. URL http://dl.acm.org/citation.cfm?
id=3020948.3021006.

Paduraru, C. Off-policy Evaluation in Markov Decision
Processes. PhD thesis, PhD thesis, McGill University,
2013.

Parr, R. E. and Russell, S. Hierarchical control and learn-
ing for Markov decision processes. University of Cali-
fornia, Berkeley, CA, 1998.

Petrik, M., Ghavamzadeh, M., and Chow, Y. Safe policy
improvement by minimizing robust baseline regret. In
Proceedings of the 29th Advances in Neural Information
Processing Systems (NIPS), 2016.

Pirotta, M., Restelli, M., and Bascetta, L. Adaptive step-
size for policy gradient methods. In Proceedings of the
26th Advances in Neural Information Processing Sys-
tems (NIPS), pp. 1394–1402, 2013a.

Pirotta, M., Restelli, M., Pecorino, A., and Calandriello, D.
Safe policy iteration. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML), pp.
307–315, 2013b.

Puterman, M. L. and Brumelle, S. L. On the convergence
of policy iteration in stationary dynamic programming.
Mathematics of Operations Research, 1979.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and
Moritz, P. Trust region policy optimization. In Proceed-
ings of the 32nd International Conference on Machine
Learning (ICML), 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, 1998.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction
in reinforcement learning. Artificial intelligence, 1999.
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A. SPIBB Theory Complements
A.1. The MDP framework

Markov Decision Processes (Bellman, 1957, MDPs) are a widely used framework to address the problem of optimizing a
sequential decision making problem. In this work, we assume that the true environment is modelled as an unknown finite
MDP M∗ = 〈X ,A, R∗, P ∗, γ〉, where X is the finite state space, A is the finite action space, R∗(x, a) ∈ [−Rmax, Rmax]
is the true bounded stochastic reward function, P ∗(·|x, a) is the true transition distribution, and γ ∈ [0, 1) is the discount
factor. Without loss of generality, we assume that the process deterministically begins in state x0. The agent then makes a
decision about which action a0 to select. This action leads to a new state that depends on the transition probability and the
agent receives a reward R∗(x0, a0). This process is then repeated until the end of the episode. We denote by π the policy
which corresponds to the decision making mechanism that assigns actions to states. Π = {π : X → ∆A} denotes the set
of stochastic policies, and ∆A denotes the set of probability distributions over the set of actions A.

The state value function V πM (x) (resp. state-action value function QπM (x, a)) is the expectation of the discounted sum of
rewards when following π ∈ Π, starting from state x ∈ X (resp. performing action a ∈ A in state x ∈ X ) in the MDP
M = 〈X ,A, R, P, γ〉:

V πM (x) =
∑
a∈A

π(a|x)QπM (x, a) = EM,π,x

[∑
t

γtrt

]
. (11)

The goal of a reinforcement learning algorithm is to discover the unique optimal state value function V ∗M (resp. action-
state value function Q∗M ) and/or a policy that implements it. We define the performance of a policy by its expected return,
starting from the initial state: ρ(π,M) = V πM (x0). Given a policy subset Π′ ⊆ Π, a policy π′ is said to be Π′-optimal
for an MDP M when it maximizes its performance on Π′: ρ(π′,M) = maxπ∈Π′ ρ(π,M). We will also make use of the
notation Vmax as a known upper bound of the return’s absolute value: Vmax ≤ Rmax

1−γ .

In this paper, we focus on the batch RL setting where the algorithm does its best at learning a policy from a fixed set of
experience. Given a dataset of transitions D = 〈xj , aj , rj , x′j〉j∈J1,NK, we denote by ND(x, a) the state-action pair counts;
and by M̂ = 〈X ,A, R̂, P̂ , γ〉 the Maximum Likelihood Estimation (MLE) MDP of the environment, where R̂ is the reward
mean and P̂ is the transition statistics observed in the dataset. Vanilla batch RL, referred hereinafter as Basic RL, looks for
the optimal policy in M̂ . This policy may be found indifferently using dynamic programming on the explicitly modelled
MDP M̂ ,Q-learning with experience replay until convergence (Sutton & Barto, 1998), or Fitted-Q Iteration with a one-hot
vector representation of the state space (Ernst et al., 2005).

A.2. Matrix notations for the proofs

The proofs make use of the matrix representation for the Q-function, V -function, the policy, the transition, the reward and
the discount rate (when dealing with semi-MDPs) functions.

The Q-functions matrices have 1 row and |X ||A| columns.

The V -functions matrices have 1 row and |X | columns.

The policy matrices π have |X ||A| row and |X | columns. Even though a policy is generally defined as a function from X to
A and should be represented by a compact matrix with |A| rows and |X | columns, in order to use simple matrix operators,
we need the policy matrix to output a distribution over the state-action pairs. Consequently, our policy matrix obtained
through the following expansion through the diagonal:

π11 . . . π1j . . . π1|X |
...

...
...

πi1 . . . πij . . . πi|X |
...

...
...

π|A|1 . . . π|A|j . . . π|A||X |

 =
[
π·1 . . . π·j . . . π·|X |

]
−→


π·1 0 0

. . .
0 π·j 0

. . .
0 0 π·|X |.


The transition matrices P have |X | rows and |X ||A| columns.
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The reward matrices R have 1 row and |X ||A| columns.

The discount rate matrices Γ have |X | rows and |X ||A| columns.

The expression AB is the matrix product between matrices A and B for which column and row dimensions coincide.

The expression (A ◦B) is the element-wise product between matrices A and B of the same dimension.

I denotes the identity matrix (the diagonal matrix with only ones), which dimension is given by the context.

1(y) denotes the column unit vector with zeros everywhere except for the element of index y which equals 1. For instance
Q1x,a denotes the value of performing action a in state x.

The regular and option Bellman equations are therefore respectively written as follows:

Q = R+ γQπP (12)
Q = R+Qπ(Γ ◦ P ) (13)

A.3. Convergence and safe policy improvement of Πb-SPIBB

Lemma 1 (Q-function error bounds with Πb-SPIBB). Consider two semi-MDPs M1 = 〈X ,ΩA, P1, R1,Γ1〉 and M2 =
〈X ,ΩA, P2, R2,Γ2〉. Consider a policy π. Also, consider Q1 and Q2 be the state-action value function of the policy π in
M1 and M2, respectively. If:

∀a ∈ A,∀x ∈ Ia,
{
|R11x,oa −R21x,oa | ≤ εRmax
||(Γ1 ◦ P1)1x,oa − (Γ2 ◦ P2)1x,oa ||1 ≤ ε,

(14)

then, we have:

∀a ∈ A,∀x ∈ Ia, |Q11x,oa −Q21x,oa | ≤
2εVmax

1− γ , (15)

where Vmax is the known maximum of the value function.

Proof. We adopt the matrix notations. The difference between the two state-option value functions can be written:

Q1 −Q2 = R1 +Q1π(Γ1 ◦ P1)−R2 −Q2π(Γ2 ◦ P2) (16)
= R1 +Q1π(Γ1 ◦ P1)−R2 −Q2π(Γ2 ◦ P2) +Q2π(Γ1 ◦ P1)−Q2π(Γ1 ◦ P1) (17)
= R1 −R2 + (Q1 −Q2)π(Γ1 ◦ P1) +Q2π((Γ1 ◦ P1)− (Γ2 ◦ P2)) (18)

= [R1 −R2 +Q2π((Γ1 ◦ P1)− (Γ2 ◦ P2))] (I− π(Γ1 ◦ P1))−1. (19)

Now using Holder’s inequality and the second assumption, we have:

|Q2π((Γ1 ◦ P1)− (Γ2 ◦ P2))1x,oa | ≤ ‖Q2‖∞‖π‖∞‖(Γ1 ◦ P1)1x,oa − (Γ2 ◦ P2)1x,oa‖1 ≤ εVmax. (20)

Inserting (20) into Equation (19) and using the first assumption, we obtain:

|Q11x,oa −Q21x,oa | ≤ [εRmax + εVmax] ‖(I− π(Γ1 ◦ P1))−11x,oa‖1 (21)

≤ 2εVmax

1− γ , (22)

which proves the lemma. There is a factor 2 that might require some discussion. It comes from the fact that we do not
control that the maximum Rmax might be as big as Vmax in the semi-MDP setting and we do not control the γ factor in
front of the second term. As a consequence, we surmise that a tighter bound down to εVmax

1−γ holds, but this still has to be
proven.

Proposition 1. Consider an environment modelled with a semi-MDP (Parr & Russell, 1998; Sutton et al., 1999) M̈ =
〈X ,ΩA, P̈ ∗, R̈∗,Γ∗〉, where Γ∗ is the discount rate inferior or equal to γ that varies with the state action transitions and
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the empirical semi-MDP ̂̈M = 〈X ,ΩA, ̂̈P , ̂̈R, Γ̂〉 estimated from a dataset D. If in every state x where option oa may be
initiated: x ∈ Ia, we have: √

2

ND(x, a)
log

2|X ||A|2|X |
δ

≤ ε, (23)

then, with probability at least 1− δ:

∀a ∈ A,∀x ∈ Ia,
{
‖Γ∗P̈ ∗(x, oa)− Γ̂ ̂̈P (x, oa)‖1 ≤ ε
|R̈∗(x, oa)− ̂̈R(x, oa)| ≤ εR̈max

(24)

Proof. The proof is similar to that of Proposition 9 in Petrik et al. (2016).

Lemma 2 (Safe policy improvement of π�spibb over any policy π ∈ Πb). Let Πb be the set of policies under the constraint
of following πb when (x, a) ∈ B. Let π�spibb be a Πb-optimal policy of the reward maximization problem of an estimated

MDP M̂ . Then, for any policy π ∈ Πb, the difference of performance between π�spibb and π is bounded as follows with high
probability 1− δ in the true MDP M∗:

ρ(π�spibb,M
∗)− ρ(π,M∗) ≥ ρ(π�spibb, M̂)− ρ(π, M̂)− 4εVmax

1− γ . (25)

Proof. We transform the true MDP M∗ and the MDP estimate M̂ , to their bootstrapped semi-MDP counterparts M̈∗ and

the MDP estimate ̂̈M . In these semi-MDPs, the actions A are replaced by options ΩA = {oa}a∈A constructed as follows:

oa = 〈Ia, a:πb, β〉 =

 Ia = {x ∈ X , such that (x, a) /∈ B}
a:π̃b = perform a at initialization, then follow π̃b
β(x) = ‖π̇b(x, ·)‖1

(26)

where πb has been decomposed as the aggregation of two partial policies: πb = π̇b + π̃b, with π̇b(a|x) containing the
non-bootstrapped actions probabilities in state x, and π̃b(a|x) the bootstrapped actions probabilities:

∀a ∈ A,
{
π̇(a|x) = π(a|x) if (x, a) /∈ B
π̇(a|x) = 0 if (x, a) ∈ B

(27)

∀a ∈ A,
{
π̃(a|x) = π(a|x) if (x, a) ∈ B
π̃(a|x) = 0 if (x, a) /∈ B

(28)

Let Π̈ denote the set of policies over the bootstrapped semi MDPs. Ia is the initialization function: it determines the set of
states where the option is available. a:πb is the option policy being followed during the length of the option. Finally, β(x)
is the termination function defining the probability of the option to terminate in each state.

Notice that all options have the same termination function. Please, also notice that some states might have no available
options, but this is okay since every option has a termination function equal to 0 in those states, meaning that they are
unreachable. This to avoid being in this situation at the beginning of the trajectory, we use the notion of starting option: a
trajectory starts with a void option o∅ = 〈{x0} , πb, β〉.
By construction x ∈ Ia if and only if (x, a) /∈ B, i.e. if and only if the condition on the state-action counts of Proposition 1
is fulfilled1. Also, any policy π ∈ Πb is implemented by a policy π̈ ∈ Π̈ in a bootstrapped semi-MDP. Reciprocally, any
policy π̈ ∈ Π̈ admits a policy π ∈ Πb in the original MDP.

Note also, that by construction, the transition and reward functions are only defined for (x, oa) pairs such that x ∈ Ia. By
convention, we set them to 0 for the other pairs. Their corresponding Q-functions are therefore set to 0 as well.

1Also, note that there is the requirement here that the trajectories are generated under policy πb, so that the options are consistent
with the dataset.
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This means that Lemma 1 may be applied with π = π�spibb and M1 = M̈∗ and M2 = ̂̈M . We have:

|ρ(π�spibb,M
∗)− ρ(π�spibb, M̂)| = |ρ(π�spibb, M̈

∗)− ρ(π�spibb,
̂̈M)| (29)

= |V π
�
spibb

M̈∗
(x0)− V π

�
spibb̂̈M (x0)| (30)

= |Qπ
�
spibb

M̈∗
(x0, o∅)−Q

π�spibb̂̈M (x0, o∅)| (31)

≤ 2εVmax

1− γ (32)

Analogously to 32, for any π ∈ Πb, we also have:

|ρ(π,M∗)− ρ(π, M̂)| ≤ 2εVmax

1− γ (33)

Thus, we may write:

ρ(π�spibb,M
∗)− ρ(π,M∗) ≥ ρ(π�spibb, M̂)− ρ(π, M̂)− 4εVmax

1− γ , (34)

where the inequality is directly obtained from equations 32 and 33.

Theorem 1 (Convergence of Πb-SPIBB). Πb-SPIBB converges to a policy π�spibb that is Πb-optimal in the MLE MDP M̂ .

Proof. We use the same transformation of M̂ as in Lemma 2. Then, the problem is cast without any constraint in a
well defined semi-MDP, and Policy Iteration is known to converge in semi-MDPs to the policy optimizing the value
function (Gosavi, 2004).

Theorem 2 (Safe policy improvement of Πb-SPIBB). Let Πb be the set of policies under the constraint of following πb
when (x, a) ∈ B. Then, π�spibb is a ζ-approximate safe policy improvement over the baseline πb with high probability 1−δ,
with:

ζ =
4Vmax

1− γ

√
2

N∧
log

2|X ||A|2|X |
δ

− ρ(π�spibb, M̂) + ρ(πb, M̂) (35)

Proof. It is direct to observe that πb ∈ Πb, and therefore that Lemma 2 can be applied to πb. We infer that, with high
probability 1− δ:

ρ(π�spibb,M
∗)− ρ(πb,M

∗) ≥ ρ(π�spibb, M̂)− ρ(πb, M̂)− 4εVmax

1− γ . (36)

with:

ε =

√
2

N∧
log

2|X ||A|2|X |
δ

(37)

Therefore, we obtain:

ζ =
4εVmax

1− γ −
(
ρ(π�spibb, M̂)− ρ(πb, M̂)

)
(38)

=
4Vmax

1− γ

√
2

N∧
log
|X ||A|2|X |

δ
− ρ(π�spibb, M̂) + ρ(πb, M̂) (39)

Quod erat demonstrandum.

Theorem 3. In finite MDPs, Equation 9 admits a unique fixed point that coincides with the Q-value of the policy trained
with model-based Πb-SPIBB.
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Proof. Unicity of the fixed point is a classical result in RL, obtained from the fact that the Bellman operator is a contraction.

Let πt denote the policy trained with model-based Πb-SPIBB. By construction, we know that πt satisfies the optimal
Bellman equation in the MLE MDP, under the Πb-constraint:

Qπt

M̂
= R̂+ γQπt

M̂
πtP̂ (40)

Moreover, πt may be decomposed by its component π̃t on B and its complementary π̇t:

πt(a|x) = π̃t(a|x) + π̇t(a|x) (41)

with:


π̃t(a|x) =

{
πb(a|x) if (x, a) ∈ B
0 otherwise

π̇t(a|x) =

{ ∑
a′|(x,a′)/∈B πb(a

′|x) if a = argmaxa′|(x,a′)/∈BQπt

M̂
(x, a)

0 otherwise

(42)

As a consequence, we obtain:

Qπt

M̂
(x, a) = R̂(x, a) + γ

∑
x′∈X

∑
a′∈A

Qπt

M̂
(x′, a′)πt(a

′|x′)P̂ (x′|x, a) (43)

= R̂(x, a) + γ
∑
x′∈X

∑
a′∈A

Qπt

M̂
(x′, a′) (π̃t(a

′|x′) + π̇t(a
′|x′)) P̂ (x′|x, a) (44)

= R̂(x, a) + γ
∑
x′∈X

P̂ (x′|x, a)

 ∑
a′|(x′,a′)∈B

πb(a
′|x′)Qπt

M̂
(x′, a′)

 (45)

+ γ
∑
x′∈X

P̂ (x′|x, a)

 ∑
a′|(x′,a′)/∈B

πb(a
′|x′)

 max
a′|(x′,a′)/∈B

Qπt

M̂
(x′, a′)



=

∑
〈xj=x,aj=a,rj ,x′j〉∈D

rj

ND(x, a)
+ γ

∑
x′∈X

∑
〈xj=x,aj=a,rj ,x′j=x′〉∈D

1

ND(x, a)

 ∑
a′|(x′,a′)∈B

πb(a
′|x′)Qπt

M̂
(x′, a′)

 (46)

+ γ
∑
x′∈X

∑
〈xj=x,aj=a,rj ,x′j=x′〉∈D

1

ND(x, a)

 ∑
a′|(x′,a′)/∈B

πb(a
′|x′)

 max
a′|(x′,a′)/∈B

Qπt

M̂
(x′j , a

′)



where
∑

〈xj=x,aj=a,rj ,x′j〉∈D

denotes the sum over all transitions in the dataset that start from the state-action pair (x, a) and

∑
〈xj=x,aj=a,rj ,x′j=x′〉∈D

is the sum over all transitions that start from the state-action pair (x, a) and transition to x′.

We then see that:
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Qπt

M̂
(x, a) =

∑
〈xj=x,aj=a,rj ,x′j〉∈D

rj

ND(x, a)
+

γ

ND(x, a)

∑
〈xj=x,aj=a,rj ,x′j〉∈D

∑
a′|(x′j ,a′)∈B

πb(a
′|x′j)Qπt

M̂
(x′j , a

′) (47)

+
γ

ND(x, a)

∑
〈xj=x,aj=a,rj ,x′j〉∈D

 ∑
a′|(x′j ,a′)/∈B

πb(a
′|x′j)

 max
a′|(x′j ,a′)/∈B

Qπt

M̂
(x′j , a

′)

=
1

ND(x, a)

∑
〈xj=x,aj=a,rj ,x′j〉∈D

rj + γ
∑

a′|(x′j ,a′)∈B

πb(a
′|x′j)Qπt

M̂
(x′j , a

′) (48)

+ γ

 ∑
a′|(x′j ,a′)/∈B

πb(a
′|x′j)

 max
a′|(x′j ,a′)/∈B

Qπt

M̂
(x′j , a

′)


=

1

ND(x, a)

∑
〈xj=x,aj=a,rj ,x′j〉∈D

yπt
j when ND(x, a) > 0 and is undefined otherwise. (49)

This concludes the proof that Qπt

M̂
is the fixed point of Equation 9.

A.4. Algorithms for the greedy projection of Q(i) on Πb and Π≤b

The policy-based SPIBB algorithms rely on a policy iteration process that requires a policy improvement step under the
constraint that the generated policy belongs to Πb or Π≤b. Those are respectively described in Algorithms 1 (main docu-
ment) and 2 (see below).

Algorithm 2 Greedy projection of Q(i) on Π≤b

Input: Baseline policy πb
Input: Last iteration value function Q(i)

Input: Set of bootstrapped state-action pairs B
Input: Current state x and action set A
Sort A in decreasing order of the action values: Q(i)(x, a)

Initialize π(i)
spibb = 0

for a ∈ A do
if (x, a) ∈ B then

if πb(a|x) ≥ 1−∑a′∈A π
(i)
spibb(a

′|x) then
π

(i)
spibb(a|x) = 1−∑a′∈A π

(i)
spibb(a

′|x)

return π(i)
spibb

else
π

(i)
spibb(a|x) = πb(a|x)

end
else

π
(i)
spibb(a|x) = 1−∑a′∈A π

(i)
spibb(a

′|x)

return π(i)
spibb

end
end
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A.5. Comprehensive illustration of the difference between Πb-SPIBB and Π≤b-SPIBB policy improvement steps

Table 1 illustrates the difference between Πb-SPIBB and Π≤b-SPIBB in the policy improvement step of the policy iteration
process. It shows how the baseline probability mass is locally redistributed among the different actions for the two policy-
based SPIBB algorithms. We observe that for Πb-SPIBB, the bootstrapped state-action pairs probabilities remain untouched
whatever their Q-value estimates are. On the contrary, Π≤b-SPIBB removes all mass from the bootstrapped state-action
pairs that are performing worse than the current Q-value estimates.

Table 1. Policy improvement step at iteration (i) for the two policy-based SPIBB algorithms.

Q-value estimate Baseline policy Boostrapping Πb-SPIBB Π≤b-SPIBB

Q
(i)

M̂
(x, a1) = 1 πb(a1|x) = 0.1 (x, a1) ∈ B π(i+1)(a1|x) = 0.1 π(i+1)(a1|x) = 0

Q
(i)

M̂
(x, a2) = 2 πb(a2|x) = 0.4 (x, a2) /∈ B π(i+1)(a2|x) = 0 π(i+1)(a2|x) = 0

Q
(i)

M̂
(x, a3) = 3 πb(a3|x) = 0.3 (x, a3) /∈ B π(i+1)(a3|x) = 0.7 π(i+1)(a3|x) = 0.8

Q
(i)

M̂
(x, a4) = 4 πb(a4|x) = 0.2 (x, a4) ∈ B π(i+1)(a4|x) = 0.2 π(i+1)(a4|x) = 0.2
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B. Finite MDP Benchmark Design
B.1. Experiments details

B.1.1. PSEUDO CODE FOR THE GRIDWORLD BENCHMARK

Algorithm 3 Gridworld benchmark
Input: List of dataset size
Input: List of algorithms in the benchmark
Input: List of hyper-parameter values for each algorithm

repeat 105 times
for each dataset size do

Generate a dataset. (see Section B.1.5)
for each algorithm do

for each algorithm hyper-parameter value do
Train a policy. (see Sections 2.3 and B.2)
Evaluate the policy. (see Section B.1.6)
Record the performance of the trained policy.

end
end

end
end

B.1.2. PSEUDO CODE FOR THE RANDOM MDPS BENCHMARK

Algorithm 4 Random MDPs benchmark
Input: List of hyper-parameter values for the baseline
Input: List of dataset size
Input: List of algorithms in the benchmark
Input: List of hyper-parameter values for each algorithm

repeat 105 times
Generate an MDP. (see Section B.1.3)
for each hyper parameter value for the baseline do

Generate a baseline. (see Section B.1.4)
for each dataset size do

Generate a dataset. (see Section B.1.5)
for each algorithm do

for each algorithm hyper-parameter value do
Train a policy. (see Sections 2.3 and B.2)
Evaluate the policy. (see Section B.1.6)
Record the performance of the trained policy.

end
end

end
end

end

B.1.3. MDP GENERATION

We use three parameters for our MDP generation: the number of states, the number of actions in each state, and the
connectivity of the transition function stating how many states are reachable after performing a given action in a given
state. We tried out various values for those parameters and found little sensitivity in those preliminary experimental results
and decided to fix their respective values to 25/4/4 in the reported experiments. The discount factor γ is set to 0.95.
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The initial state is arbitrarily set to be x0, then we search with dynamic programming the performance of the optimal policy
for all potential terminal state xf ∈ X/x0. We select the terminal state for which the optimal policy yields the smaller value
function and set it as terminal:R(x, a, xf ) = 1 and P (x|xf , a) = 0 for all x ∈ X and all a ∈ A. The reward function is set
to 0 everywhere else. We found that the optimal value-function is on average 0.6 and with a surprising low variance, which
amounts to an average horizon of 10. Later on, we write this environmental MDP M∗ = 〈X ,A, P ∗, R∗, γ〉, its optimal
action-value function Q∗, its optimal performance ρ∗ = ρ(π∗,M∗), and its random policy performance ρ̃ = ρ(π̃,M∗),
where π̃ denotes the uniform random policy: π̃(a|x) = 1

|A| for all x ∈ X and all a ∈ A.

B.1.4. BASELINE GENERATION

We use a hyper-parameter for the baseline generation:

ρb = ρ(πb,M
∗) = ηρ∗ + (1− η)ρ̃. (50)

Therefore, η ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} determines the performance of the baseline, normalized with re-
spect to the performances of the random and the optimal performance. There are an infinite number of policies that yield
this performance. We designed several heuristics to generate the actual baseline and again notice a moderate sensitivity
in our preliminary results. All the reported results use the following heuristics which consists in two steps: softening and
randomization.

Softening: We apply a softmax on Q∗ with temperature such that ρ(πs,M
∗) = ρb+ρ∗

2 , where πs denotes the policy
obtained after the softening operation.

Randomization: Until reaching the desired performance for the baseline we repeatedly apply the following process: we
randomly select a state x, and move a 0.1 probability mass from a∗ = argmaxa∈AQ

∗(x, a) to another random action.
When this loop stops, the output is the baseline πb.

B.1.5. DATASET GENERATION

The dataset generation depends a single parameter |D| ∈ {10, 20, 50, 100, 200, 500, 1000, 2000} (∪{5000, 10000} for
the Gridworld experiments): its size expressed in the number of trajectories. A trajectory generation simply consists in
sampling the environment and the baseline policy until reaching the final state. The output is the dataset D.

B.1.6. TRAINED POLICY EVALUATION

In the Random MDPs experiments, we use different MDPs and baselines for each run. We need a standardized method for
evaluating the trained policy π. We use the performance normalized with respect to the baseline and optimal policies:

ρ =
ρ(π,M∗)− ρb

ρ∗ − ρb
≤ 1. (51)

Then, the results are analyzed with respect to ρ as everywhere else in the paper: according to the mean and CVaR perfor-
mances.

B.1.7. MEAN AND CVAR PERFORMANCE

The mean performance is simply the average of performance over all the runs.

The X%-CVaR performance is the average performance of the X% worst runs. To compute this, we sort the performance
of all the runs, and keep the lowest X% fraction and then take the average. The 100%-CVaR performance is obviously
equivalent to the mean performance.

B.1.8. FIGURES

We present three types of figure in the paper (main document and appendix).

Performance vs. dataset size: These figures (for instance Figure 5(a)) show the (mean and/or CVaR) performance of the
algorithms as a function of the dataset size.
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(a) HCPI with δhcpi = 0.1
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(b) HCPI with δhcpi = 0.9
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(c) Mean performance HCPI doubly-robust heatmap
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(d) 1%-CVaR performance HCPI doubly robust heatmap

Figure 5. HCPI hyper-parameter search results on the Gridworld domain.

Hyper-parameter search heatmaps: These figures (for instance Figure 5(c)) show the (mean or CVaR) normalized per-
formance of the algorithms as a function of both the dataset size and the hyper-parameter value of the evaluated algorithm.
The normalized performance is computed with Equation 51 and represented with colour. Red means that the performance
is worse than that of the baseline, yellow means that it is equal and green means that it improves the baseline.

Random MDPs heatmaps: These figures (for instance Figure 7(f)) are very similar to the other heatmaps except that
the normalized performance is shown as a function of both the dataset size and the hyper-parameter η used for the baseline
generation (instead of the hyper-parameter of the evaluated algorithm).

B.2. Other benchmark algorithms: competitors

Since the baseline meaning is overridden in this paper, we refer to the non-SPIBB benchmark algorithms with the term
competitors.

B.2.1. BASIC RL

Basic RL is implemented by computing the MLE MDP and solving it with dynamic programming. In order to cover the
state-action pairs absent from the dataset, two Q initializations were investigated in our experiments: optimistic (Vmax),
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and pessimistic (−Vmax). The former yields awful performances in our batch RL setting. This is not surprising because
optimism makes it imprudently explore every unknown state-action pairs. All the presented results were therefore obtained
with the pessimistic initialization as in Jiang & Li (2015).

B.2.2. HCPI

Safe policy improvement in a model-free setting is closely related to High Confidence Off-policy evaluation (Thomas
et al., 2015b). Instead of relying on the model uncertainty, this class of methods relies on a high-confidence lower bound
on the Importance Sampling (IS) estimate of the trained policy performance. Given a dataset D, a part of it, Dtrain, is
used to derive a set of candidates policies. A policy πt is first derived using an off policy reinforcement learning algorithm
(Q-learning for instance) and is regularized using the baseline to obtain a set of candidate policies Πcandidates = {((1 −
α)πt +απb), α ∈ {0, 0.1, 0.2, 0.3, ...1}}. The remaining data Dtest are used to evaluate the candidate policies. The policy
with the highest lower bound on the estimated performance is returned. Thomas et al. (2015a) introduced three ways of
obtaining the lower bound on the estimate.

• The first one is an extension of Maurer and Pontils empirical Bernstein inequality. Let X1, ...Xn be n independent
real-valued random variables, such that for each i ∈ {1, ..., n}, we have P[0 ≤ Xi] = 1, E[Xi] ≤ ν and some
threshold value ci ≥ 0. Let δ ≥ 0 and Yi = min{Xi, xi}. Then with probability at least 1− δ, we have:

µ ≥
(

n∑
i=1

1

ci

)−1 n∑
i=1

Yi
ci
−
(

n∑
i=1

1

ci

)−1
7nln( 2

δ )

3(n− 1)
−
(

n∑
i=1

1

ci

)−1
√√√√ ln( 2

δ )

n− 1

n∑
i,j=1

(
Yi
ci
− Yj
cj

)2

In the SPI setting, Xi is the unbiased estimate of the return related to each trajectory. The drawback of this method is
the hyper-parameter ci which needs to be tuned.

• The second method is based on the assumption that the mean return is normally distributed. Relying on this assump-
tion, a less conservative lower bound can be obtained using Students t-test (with the same notations):

E[Xi] ≥
1

n

n∑
i=1

Xi −
σ√
n
t1−δ,n−1

with σ =

√
1

n−1

∑n
i=1

(
Xi − X̂i)2

)
the sample standard deviation of X1, .., Xn with Bessel’s correction.

• The last one is based on Efrons Bootstrap methods (Efron, 1987). It relies on bootstrapping to estimate the true
distribution of the mean return instead of considering it as normally distributed.

In practice, the first method is too conservative and the third one is not computationally efficient. Therefore we limit our
study to the second one, which relies on Student’s t-test.
We implemented three versions of HCPI: with global importance sampling, with local importance sampling, and with the
doubly robust method. As Figures 5(a) and 5(b) reveal, they all behave more or less the same on the Gridworld domain. We
also searched for the best hyper-parameter δhcpi ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} value. Figures 5(c) and 5(d)
respectively display the mean and 1%-CVaR performances. One can observe that δhcpi = 1 yields the best result in mean,
but turns out to be strongly unsafe for small datasets. δhcpi = 0.9 appears to offer the best compromise and this is the value
we retain for the experiments reported in the main document. Note that those δhcpi values mean that the confidence is very
small: 0.1 for δhcpi = 0.9, and even null for δhcpi = 1.

B.2.3. ROBUST MDP

Robust MDP also relies on a confidence hyperparameter δrob. We observe that the behaviour of the algorithm is not much
dependent on δrob ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.7, 0.9, 1}, and that it always fall back on the baseline when the
dataset is under 50,000 trajectories. We observe also on Figure 6(a) that, for the smaller datasets we do our benchmark
on, independently from the safety set, the policy trained with the Robust MDP algorithm, which is the best policy in the
worst-case MDP, is worse that the policy trained with Basic RL on mean and also on CVaR. 1%-CVaR even falls down
out of the figure. We interpret this as the fact that, in the Gridworld domain, there is a zone where all the states have been
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Figure 6. Robust MDP hyper-parameter search results on the Gridworld domain.

experienced a reasonable amount of time, and where the algorithm infers that the outcome is well known: 0 reward. Near
the goal, on the contrary, there are some states where there is a risk to go because of the stochastic transitions that are
largely unknown. This behaviour seem to reproduce also frequently on the Random MDPs domain. Figure 6(b) displays
the mean performance for a large set of δrob values without the safety test. The figures of Robust MDP with the safety test
are omitted because it always fails and therefore the algorithm always outputs the baseline. On the main document figures,
we report the Robust MDP performance without safety test for δrob = 0.1.

B.2.4. REWARD-ADJUSTED MDP

The theory developed in Petrik et al. (2016) states that the reward should be adjusted as follows:

R̃(x, a)← R∗(x, a)− γRmax

1− γ e(x, a), (52)

whereR∗(x, a) is the true reward function, that they assume to be known, and e(x, a) is the error function on the dynamics,
with bounded with concentration bounds as in our Proposition 1:

e(x, a) ≤
√

2

ND(x, a)
log

2|X ||A|2|X |
δadj

(53)

Also, we do not assume that R∗(x, a) is known in our experiments and there is consequently a γ factor disappearing. We
obtain:

R̃(x, a)← R̂(x, a)− Rmax

1− γ

√
2

ND(x, a)
log

2|X ||A|2|X |
δadj

(54)

← R̂(x, a)− 100√
ND(x, a)

, (55)

with our domain parameters and the choice of δadj = 0.1. Instead, we consider the following hyper-parametrization:

R̃(x, a)← R̂(x, a)− κadj√
ND(x, a)

. (56)
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(a) RaMDP with κadj = 0.002 (Gridworld)
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(b) RaMDP with κadj = 0.003 (Gridworld)
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(c) Mean performance RaMDP heatmap (Gridworld)
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(d) 1%-CVaR performance RaMDP heatmap (Gridworld)
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(e) 1%-CVaR RaMDP heatmap with κadj = 0.002 (Random MDPs)
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(f) 1%-CVaR RaMDP heatmap with κadj = 0.003 (Random MDPs)

Figure 7. RaMDP hyper-parameter search results on the Gridworld and Random MDPs domains.
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We perform a hyper-parameter seach for:

κadj ∈ {0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100} .

Figures 7(c) and 7(d) respectively show the mean and 1%-CVaR performance of RaMDP for κadj ∈
{0.001, 0.002, 0.003, 0.004, 0.005}. They reveal that for κadj ≥ 0.004, RaMDP is overly frightened to go near the goal
in the same way as with Robust MDP; and that for κadj ≤ 0.002, RaMDP just ignores the penalty and yields results very
close to the Basic RL’s (see Figure 7(a)). In the middle, there is a tight spot (κadj = 0.003) where it works quite well on
the Gridworld domain as may be seen on Figure 7(b), even though it is not safe for very small datasets. It has to be noted
also that, in theory, RaMDP uses a safety test, which fails everytime similarly to that of Robust MDP. In addition to the
sensitivity to the κadj parameter, on the Random MDPs benchmark, the unsafety of RaMDP is much more obvious (see
Figures 7(e) and 7(f)), which tends us to think that the Gridworld domain is favorable to RaMDP. On the main document
figures, we report the RaMDP performance without safety test for κadj = 0.003.
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C. Extensive Empirical Results on Finite MDPs
C.1. Gridworld additional results
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(a) 10%-CVaR: benchmark with N∧ = 5.
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(b) 0.1%-CVaR: benchmark with N∧ = 5.
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(c) Mean & 1%-CVaR: SPIBB w. N∧ = 5.
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(d) Mean & 1%-CVaR: SPIBB w. N∧ = 10.
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(e) Mean & 1%-CVaR: SPIBB w. N∧ = 50.
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(f) Mean & 1%-CVaR: SPIBB w. N∧ = 100.

Figure 8. Gridworld experiment: Figures (a-b) respectively show the benchmark for the 10%-CVaR and 0.1%-CVaR performances.
Figures (c-f) display additional curves for other N∧ values: respectively 5, 10, 50, 100.

C.2. Gridworld full results with random behavioural policy
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(a) Mean: benchmark with N∧ = 20.
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(b) 10%-CVaR: benchmark with N∧ = 20.
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(c) 0.1%-CVaR: benchmark with N∧ = 20.
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(d) Mean & 1%-CVaR: SPIBB w. N∧ = 5.
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(e) Mean & 1%-CVaR: SPIBB w. N∧ = 10.
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(f) Mean & 1%-CVaR: SPIBB w. N∧ = 50.

Figure 9. Gridworld experiment with random behavioural policy: Figures (a-c) respectively show the benchmark for the mean, 10%-
CVaR and 0.1%-CVaR performances. Figures (d-f) display additional curves for other N∧ values: respectively 5, 10, 50.
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C.3. Full Random MDPs experiment results
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(a) 1%-CVaR: Basic RL.
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(b) 1%-CVaR: HCPI doubly robust.
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(c) 1%-CVaR: Robust MDP.
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(d) 1%-CVaR: Π≤b-SPIBB, N∧ = 5.
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(e) 1%-CVaR: Π≤b-SPIBB, N∧ = 20.
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(f) 1%-CVaR: Π≤b-SPIBB, N∧ = 50.
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(g) 1%-CVaR: Π≤b-SPIBB, N∧ = 100.
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(h) 1%-CVaR: Πb-SPIBB, N∧ = 5.
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(i) 1%-CVaR: Πb-SPIBB, N∧ = 10.
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(j) 1%-CVaR: Πb-SPIBB, N∧ = 20.
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(k) 1%-CVaR: Πb-SPIBB, N∧ = 50.
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(l) 1%-CVaR: Πb-SPIBB, N∧ = 100.

Figure 10. Random MDPs: 1%-CVaR performance heatmaps. The abscissae is the dataset size, the ordinate is the baseline hyperpa-
rameter η, and the color is the normalized performance: red, yellow, and green respectively mean below, equal to, and above baseline
performance. Heatmaps for the mean normalized performance and for additional N∧ values: 7, 15, 30, 70, may be found in the sup-
plementary material package. The supplementary material package also contains more heatmaps on the sensitivity to N∧, with fixed η
values.
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(a) 1%-CVaR: with η = 0.1 and N∧ = 10.
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(b) 10%-CVaR: with η = 0.1 and N∧ = 10.
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(c) 10%-CVaR: with η = 0.9 and N∧ = 10.
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(d) 1%-CVaR: with η = 0.3 and N∧ = 10.
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(e) 10%-CVaR: with η = 0.3 and N∧ = 10.
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(f) Mean: with η = 0.3 and N∧ = 10.
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(g) 1%-CVaR: with η = 0.5 and N∧ = 10.
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(h) 10%-CVaR: with η = 0.5 and N∧ = 10.
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(i) Mean: with η = 0.5 and N∧ = 10.
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(j) 1%-CVaR: with η = 0.7 and N∧ = 10.
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(k) 10%-CVaR: with η = 0.7 and N∧ = 10.
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(l) Mean: with η = 0.7 and N∧ = 10.

Figure 11. Random MDPs: 1%-CVaR, 10%-CVaR, and mean performance benchmarks for various η values: respectively 0.1 (a-b), 0.9
(c), 0.3 (d-f), 0.5 (g-i), and 0.7 (j-l). The missing figures for η = 0.1 and η = 0.9 are in the main document. Figures for additional η
values: 0.2, 0.4, 0.6, and 0.8 may be found in the supplementary material package. The abscissae is the dataset size, the ordinate is the
normalized performance.
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D. Helicopter Experiment Details
D.1. Details about the helicopter environment

We consider the following helicopter environment, where:

• The non terminal state space is the cross product of four features:

– the abscissa position sx ∈ (0, 1),
– the ordinate position sy ∈ (0, 1),
– the abscissa velocity vx ∈ (−1, 1),
– the ordinate velocity vy ∈ (−1, 1),
– and the initial state is uniformly sampled in (0, 1

3 )× (0, 1
3 )× (−1, 1)× (−1, 1).

• The action set is a discrete thrust along each dimension:

– the abscissa thrust ax ∈ {−1, 0, 1},
– and the ordinate thrust ay ∈ {−1, 0, 1}.

• The transition function is independently applied on each dimension:

– sx(t+ 1) = sx(t) + vx(t)τ + 1
2ax(t)τ2 + Γ(0, σs),

– sy(t+ 1) = sy(t) + vy(t)τ + 1
2ay(t)τ2 + Γ(0, σs),

– vx(t+ 1) = vx(t) + ax(t)τ + Γ(0, σv),
– vy(t+ 1) = vy(t) + ay(t)τ + Γ(0, σv),
– where τ = 0.1 is the time-step, Γ(0, σ) is a centered Gaussian noise with standard deviation σ, σs = 0.025 is

the position-wise noise standard deviation, σv = 0.05 is the velocity-wise noise standard deviation.

• The reward function is set to:

– r(t) = 0 in every non-terminal state,
– r(t) = −1 when one of the velocity features gets out of (−1, 1): the motor melts and the episode terminates,

– r(t) = min

(
10,max

(
−1, 1√

(sx−1)2+(sy−1)2
− 4

))
when one of the position features leaves (0, 1): it landed

and the episode terminates. It is good if it is close to the target coordinates {1, 1}, bad otherwise, see Figure 4(a)
for a visual representation of this final reward.

• For the evaluation, similarly to what is commonly used in Atari or Go, the return is not discounted. Although, as next
section specifies, the training of the SPIBB-DQN agents requires to set a discount factor lower than 1.

D.2. Details about the experimental design

See Algorithm 5.

D.3. Details about the DQN and SPIBB-DQN implementations

The batch version of DQN simply consists in replacing the experience replay buffer by the dataset we are training on.
Effectively, we are not sampling from the environment anymore but from the transitions collected a priori following the
baseline. The same methodology applies for SPIBB, except that the targets we are using for our Q-values update verify the
following modified Bellman equation:

y
(i)
j = rj + γ max

π∈Πb

∑
a′∈A

π(a′|x′j)Q(i)(x′j , a
′)

= rj + γ
∑

a′|(x′j ,a′)∈B

πb(a
′|x′j)Q(i)(x′j , a

′) + γ

 ∑
a′|(x′j ,a′)/∈B

πb(a
′|x′j)

 max
a′|(x′j ,a′)/∈B

Q(i)(x′j , a
′)



Safe Policy Improvement with Baseline Bootstrapping

Algorithm 5 Helicopter experimental process
Input: List of hyper-parameter values for N∧
Input: List of dataset sizes

repeat 20 times
for each dataset size do

Generate a dataset.
Compute the pseudo-counts.
repeat 15 times

for each N∧ do
Train a policy. (N∧ = 0 amounts to vanilla DQN, and N∧ =∞ amounts to reproducing the baseline)
Evaluate the trained policy.
Record the performance of the trained policy.

end
end

end
end
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Figure 12. Robust MDP hyper-parameter search results on the Gridworld domain.

We notice in particular that when B = ∅ the targets fall back to the traditional Bellman ones. We used the now classic
target network trick (Mnih et al., 2015), combined with Double-DQN (van Hasselt et al., 2015).

The network used for the baseline and for the algorithms in the benchmark is a fully connected network with 3 hidden
layers of 32, 128 and 32 neurons, initialized using he uniform (He et al., 2015). The network has 9 outputs corresponding
to the Q-values of the 9 actions in the game. We train the Q-networks with RMSProp (Tieleman & Hinton, 2012) with a
momentum of 0.95 and ε = 10−7 on mini-batches of size 32. The learning rate is initialized at 0.01 and is annealed every
20k transitions or every pass on the dataset, whichever is larger. The networks are trained for 2k passes on the dataset, and
are fully converged by that time. We use the Keras framework (Chollet et al., 2015) with Tensorflow (Abadi et al., 2015)
as backend. The policy is tested for 10k steps at the end of training, with the initial states of each trajectory sampled as
described in Section D.1.

D.4. Preliminary SPIBB-DQN experiments

Before starting the experiments reported in the main document, Section 3.4, we led preliminary experiments with a single
10k-transition dataset. We found out, and report on Figure 12(a), that vanilla DQN trains very different Q-networks and
therefore very different policies depending on the random seed, which influences the random initialization of the parameters
of the network and the transitions sampled for the stochastic gradient. It is worth noticing a posteriori that this dataset was



Safe Policy Improvement with Baseline Bootstrapping

actually favorable to DQN on average (mean performance of 1.7 on this dataset vs. -0.5 reported in the main document),
but that the reliability of DQN is still very low. In contrast, SPIBB-DQN shows stability for N∧ ≥ 4.

We also performed a hyper-parameter search on RaMDP on 10k-transition datasets. Given that the reward / value
function amplitude is larger than on our previous experiments (Gridworld and Random MDPs), we expect the op-
timal κadj value to be also larger than 0.003. We thus considered the following hyper-parameter values: κadj ∈
{0.001, 0.003, 0.006, 0.01, 0.02, 0.03, 0.05, 0.1}. To reduce the computational load, we only performed 75 runs per κadj
value. We also added κadj = 0, which amounts to vanilla DQN. Figure 12(b) shows that, although it slightly improves the
DQN abysmal performance, the RaMDP performance is very limited, far under the baseline.
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E. Reproducible, Reusable, and Robust Reinforcement Learning
This paper’s objective is to improve the robustness and the reliability of Reinforcement Learning algorithms. Inspired from
Joelle Pineau’s talk at NeurIPS 2018 about reproducible, reusable, and robust Reinforcement Learning2, we intend to also
make our work reusable and reproducible.

E.1. Pineau’s checklist (slide 33)

For all algorithms presented, check if you include:

• A clear description of the algorithm.

⇒ See Algorithm 1 for Πb-SPIBB, Algorithm 2 for Π≤b-SPIBB, and Equation 9 for SPIBB-DQN.

• An analysis of the complexity (time, space, sample size) of the algorithm.

⇒ We do not provide formal analysis for the complexity of the finite MDP SPIBB algorithms as it depends on
the policy iteration implementation, but it can be said that the complexity increase in comparison with standard
policy iteration is insignificant: it does not change neither the order of magnitude nor the multiplying constant.
For SPIBB-DQN, the pseudo-count computation may increase significantly the complexity of the algorithm. It
is once more impossible to formally analyze since it depends on the pseudo-count implementation.

• A link to downloadable source code, including all dependencies.

⇒ We provide all the code on github at these addresses: https://github.com/RomainLaroche/SPIBB
and https://github.com/rems75/SPIBB-DQN. See Section E.2.

For any theoretical claim, check if you include:

• A statement of the result.

⇒ See Theorems 1, 2, and 3.

• A clear explanation of any assumptions.

⇒ See Sections 1 and 2.

• A complete proof of the claim.

⇒ See Section A.

For all figures and tables that present empirical results, check if you include:

• A complete description of the data collection process, including sample size.

⇒ See Sections 3, B.1.3, B.1.4, B.1.5, and D.1.

• A link to downloadable version of the dataset or simulation environment.

⇒ See Section E.2.

• An explanation of how sample were allocated for training / validation / testing.

⇒ The complete dataset is used for training. There is no need for validation set. Testing is performed in the true
environment.

• An explanation of any data that was excluded.

⇒ Does not apply to our simulated environments.
2https://nips.cc/Conferences/2018/Schedule?showEvent=12486
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• The range of hyper-parameters considered, method to select the best hyper-parameter configuration, and specification
of all hyper-parameters used to generate results.

⇒ See Sections 3, B.1.3, B.1.4, B.1.5, B.2, and D.3.

• The exact number of evaluation runs.

⇒ 100,000+ for finite MDPs experiments and 300 for SPIBB-DQN experiments.

• A description of how experiments were run.

⇒ See Sections 3, B, and D.

• A clear definition of the specific measure or statistics used to report results.

⇒ Mean and X% conditional value at risk (CVaR), described in Sections 3 and B.1.6.

• Clearly defined error bars.

⇒ Given the high number of runs we considered, the error bar are too thin to be displayed. Any difference visible
with the naked eye is significant. We use CVaR everywhere instead to account for the uncertainty.

• A description of results including central tendency (e.g. mean) and variation (e.g. stddev).

⇒ All our work is motivated and analyzed with respect to this matter.

• The computing infrastructure used.

⇒ For the finite-MDPs experiment, we used clusters of CPUs. The full results were obtained by running the bench-
marks with 100 CPUs running independently in parallel during 24h. For the helicopter experiment, we used a
GPU cluster. However, only one GPU is necessary for a single run. Using a cluster allowed to launch several runs
in parallel and considerably sped up the experiment. On a single GPU (a GTX 1080 Ti), a dataset of |D| = 10k
transitions is generated in 5 seconds. The dataset generation scales linearly in |D|. Computing the counts for
that dataset takes approximately 20 minutes, it scales quadratically with the size of the dataset. As far as training
is concerned, 2000 passes on a dataset of 10k transitions takes around 25 minutes, it scales linearly in N . Fi-
nally, evaluation of the trained policy on 10k trajectories takes 15 minutes. It scales linearly in |D| as it requires
the computation of the pseudo-count for each state encountered during the evaluation and this pseudo-count
computation is linear in |D|. Overall, a single run for a dataset of 10k transitions takes around one hour.

E.2. Code attached to the submission

The attached code can be used to reproduce the experiments presented in the submitted paper. It is split into two projects:
one for finite MDPs (Sections 3.1, 3.2, and 3.3), and one for SPIBB-DQN (Section 3.4).

E.2.1. FINITE MDPS

Found at this address: https://github.com/RomainLaroche/SPIBB.

Prerequisites The finite MDP project is implemented in Python 3.5 and only requires *numpy* and *scipy*.

Content We include the following:

• Libraries of the following algorithms:

– Basic RL,
– SPIBB:
∗ Πb-SPIBB,
∗ Π≤b-SPIBB,

– HCPI:
∗ doubly-robust,
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∗ importance sampling,
∗ weighted importance sampling,
∗ weighted per decision IS,
∗ per decision IS,

– Robust MDP,
– and Reward-adjusted MDP.

• Environments:

– Gridworld environment,
– Random MDPs environment.

• Gridworld experiment of Section 3.1. Run:

python gridworld main.py #name of experiment# #random seed#

• Gridworld experiment with random behavioural policy of Section 3.2. Run:

python gridworld random behavioural main.py #name of experiment# #random seed#

• Random MDPs experiment of Section 3.3. Run:

python randomMDPs main.py #name of experiment# #random seed#

Not included We DO NOT include the following:

• The hyper-parameter search (Appendix B.2): it should be easy to re-implement.

• The figure generator: it has too many specificities to be made understandable for a user at the moment. Also, it is not
hard to re-implement with one’s own visualization tools.

License This project is BSD-licensed.

E.2.2. SPIBB-DQN

Found at this address: https://github.com/rems75/SPIBB-DQN.

Prerequisites SPIBB-DQN is implemented in Python 3 and requires the following libraries: Keras, Tensorflow, pickle,
glob, yaml, argparse, numpy, yaml, pathlib, csv, scipy and click.

Content The SPIBB-DQN project contains the helicopter environment, the baseline used for our experiments and the
code required to generate datasets and train vanilla DQN and SPIBB-DQN.

Commands To generate a dataset, use the following command:

python baseline.py baseline --generate dataset --dataset size 10000 --dataset dir
baseline/dataset --seed 1

It will generate a dataset with 10000 transitions using the baseline defined in the baseline folder and
save the dataset in the baseline/dataset/10000/1/1 0/dataset.pkl folder. It will also compute
the counts associated with each state-action pair in the dataset, and store those with the dataset in
baseline/dataset/10000/1/1 0/dataset.pkl. With other parameters, it creates a subfolder of the
dataset dir you specify, the subfolder has the form: dataset size/seed/noise factor (noise factor
is 1.0 by default, denoted as a 1 0 folder).

To train a policy using SPIBB-DQN with a parameter n wedge (denoted minimum count in the command) of 10, on a
dataset generated following the method above, run the following command:

python train batch.py --seed 1 --dataset-path baseline/dataset/10000/1/1 0/counts dataset.pkl
--baseline-path baseline --options minimum count 10
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This will create, in the folder containing the dataset (baseline/dataset/10000/1/1 0 in that specific command),
a csv file with the performance of the policy (one for each run on that dataset, 15 by default).

To repeat the experiment, simply define a different seed for the dataset generation and train on that new dataset. The
default values set in the code are the ones that produced the results from the paper. To run vanilla DQN, simply set the
minimum count to 0.

To run Reward-adjusted MDP on a dataset, simply add the following flag --options learning type ramdp and
specify the value of kappa with e.g. --options kappa 0.003.

Not included We DO NOT include the following:

• The multi-CPU/multi-GPU implementation: its structure is too much dependent on the cluster tools. It would be
useless for somebody from another lab.

License This project is BSD-licensed.


