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A B S T R A C T

Background: Automatic sleep stage classification is essential for long-term sleep monitoring. Wearable devices
show more advantages than polysomnography for home use. In this paper, we propose a novel method for sleep
staging using heart rate and wrist actigraphy derived from a wearable device.
Methods: The proposed method consists of two phases: multi-level feature learning and recurrent neural net-
works-based (RNNs) classification. The feature learning phase is designed to extract low- and mid-level features.
Low-level features are extracted from raw signals, capturing temporal and frequency domain properties. Mid-
level features are explored based on low-level ones to learn compositions and structural information of signals.
Sleep staging is a sequential problem with long-term dependencies. RNNs with bidirectional long short-term
memory architectures are employed to learn temporally sequential patterns.
Results: To better simulate the use of wearable devices in the daily scene, experiments were conducted with a
resting group in which sleep was recorded in the resting state, and a comprehensive group in which both resting
sleep and non-resting sleep were included. The proposed algorithm classified five sleep stages (wake, non-rapid
eye movement 1–3, and rapid eye movement) and achieved weighted precision, recall, and F1 score of 66.6%,
67.7%, and 64.0% in the resting group and 64.5%, 65.0%, and 60.5% in the comprehensive group using leave-
one-out cross-validation. Various comparison experiments demonstrated the effectiveness of the algorithm.
Conclusions: Our method is efficient and effective in scoring sleep stages. It is suitable to be applied to wearable
devices for monitoring sleep at home.

1. Introduction

Sleep is a fundamental physiological activity of the human body,
which contributes to self-recovery and memory consolidation [1,2].
Regular sleep facilitates the performance of daily work. However, many
sleep disorders, such as insomnia, apnea, and narcolepsy, disturb sleep
quality and thus threaten human health [3]. Effective diagnosis and
treatment of these sleep disturbances rely on accurate detection of sleep
stages and sleep cycles [4]. Therefore, sleep stage classification is a
premise and significant step for sleep analysis.

The standard technique for scoring sleep is to use polysomnography
(PSG) to synchronously record multichannel biomedical signals of the
patient all through the night in a hospital which include electro-
encephalogram (EEG), electrooculogram (EOG), electromyogram

(EMG), electrocardiogram (ECG), respiratory effort signals, blood
oxygen saturation, and other measurements. These recordings are di-
vided into nonoverlapping 30-s epochs. Domain experts evaluate sleep
epoch by epoch, based on Rechtschaffen and Kales (R&K) rules [5] and
the more recent American Academy of Sleep Medicine (AASM) guide-
line [6]. According to the AASM, sleep is categorized into five stages:
wake (W), rapid eye movement (REM), and non-rapid eye movement
(NREM, including N1, N2, and N3).

Monitoring sleep through the PSG system has many disadvantages
when used at home. First, patients have to wear numerous sensors in
different parts of the body. It may negatively impact patients' normal
sleep and thus produce discrepant results. Such results are not able to
reflect the real sleep state. Second, PSG is expensive. It is not available
for most ordinary families. Third, PSG is not portable, making it
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inappropriate for long-term home monitoring. To overcome the above
shortcomings, it is a promising strategy to utilize a wearable device in
place of the PSG system to classify sleep stages automatically. A
wearable device can readily record the pulse rate from the photo-
plethysmography (PPG) signal and wrist actigraphy without causing
many obstructions to natural sleep. During sleep, the former can be
regarded as a surrogate measurement of heart rate [7], and the latter
can evaluate body movement. It has been extensively investigated in
previous studies that both heart rate and body movement are related to
sleep stage transition [8,9]. Therefore, the wearable device can be an
alternative choice to score sleep automatically at home.

Many physiological studies of sleep have indicated that sleep
structure is associated with autonomic nervous system (ANS) regulation
[8,10,11]. The contributions of parasympathetic and sympathetic ac-
tivities vary among different sleep stages. Meanwhile, ANS activity
during sleep can be measured using heart rate variability (HRV) as a
quantitative index of parasympathetic or sympathetic output [12–14].
Hence, it is reasonable to use heart rate to determine sleep stages. More
specifically, the sympathetic input is reduced, and parasympathetic
activity predominates in NREM sleep. Thus with the transition of the
sleep stage from N1 to N3, heart rate gradually decreases and reaches
the minimum in N3 stage [15]. During REM sleep, in contrast, sym-
pathetic activity shows more predominant influence. Accordingly, heart
rate increases and becomes more unstable [16]. The spectral compo-
nents of heart rate also exhibit distinct characteristics in sleep transition
[10,17]. The ratio of the power in low frequency (LF, 0.04–0.15 Hz) to
high frequency (HF, 0.15–0.40 Hz) tends to decrease in NREM sleep and
significantly increase in REM sleep.

Quite a few sleep staging algorithms have been developed based on
HRV, most of which emphasize the applicability in home-based sce-
narios [18–20]. Yoon et al. [18] designed thresholds and a heuristic
rule based on automatic activations derived from HRV to determine the
slow wave sleep (SWS). An overall accuracy of 89.97% was achieved.
Ebrahimi et al. [19] extracted features from both HRV and respiratory
signals. They used recursive feature elimination (RFE) enhanced sup-
port vector machine (SVM) to classify four sleep stages (W, N2, N3, and
REM), achieving a classification accuracy of 89.23%. Xiao et al. [20]
extracted 41 HRV features in a similar way and random forest (RF) [21]
was used to classify three sleep stages (W, REM, and NREM). A mean
accuracy of 72.58% was achieved in the subject independent scheme.

Actigraphy-based methods which capture body movement during
sleep have long been investigated, especially to identify wake/sleep
[9,22,23]. It is easy to understand since the body tends to remain sta-
tionary when falling asleep. The motion amplitude becomes dis-
tinctively smaller than that in the wake state. Various studies have been
implemented to classify sleep stages with actigraphy. Herscovici et al.
[24] presented a REM sleep detection algorithm based on the peripheral
arterial tone (PAT) signal and actigraphy which were recorded with an
ambulatory wrist-worn device. Kawamoto et al. [25] detected REM
sleep based on the respiratory rate which was estimated from acti-
graphy. Long et al. [26] designed features based on dynamic warping
(DW) methods to classify sleep and wake using actigraphy and re-
spiratory efforts.

So far, few sleep staging methods have been developed that use both
heart rate and wrist actigraphy. Furthermore, most protocols in

previous studies focus on designing low-level features which are ex-
tracted in the time domain, frequency domain, and nonlinear analysis.
This causes the effectiveness of feature extraction to be overly depen-
dent on the expert analysis of signals, which makes these hand-en-
gineered features not robust and flexible enough to adapt to different
circumstances. In this paper, we propose a multi-level feature learning
framework which extracts low- and mid-level features hierarchically.
Low-level features capture temporal and frequency domain properties,
and mid-level features learn compositions and structural information of
signals. Specifically, to extract low-level features, the mean value and
discrete cosine transform (DCT) [27] are adopted to heart rate and
cepstral analysis [28] is adopted to wrist actigraphy. Mid-level features
are learned based on low-level ones.

Recently, deep learning methods have been introduced into the
sleep stage classification field, which produces encouraging results.
Tsinalis et al. [29] utilized convolutional neural networks (CNNs) based
on single-channel raw EEG to predict sleep stages without using prior
domain knowledge. The sparse deep belief net (DBN) was applied in
Ref. [30] as an unsupervised method to extract features from EEG, EOG
and EMG. Sleep staging is a sequential problem [6] as sleep shows ty-
pically cyclic characteristics and NREM/REM sleep appears alternately.
Moreover, manual sleep stage scoring depends on not only temporally
local features, but also the epochs before and after the current epoch
[31]. Recurrent neural networks (RNNs), particularly those using bi-
directional long short-term memory (BLSTM) hidden units, are pow-
erful models for learning from sequence data [32,33]. They are capable
of capturing long-range dependencies, making RNNs quite suitable for
modeling sleep data. Inspired by this, we apply a BLSTM-based RNN
architecture for classification.

In this paper, we develop a sleep stage classification algorithm using
heart rate and wrist actigraphy derived from the wearable device. The
proposed method consists of two phases: multi-level feature learning
and RNN-based classification. In the feature extraction phase, contrary
to traditional methods that extract specific hand-engineered features
using much prior domain knowledge, we aim to obtain main informa-
tion of sleep data. Low-level features (mean value and DCT of heart
rate, cepstral analysis of wrist actigraphy) are extracted from raw sig-
nals and mid-level representations are explored based on low-level
ones. In the classification phase, the BLSTM-based RNN architecture is
employed to learn temporally sequential patterns. The flowchart of the
whole algorithm is shown in Fig. 1.

The contributions of our algorithm include:

1 A complete sleep stage classification solution specially designed for
wearable devices is proposed.

2 The mid-level feature learning is introduced into sleep domain, and
its effectiveness is demonstrated.

3 The feasibility of using RNNs to model sleep signals is verified.

2. Materials and methods

We first describe how we collect experimental data (including heart
rate and wrist actigraphy) and obtain ground truth of corresponding
sleep stages in Section 2.1 and Section 2.2. In Section 2.3, we explain
how multi-level features are extracted. Specifically, low-level features

Fig. 1. The flowchart of the proposed method. The method consists of two phases: multi-level feature learning and RNN-based classification. In the first phase, low-
level features are extracted from heart rate and wrist actigraphy signals. Then mid-level features are obtained based on low-level ones. Combining two levels of
features, we arrive at the final representations. In the second phase, a BLSTM-based RNN architecture is applied for classification. The obtained features serve as
inputs to the network and predictions of sleep stages are finally obtained by RNN.
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are extracted directly from the raw heart rate and wrist actigraphy in
Section 2.3.1. Based on low-level features, mid-level feature learning is
explored in 2.3.2. Then we extract mid-level features in Section 2.3.3.
In Section 2.4, the BLSTM-based RNN model is trained using multi-level
features as input to classify sleep stages.

2.1. Sleep recordings

The study recruited 39 healthy subjects (30 males and 9 females)
with an age range of 19–64 years old. None of them took drugs or
medications that could affect sleep before the experiment. We collected
sleep recordings at the Center for Sleep Medicine in the General
Hospital of the Air Force, PLA, Beijing, China. During sleep, subjects
were equipped with both the wearable device and PSG. The wearable
device was used to collect heart rate and wrist actigraphy. PSG was
used for labeling sleep stages to obtain “golden standard”. Actually, the
wearable device used in this paper was Microsoft Band I. The Microsoft
corporation provided the module for estimating pulse rate from PPG
signals which we used as the alternative measurement of heart rate in
our work. The choice of the wearable band and the estimation accuracy
of pulse rate were not the focus of this article. PSG data were acquired
using Compumedics E−64.

All subjects slept in the same sleep lab and used the same set of the
band and PSG. Subjects were required not to take a nap during the
daytime. Before sleep, the band was fully charged and synchronized
with the PSG system. To better simulate the use of wearable bands in
the daily scene, subjects were required to take bands according to their
own habits. Ether left or right wrist was fine. The placement of the band
and PSG electrodes was completed before 9:00 p.m. Subjects were
awakened by the doctor at 6:00 a.m. the next day. After the subject
awakened, heart rate (beats/min) and triaxial wrist actigraphy (g) were
exported. The band was then recharged. Heart rate was calculated by
converting the pulse-to-pulse intervals at each detected pulse peak. The
actigraphy was sampled at 32 Hz. As exercise has a physiological in-
fluence on sleep [34], we considered two conditions. The condition that
subjects stayed relaxed and took no exercise before sleep was defined as
the resting state [35]. 28 recordings were collected in resting state. In
the other condition, subjects were required to do moderate aerobic
exercise one to two hours before sleep. 11 recordings were collected in
this condition. We divided all these 39 recordings into two groups: the
resting group with 28 resting state sleep recordings, and the compre-
hensive group with all 39 recordings to simulate the actual situation of
the daily sleep.

2.2. Ground truth

The sleep physician assigned one of the five stages (W, N1, N2, N3,
and REM) to the overnight sleep at each epoch according to the AASM
guideline. To ensure the accuracy of ground truth, each subject's PSG
recording was scored by 5 physicians from the General Hospital of the
Air Force independently. Then we adopted the voting strategy to obtain
final staging results. For the cases in which multiple stages tied for the
most votes, we followed the stage of the previous epoch. An example of
collected recordings is shown in Fig. 2. Details of subject demographics
are listed in Table 1.

2.3. Feature extraction

2.3.1. Low-level feature extraction
We first divide each heart rate and actigraphy records into 30s

epochs synchronizing in time with PSG classification results. For each
sleep epoch, low-level features of heart rate and actigraphy are ex-
tracted, respectively. Then they are combined to learn mid-level fea-
tures.

Both temporal and frequency properties of heart rate are con-
sidered. To make features more representative in context, the feature

extraction procedure is carried out based on the sliding window tech-
nique. We extract low-level features of heart rate in a frame which
includes 10 sleep epochs centered around the current one. Features are
extracted within each epoch and then concatenated. First, we derive
pulse intervals from heart rate,

=PPI HR60/ , (1)

in which PPI refers to pulse intervals and HR refers to heart rate.
In the time domain, we compute the mean pulse intervals of each

epoch in the frame to constitute a mean value vector. Discrete cosine
transform (DCT) [36] is applied for frequency domain analysis. Com-
pared with the discrete Fourier transform (DFT), DCT shows better
performance with respect to energy concentration. We adopt DCT to
pulse intervals through which dominant frequency components in each
epoch are procured to form the frequency feature vector. To measure
the frequency fluctuation, we calculate the first and second order dif-
ferences of dominant frequency components. Then the zero order
(dominant frequency components), first order, and second order dif-
ferences of frequency components are joined together as frequency
domain features of heart rate.

Fig. 2. Illustration of the recording. The top one represents an overnight heart
rate signal. The middle one represents an actigraphy signal (Here, to save space,
we integrate the actigraphy in X, Y, and Z axes). The bottom one represents the
corresponding sleep stages.

Table 1
Subject demographics.

Parameter Resting group Comprehensive group

Mean±Std Range Mean±Std Range

Num 28 39
M/F 20/8 30/9
Age (y) 26.25±7.77 19–48 27.72±10.12 19–64
BMI 21.81±2.66 17.07–29.05 21.81±2.68 17.07–29.05
TRT (h) 7.80±0.52 6.92–8.80 7.86±0.54 6.82–8.80
W (%) 19.14±8.80 4.81–40.24 19.37±9.13 4.81–40.24
N1 (%) 5.79±3.20 1.73–14.18 6.05±3.43 1.73–15.09
N2 (%) 45.00±9.48 26.04–62.31 46.14±8.84 26.04–62.31
N3 (%) 14.86±9.57 0.00–42.23 13.47±8.73 0.00–42.23
REM (%) 15.20±4.47 6.15–24.30 14.96±4.15 6.15–24.30

Num=number of recordings, M/F=male/female, BMI= body mass index,
TRT= total recording time.
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Actigraphy features are extracted only within the current epoch. As
body movement during night tends to be transient and the sampling
rate of actigraphy is high enough to capture movement details, there is
no need for a wide range of context information. The cepstral analysis,
which is widely used in action recognition area [37], has also been
implemented in sleep studies to assess body movement [38]. In this
study, we calculate the first order difference of the actigraphy along
three axes, respectively. Then the dominant cepstrum components of
the aforementioned difference in each axis are concatenated to form the
actigraphy feature vector.

2.3.2. Mid-level feature learning
Mid-level feature learning methods are widely used in various kinds

of pattern recognition tasks and give a nice performance boost [39–41].
Compared with low-level feature extraction, mid-level feature learning
pays more attention to analyzing compositions and exploring the in-
herent structure of signals [42]. It can be assumed that sleep is com-
prised of different compositions. Weights of each composition vary
among different stages. Thus bag-of-words (BOW), a kind of dictionary
learning method is quite appropriate for obtaining mid-level sleep re-
presentations. In this work, we implement BOW based on low-level
features of both heart rate and actigraphy signals to learn mid-level
features.

The dictionary is constructed upon low-level features of all sleep
epochs from the training set using the K-means algorithm [43]. K
clusters are thus generated. Each cluster center represents one compo-
sition. K cluster centers together constitute the whole sleep structure.
For a set of sleep epochs, we define its corresponding set of low-level
features as {x1, x2, …, xn}, ∈ ×x Ri

d 1, ∈ …i n{1,2, , }, in which xi re-
presents low-level features of i-th sleep epoch, and the dimension of
low-level features is d. Each xi is related to an index ∈ …z K{1,2, , }i . If

= ∈ …z l K{1,2, , }i , xi belongs to the l-th cluster. The center of the l-th
cluster is denoted as

∑ ∑= = = ∈
= =

×m x mz l z l R1{ } / 1{ }, ,l
i

n

i i
i

n

i l
d

1 1

1

(2)

in which ml refers to the l-th sleep composition.

2.3.3. Mid-level feature extraction
The dictionary is built as above. Given a sleep epoch, the corre-

sponding mid-level features are extracted as follows: the Euclidean
distances between its low-level features and each cluster center are first
computed. Then we take the reciprocals of the Euclidean distances as
mid-level features (K dimensions), which shows the weighted influence
of each compositions to the current epoch.

We concatenate low-level and mid-level features as the final feature
vector. The order of concatenation does not affect the performance.
After all feature vectors of the training set are extracted, we normalize
features along each dimension with Z-score strategy:

= −p x μ δ( )/ ,ij ij j j (3)

in which ∈ = …xx x x x{ , , , }ij i i i iD1 2 , μj and δj are the mean value and
standard deviation of the j-th dimensional feature, respectively. D refers
to the dimension of the final feature vector. = +D d K .

2.4. Recurrent neural networks

Recurrent neural networks are suitable models for sequential data
and have gained great success in numerous sequence learning domains,
including natural language processing, speech, and video [33]. Bidir-
ectional long short-term memory (BLSTM) [44,45] which combines
long-term dependency of LSTM [46] with bidirectional propagation, is
a novel version of RNN to exploit long-range information in both input
directions. In fact, the long-term information utilization is key to sleep
staging. For example, there always exists a long-term memory of heart

rate in the REM stage and wake stage, but weak long-term correlation in
NREM sleep [47]. Given that sleep is an inherently dynamic and long-
term dependency process, it seems natural to consider BLSTM as a
potentially effective model.

Generally, we define input units = …x x x( , , )T(1) ( ) , hidden units
= …h h h( , , )T(1) ( ) and output units = …y y yˆ ( ˆ , , ˆ )T(1) ( ) , where each input

∈ ×x Rt D( ) 1, ŷ is the hypothesis of the true label y and each output
∈ŷ [0,1]t M( ) . Here, D refers to the dimension of final features, t refers to

the t-th sleep epoch, T refers to the total number of sleep epochs and M
refers to the total classes of the sleep stage. The following three equa-
tions describe horizontal propagation of BLSTM:

H ⎜ ⎟
⎛
⎝

⎞
⎠

→
= +

→
+→ →→

−
→h x h bW W ,

t

xh
t

h h

t

h

( )
( )

( 1)

(4)
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⎛
⎝

⎞
⎠

=
→

+
←

+→ ←y h h bW Wˆ ,t
h y

t

h y

t
y

( )
( ) ( )

(6)

in which W refers to weight matrices and b refers to bias vectors with
superscripts denoting time steps and subscripts denoting layer indices.
H denotes the hidden layer function. S denotes the output layer
function.

→
h and

←
h represent the hidden layers in the forwards and

backwards directions, respectively. We apply a softmax function to
output probabilities of M classes.

In this paper, we train a BLSTM-based RNN model with multiple
hidden units. We also evaluate how RNN can benefit from the use of
deep architectures. Specifically, by stacking multiple recurrent hidden
layers on top of each other, the way that conventional deep networks
do, we arrive at the deep BLSTM. The structure of the deep BLSTM is
shown in Fig. 4. The version of LSTM memory cells is with forget gates
[48] and peephole connections [32], whose structure is illustrated in
the right part of Fig. 3. Assuming there are N hidden layers with hidden
units of BLSTM, the hidden sequences hn

t( ) are computed from =n 1 to
N and =t 1 to T as below:

H= + +−
−

−( )h h h bW W .n
t

h h n
t

h h n
t

h n
( )

1
( ) ( 1)

,n n n n1 (7)

Thus the output ŷ t( ) can be defined as:

S= +( )y h bWˆ .t
h y N

t
y

( ) ( )
N (8)

According to the softmax output, cross entropy function is used as
the loss function that we optimize:

∑= − ⋅ + − ⋅ −
=

=

y y y y y yloss
T

log log( ˆ , ) 1 ( ( ˆ ) (1 ) (1 ˆ )),
t

t T
t t t t

1

( ) ( ) ( ) ( )

(9)

in which y t( ) refers to the true label at time step t.

3. Results

3.1. Performance evaluation

8-fold cross-validation is conducted to present unbiased perfor-
mance of the algorithm. On each iteration, we use 6 portions for
training, 1 portion for validation, and 1 portion for testing. Finally,
testing results of each iteration are averaged to form the overall per-
formance of RNN classifiers. We randomly run cross-validation for three
times and calculate average results.

Considering that the distribution of five sleep stages is severely
unbalanced, to adapt to this characteristic, weighted precision (P), re-
call (R) and F1 score (F1) are selected to evaluate the performance.
Evaluation measures are defined as:
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∑= ⋅ +P ω TP TP FP/( ),
i

i i i i
(10)

∑= ⋅ +R ω TP TP FN/( ),
i

i i i i
(11)

∑= ⋅ ⋅ ⋅ +F ω P R P R2 /( ),
i

i i i i i1
(12)

in which i refers to the stage category and ωi is the proportion of the i-th
stage class in all classes. TP is the number of true positives, FP is the
number of false positives,TN is the number of true negatives, and FN is
the number of false negatives (Here, we omit the subscript i.).

3.2. Experiments

In order to fully explore the property of the proposed approach, we
conduct the following experimental procedures: (1) we describe the
detailed configuration and analyze the performance; (2) we evaluate
the effectiveness of mid-level feature learning; (3) we make a com-
parison between the BLSTM-based RNN and two frequently-used clas-
sifiers for classification; (4) we explore the sensitivity of parameters in
the feature extraction process; (5) we evaluate the performance of RNN
models with different hidden layer width, depth, and unit types. As W
and N1 stages are similar in HRV, we also conduct experiments that
combine W and N1 into one stage, resulting in 4 classes of classification.
Meanwhile, the resting group and comprehensive group are both ex-
perimented on, respectively.

3.2.1. Performance analysis
520 features are finally extracted, including 220 low-level features

and 300 mid-level features. In low-level feature extraction, 10-dimen-
sion mean vector of heart rate is extracted in consecutive 10 epochs as
temporal features. The first 5 frequency components of each epoch are
collected by using DCT analysis. Then the first order and second order
differences are calculated. Consequently, we obtain 120 frequency
features of heart rate (40 dimensions for each order). For actigraphy,
we join the first 30 cepstrum components in each axis to shape into 90
actigraphy features. Based on the above low-level features, mid-level
features are learned. The size of the dictionary, K, is set to 300. By
concatenating low-level and mid-level features, the final 520-dimension
feature vector is formed. The RNN classifier is a three-layer structure:
the input layer with the number of units equal to the dimension of final
features, one hidden layer with 400 BLSTM cells, and the output layer
with 5 units which mean 5 sleep stages. RNN is trained using stochastic
gradient descent [49] with the learning rate of −10 6. Network weights
are randomly initialized with a Gaussian distribution of (0,0.1). To be
more generalized, the Gaussian weighted noise =σ( 0.005) is added to
the network. We implement the proposed RNN architecture under the

Fig. 3. Illustration of the BLSTM architecture. The left side is the overall view. There exist two hidden layers with opposite directions. Each hidden unit is a LSTM
memory cell. The right side shows the detail of the LSTM memory cell.

Fig. 4. Illustration of the proposed RNN classifier. The upper part is the detailed
structure of the network. In order to express concisely, we omit the full con-
nection between layers. The lower part depicts the workflow of the RNN. For a
certain sleep epoch, data are processed in two opposite directions. The output
layer predicts the sleep stage of the current epoch.

Table 2
Performance of 8-fold, 10-fold, and leave-one-out cross-validation for 5-class
classification (%).

Method RG CG

P R F1 P R F1

8-fold 58.0 60.3 58.2 58.5 61.1 58.5
10-fold 65.3 65.9 62.1 63.1 64.0 59.9
Leave-one-out 66.6 67.7 64.0 64.5 65.0 60.5

RG= resting group, CG= comprehensive group.
The Bold numbers show the best performances in each tables.

Table 3
MCC and G-Mean of 8-fold, 10-fold, and leave-one-out cross-validation for 5-
class classification (%).

Method RG CG

MCC G-Mean MCC G-Mean

8-fold 52.9 65.1 49.1 62.6
10-fold 53.3 65.6 50.4 63.5
Leave-one-out 55.8 67.1 51.9 64.7

RG= resting group, CG= comprehensive group.
The Bold numbers show the best performances in each tables.
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Fig. 5. ROC curves of 8-fold, 10-fold, and leave-one-out cross-validation for 5-class classification. (RG= resting group, CG= comprehensive group.)
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CURRENNT framework [50].
To fully report robust performance results of the proposed method,

we add 10-fold and leave-one-out cross-validation besides 8-fold cross-
validation. Experiments are conducted on both the resting group and
the comprehensive group for 5-class classification. Table 2 shows per-
formance results of weighted precision, recall, and F1 score. For 8-fold
cross-validation, F1 score of 58.2% and 58.5% are achieved in the
resting group and comprehensive group, respectively. 62.1% and 59.9%
are yielded using 10-fold cross-validation. 64.0% and 60.5% are
achieved using leave-one-out cross-validation. Two groups show similar
results in three types of cross-validation. This proves that the algorithm
is robust enough to adapt to different sleep conditions. It can be noted
that the performance results of 10-fold cross-validation are higher than
those of 8-fold cross-validation. Leave-one-out cross-validation achieves
the highest performance. This may be due to that more data are used to
train the model in every iteration. As five sleep stages are heavily un-
balanced, to further evaluate the classification capability of each sleep
stage, Matthews correlation coefficient (MCC) and Geometric mean (G-
Mean) are presented in Table 3. Receiver operation characteristic
(ROC) curves and areas under curves (AUCs) of different experiments
are generated in Fig. 5. It can be noticed that except N1 stage, AUCs of
other four sleep stages all exceed 0.80 in six experiments. The con-
sistent results prove that the proposed method is discriminative in the
case of data unbalance.

3.2.2. Effectiveness of mid-level learning
To demonstrate the effectiveness of mid-level feature learning, we

design an experiment in which low-level features directly serve as the
input to RNN without mid-level feature learning. Parameter settings
remain the same. We conduct experiments with the resting group for 5-
class classification. 1 to 4 hidden layers of RNNs are implemented.

As shown in Table 4, the performance is improved significantly
when mid-level features are involved. The dictionary helps us obtain
the spatial distribution of sleep compositions and explore inherent
structures, which can describe sleep in a more representative way.

3.2.3. Comparison with various classifiers
We make a comparison between RNN and two classic classifiers,

including support vector machine (SVM) [51] and random forest (RF).
All three classifiers use the same features extracted in the first experi-
ment. The comparison is performed with the comprehensive group for
5-class classification.

The SVM uses the radial basis function (RBF) kernel with the kernel
coefficient gamma of 0.0021. Penalty parameter C is set to 1 to reg-
ularize the estimation. The shrinking heuristic is also utilized. 600 es-
timators are set in the RF, and the function to measure the quality of a
split is the Gini impurity. The number of features to consider when
looking for the best split is denoted as p, which is equal to the square
root of the number of total features. The minimum number of samples
required to split an internal node and be at a leaf node are p1/2 and 1.

Results shown in Table 5 indicate that RNN is superior to RF in all
three metrics and superior to SVM in weighted recall and F1 score.
Despite both SVM and RF being able to deal with high dimension si-
tuations, RNN works better at learning long-term dependencies.

3.2.4. Sensitivity of parameters
This section elucidates the sensitivity of variables in feature ex-

traction, including the dominant frequency component size of DCT and
the dictionary size in mid-level feature learning. We evaluate the sen-
sitivity with the comprehensive group for 4-class classification. Hidden
layers from 1 to 4 are employed.

The dominant frequency component size ranges from 5 to 25. The
results are shown in Table 6 and Fig. 6(a). It can be seen that perfor-
mance decreases as frequency component size increases. This may be
because the high-frequency components are mostly noise and thus
impact classification.

We change the dictionary size in mid-level feature learning from
100 to 500. The results are shown in Table 7 and Fig. 6(b). The var-
iation trend of performance is small. It can be attributed to the lack of
data. Although a larger dictionary generates a more detailed description
of sleep compositions, there are more parameters to optimize in RNN.
Sleep data of totally around 37,000 epochs are not sufficient for
training the RNN model.

3.2.5. Neural networks configurations
We carry out extensive experiments to assess the performance of

neural networks with different hidden layer width, depth, and unit
types. We consider 6 scales of hidden units numbers: 100 to 600, 4

Table 4
Comparison of performance with and without mid-level features on the resting
group for 5-class classification (%).

HL With mid-level features Without mid-level features

P R F1 P R F1

1 58.0 60.3 58.2 52.8 54.7 52.7
2 57.7 59.6 57.1 53.5 55.5 53.3
3 56.3 59.6 57.1 53.1 55.7 53.1
4 55.4 58.7 56.4 52.2 54.7 51.5

HL=number of hidden layers.
The Bold numbers show the best performances in each table.

Table 5
Comparison of various classifiers on the comprehensive group for 5-class clas-
sification (%).

Classifier P R F1

SVM 60.3 60.6 55.6
RF 56.5 59.2 53.3
RNN 58.5 61.1 58.5

The Bold numbers show the best performances in each tables.

Table 6
The effect of the dominant frequency component size on the comprehensive group for 4-class classification (%).

Components HL

1 2 3 4

P R F1 P R F1 P R F1 P R F1

5 63.0 63.1 62.1 62.1 61.9 61.5 61.7 61.9 60.8 60.6 60.8 60.0
10 60.3 61.2 60.0 60.6 60.9 59.9 60.0 60.3 58.9 59.5 60.1 58.4
15 60.1 61.2 59.0 59.6 60.3 58.6 58.7 59.4 57.8 59.9 60.3 58.8
20 59.4 60.6 58.9 58.5 59.2 58.1 57.9 58.5 56.2 57.6 59.0 57.1
25 58.0 59.5 57.1 57.4 58.9 57.0 58.0 59.0 57.0 57.3 58.9 56.6

HL=number of hidden layers.
The Bold numbers show the best performances in each table.
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scales of hidden layers: 1 to 4, and 3 types of neural networks: multi-
layer perceptron (MLP), LSTM, and BLSTM.

Tables 8 and 9 summarize results of multiple neural network

architectures with the resting group and comprehensive group for 4-
and 5-class classification. Fig. 7 illustrates the general trend of the
weighted F1 score along with the number of hidden units. It is obvious

Fig. 6. The sensitivity of DCT components and dictionary size.

Table 7
The effect of dictionary size in the mid-level feature learning on the comprehensive group for 4-class classification (%).

K HL

1 2 3 4

P R F1 P R F1 P R F1 P R F1

100 61.6 62.2 61.3 62.4 62.7 61.7 60.9 61.3 60.6 60.9 61.1 60.1
200 62.4 62.7 62.1 61.2 61.4 60.7 60.5 61.0 60.3 61.5 61.4 59.8
300 63.0 63.1 62.1 62.1 61.9 61.5 61.7 61.9 60.8 60.6 60.8 60.0
400 62.6 62.9 61.4 60.7 61.2 60.3 61.1 61.3 60.7 60.1 60.3 59.1
500 62.0 62.7 61.6 62.1 62.5 61.8 62.2 62.0 60.9 60.6 60.9 59.7

HL=number of hidden layers.
The Bold numbers show the best performances in each table.

Table 8
Comparison of different network architectures for 4-class classification (%).

Sub. HT HL HU

100 200 300 400 500 600

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

MLP RG 1 48.7 54.3 46.0 51.5 55.8 49.0 52.0 56.3 50.0 52.2 56.5 50.5 53.0 56.5 50.4 53.5 56.8 51.3
2 45.6 54.9 45.3 50.8 55.9 47.9 52.8 56.4 49.4 54.8 57.6 52.1 55.4 57.7 52.2 56.3 57.9 52.2
3 43.4 54.4 43.2 53.3 56.7 49.2 53.1 56.6 49.8 54.8 57.3 50.7 55.7 58.2 52.6 56.2 58.9 54.4
4 41.4 54.1 42.4 47.2 55.7 46.2 51.4 56.9 49.5 52.2 57.5 50.9 54.7 57.4 51.0 58.2 59.2 55.0

CG 1 50.6 56.3 48.2 52.7 56.8 49.8 53.8 57.7 51.5 53.1 56.8 49.5 53.2 57.2 50.6 54.5 57.5 51.1
2 47.3 55.5 45.5 52.0 57.0 49.0 54.2 57.4 50.7 55.3 58.4 52.7 55.1 57.9 51.7 56.4 59.0 53.1
3 44.8 55.5 45.2 50.5 56.2 47.6 56.2 58.1 51.3 55.8 58.4 52.3 56.7 58.7 53.2 55.5 58.9 52.2
4 44.8 55.7 45.0 49.2 55.8 46.2 49.1 56.9 48.9 56.2 58.3 52.7 56.1 58.9 54.1 55.7 58.6 52.6

LSTM RG 1 58.7 61.0 58.5 58.1 60.2 57.6 58.2 60.8 58.6 58.4 60.5 58.3 57.7 60.2 57.9 58.0 60.2 58.3
2 56.4 60.1 57.6 56.6 60.3 57.7 57.3 60.4 57.7 55.8 58.6 56.4 56.1 59.1 56.9 56.0 59.0 56.6
3 56.9 60.6 57.9 56.4 59.8 57.3 55.7 59.2 56.6 55.8 58.8 56.1 55.5 58.4 55.7 55.0 58.2 55.9
4 55.7 59.3 56.4 55.9 59.4 56.7 54.4 57.5 55.2 54.2 57.3 54.7 54.8 57.5 55.0 54.1 57.2 54.8

CG 1 58.9 61.3 58.3 59.0 61.1 58.2 58.4 61.0 58.3 57.3 59.8 57.3 58.0 60.6 58.2 57.8 60.3 58.0
2 57.0 60.8 57.9 56.7 60.6 57.6 56.0 59.9 56.9 55.8 58.9 56.0 55.4 58.8 56.1 56.2 59.3 56.5
3 56.4 60.4 57.5 56.1 60.1 57.2 56.1 59.4 56.5 55.3 59.1 55.9 55.8 59.2 56.2 55.0 58.4 55.5
4 55.3 59.3 56.6 55.7 59.7 56.6 54.7 58.5 55.7 54.9 58.6 55.4 54.9 58.1 55.0 55.3 58.5 55.5

BLSTM RG 1 58.6 61.0 58.5 58.6 60.8 58.5 58.3 60.6 58.2 58.0 60.3 58.2 58.7 61.0 58.7 58.0 60.3 58.2
2 57.5 60.2 57.7 57.2 60.5 58.1 58.5 61.0 58.6 57.7 59.6 57.1 56.6 59.3 57.0 57.3 59.8 57.7
3 55.6 59.3 56.7 55.7 59.2 56.9 56.0 59.5 56.9 56.3 59.6 57.1 55.7 58.6 56.4 56.3 59.1 56.7
4 54.6 58.3 55.7 56.1 59.7 57.2 57.6 59.2 56.9 55.4 58.7 56.4 55.7 58.8 56.1 55.7 58.4 56.1

CG 1 59.0 61.5 58.9 58.4 60.9 58.2 57.6 60.5 57.9 58.5 61.1 58.5 58.2 60.7 58.3 58.1 60.7 58.2
2 56.8 60.7 58.0 57.1 60.9 58.0 56.3 60.2 57.5 56.7 59.9 57.0 56.9 59.9 56.9 56.7 59.7 57.2
3 58.6 60.4 57.5 57.0 60.6 57.8 56.8 60.7 57.7 55.9 59.4 56.6 56.4 59.5 56.4 55.5 58.9 56.0
4 55.1 59.2 56.1 55.5 59.4 56.8 58.0 59.8 56.9 55.0 58.7 56.3 55.3 58.9 56.0 54.7 58.1 55.6

Sub.= subjects, RG= resting group, CG= comprehensive group, HT=hidden unit type, HL=number of hidden layers, HU=number of hidden units.
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that RNNs with LSTM and BLSTM units achieve much better results
than MLP in all experiments. This demonstrates the efficacy of RNNs to
learn temporal relationships between sleep sequences. BLSTM outper-
forms LSTM slightly. As the number of hidden units increases, the im-
provement of performance in MLP is most significant. It is reasonable
because MLP models are relatively simple. The collected sleep data are
sufficient to optimize MLP models with deeper and wider structures.
Performance results of LSTM and BLSTM show a slight decrease as the
number of hidden units and layers increase. This may be caused by the
mismatch between excessive parameters and relatively sparse data.

4. Discussion

It is observed that high performances were achieved using con-
ventional approaches [18–20]. However, the remarkable performances
rely on elaborate feature engineering which is data dependent. Fur-
thermore, HRV features they used are extracted based on ECG which is
not convenient to collect for wearable devices. In this work, we com-
bine heart rate and actigraphy to predict sleep stages. They are much
easier to collect via wearable devices.

Different experiment settings, data, and evaluation methods are
applied to classify different numbers of sleep stages in previous litera-
ture. Hence, it is quite difficult to make a direct comparison between
different algorithms. We compare our algorithm with the method de-
scribed in Ref. [20]. The baseline method extracts 41-dimension hand-
engineered features based on HRV in the time domain (8 dimensions),
frequency domain (20 dimensions) and nonlinear analysis (13 dimen-
sions). These features are then trained and tested through RF. Here we
implement it using pulse intervals in our dataset. To make a fair com-
parison, we also implement our proposed algorithm without acti-
graphy. Moreover, we add our extracted actigraphy features to 41-di-
mension HRV features to perform the baseline method. Both the resting
group and the comprehensive group are used to evaluate experiments
for 5-class classification. Table 10 shows the results.

It can be observed from Table 10 that our method surpasses the
baseline both with and without actigraphy features. The best

performances, weighted precision, recall, and F1 score of 58.0%, 60.3%,
and 58.2% in the resting group and 58.5%, 61.1%, and 58.5% in the
comprehensive group are achieved through our method using heart rate
combined with actigraphy. Compared with the hand-engineered feature
extraction method in the baseline which is overly dependent on expert
knowledge, our feature learning method aims to obtain main in-
formation of signals and RNN is able to further refine features. With
little prior domain knowledge used, the method has the potential to
generalize sleep disorder detection. Approximately, the differences in
results between the resting group and comprehensive group using our
method are smaller than that using the baseline. Since sleep data in the
comprehensive group are more diverse, it shows the robustness of the
whole algorithm. Furthermore, the performances of both methods are
improved when actigraphy features are considered, which suggests that
body movement during sleep contains useful information for sleep stage
classification.

As heart rate is estimated from the pulse wave, accumulative error is
inevitably introduced. Estimation accuracy of heart rate would affect
classification performance. In future, we intend to develop algorithms
that predict sleep stages from pulse wave directly.

5. Conclusion

We present a novel method for automatic sleep stage classification
using heart rate and wrist actigraphy, which is quite suitable for
wearable devices. The method consists of two phases: the multi-level
feature learning framework and the BLSTM-based RNN classifier.
Unlike traditional approaches with hand-engineered features, feature
extraction is designed to capture properties of raw sleep data and
composition-based structural representation. RNN learns temporally
sequential patterns of sleep. Experiments have demonstrated the ef-
fectiveness of the proposed method.
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Table 9
Comparison of different network architectures for 4-class classification (%).

Sub. HT HL HU

100 200 300 400 500 600

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

MLP RG 1 53.1 55.8 49.9 55.5 57.1 51.9 53.7 56.8 50.9 57.7 58.5 54.0 58.0 59.3 55.4 58.1 58.8 55.1
2 44.9 51.0 41.9 56.8 58.2 52.6 57.3 59.4 54.6 59.4 59.8 55.8 57.3 58.9 53.5 58.1 59.6 55.7
3 52.9 56.6 48.8 51.9 56.6 49.1 56.3 57.4 50.8 57.2 59.4 54.6 59.4 59.8 55.6 61.2 61.0 57.7
4 49.9 57.1 48.4 56.7 58.2 51.8 56.9 59.2 54.2 60.7 60.6 57.1 59.9 60.5 56.8 60.9 61.2 58.5

CG 1 56.5 58.2 52.8 56.5 58.7 53.8 58.6 59.8 55.6 59.5 60.4 56.2 59.1 60.1 55.8 59.3 60.4 56.6
2 54.0 57.9 51.3 57.9 59.6 54.8 59.2 60.4 56.3 59.5 60.5 56.2 59.9 60.7 56.8 60.1 60.9 57.0
3 51.8 57.8 49.7 57.9 59.3 53.4 60.2 60.8 56.5 59.6 60.9 57.0 60.1 61.2 57.6 60.2 60.9 57.3
4 53.4 57.7 49.4 58.0 59.7 54.4 59.9 60.7 57.0 59.6 60.7 57.2 59.7 60.9 57.3 60.5 61.4 58.4

LSTM RG 1 62.3 62.6 62.0 62.8 63.0 62.3 63.0 63.1 62.4 62.0 62.1 61.6 62.6 62.8 62.2 62.2 62.4 61.7
2 62.5 62.5 61.8 61.8 61.7 61.2 61.4 61.4 60.6 60.5 60.7 59.8 60.3 60.4 59.7 60.5 60.6 59.9
3 60.7 60.8 60.1 61.3 61.2 60.7 60.7 60.6 59.7 60.0 60.0 59.3 60.2 60.1 59.5 60.5 60.3 59.7
4 60.6 60.5 59.9 60.7 60.7 59.9 59.4 59.2 58.4 58.7 58.6 57.6 59.3 59.2 58.6 59.1 59.1 58.4

CG 1 62.9 63.3 62.4 62.8 63.2 62.3 62.3 62.6 61.8 62.9 63.2 62.5 62.0 62.4 61.6 61.6 62.0 61.1
2 62.6 62.8 61.9 61.8 61.9 61.1 61.3 61.6 60.5 61.2 61.4 60.6 61.7 61.9 60.9 60.3 60.7 59.5
3 61.8 61.9 61.2 61.1 61.2 60.3 60.9 61.0 59.9 60.6 60.8 59.7 59.9 60.3 59.0 59.7 59.9 59.1
4 61.6 61.7 60.8 61.5 61.3 60.5 60.1 60.3 59.2 59.5 59.7 58.5 59.5 59.7 58.5 59.4 59.7 58.6

BLSTM RG 1 62.8 62.9 62.4 62.2 62.5 61.9 62.3 62.4 61.9 61.9 62.0 61.4 62.3 62.5 61.6 62.8 63.0 62.5
2 62.6 62.5 62.0 62.0 62.1 61.6 62.1 62.1 61.6 61.1 61.1 60.6 61.3 61.4 60.7 60.8 61.0 60.3
3 61.4 61.4 60.9 61.4 61.2 60.6 61.1 60.8 60.3 60.2 60.4 59.7 59.9 60.0 59.2 60.3 60.3 59.5
4 60.0 60.0 59.4 61.1 61.0 60.5 60.5 60.5 60.1 60.2 60.3 59.6 60.2 60.3 59.6 60.0 60.1 59.2

CG 1 62.5 62.9 61.9 62.4 62.9 62.0 63.1 63.6 62.7 63.0 63.1 62.1 62.1 62.7 61.8 62.0 62.4 61.7
2 62.5 62.7 61.9 62.2 62.1 61.3 61.8 62.0 60.9 62.1 61.9 61.5 61.2 61.5 60.5 60.6 61.0 60.3
3 60.8 61.0 60.1 61.5 61.3 60.6 60.9 61.2 60.5 61.7 61.9 60.8 60.3 60.7 59.8 60.3 60.7 59.8
4 61.4 61.2 60.3 61.2 61.2 60.4 60.8 61.2 60.3 60.6 60.8 60.0 60.8 61.1 60.2 60.0 60.5 59.6

Sub.= subjects, RG= resting group, CG= comprehensive group, HT=hidden unit type, HL=number of hidden layers, HU=number of hidden units.
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