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a b s t r a c t 

Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. As- 

sessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previ- 

ous effort s to automate tumor proliferation assessment by image analysis only focused on mitosis detec- 

tion in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should 

be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor 

proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assess- 

ment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. 

The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. 

In order to ensure fair and independent evaluation, only the ground truth for the training dataset was 

provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., 

to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was 

to predict the gene expression based PAM50 proliferation scores from the WSI. 

The best performing automatic method for the first task achieved a quadratic-weighted Cohen’s kappa 

score of κ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the 

second task, the predictions of the top method had a Spearman’s correlation coefficient of r = 0.617, 95% 

CI [0.581 0.651] with the ground truth. 
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1 http://tupac.tue-image.nl . 
2 This overview paper includes he methods of 11 teams. The team with the low- 

est ranking method for the first task asked to be excluded from the overview paper 

(the results of this team are visible on the challenge website). 
1. Introduction 

Tumor proliferation is an important biomarker indicative of the

prognosis of breast cancer patients. Patients with high tumor pro-

liferation have worse outcomes compared to patients with low tu-

mor proliferation ( van Diest et al., 2004 ). The assessment of tumor

proliferation influences the clinical management of the patient –

patients with aggressive tumors are treated with more aggressive

therapies and patients with indolent tumor are given more conser-

vative treatments that are preferred because of fewer side-effects

( Fitzgibbons et al., 20 0 0 ). 

Tumor proliferation in a clinical setting is traditionally assessed

by pathologists. The most common method is to count mitotic fig-

ures (dividing cell nuclei) on hematoxylin & eosin (H&E) histolog-

ical slides under a microscope. The pathologists will assign a mi-

totic score of 1, 2 or 3, where a score of 3 represents high tumor

proliferation. Two other more objective methods that assess tu-

mor proliferation in the breast include immunohistochemical stain-

ing for Ki67 protein ( Cheang et al., 2009 ) and the molecular gene

expression based PAM50 proliferation score ( Heng et al., 2017;

Nielsen et al., 2010; The Cancer Genome Atlas Network, 2012 ). The

lack of standardized procedures, debates about clinical utility, is-

sues with Ki67 assay interpretation, and the complex molecular

workflow to obtain gene expression has impeded the translation

of Ki67 and PAM50 proliferation score for clinical use ( Penault-

Llorca and Radosevic-Robin, 2017 ). Ki67 and PAM50 proliferation

score are significantly associated with mitotic counts ( Heng et al.,

2017; Lee et al., 2014 ), but their agreement is not perfect. There

are limited studies investigating the relationship between molecu-

lar and morphological data, specifically, none has explored the po-

tential of predicting PAM50 proliferation scores from H&E WSIs. 

Although mitosis counting is routinely performed in most

pathology practices, this highly subjective and labor-intensive task

suffers from reproducibility problems ( Veta et al., 2016 ). One solu-

tion is to develop automated computational pathology systems to

efficiently, accurately and reliably detect and count mitotic figures

on histopathological images. Mitosis detection in WSIs is an active

field of research ( Albarqouni et al., 2016; Chen et al., 2016a, 2016b;

Li et al., 2018; Tellez et al., 2018a, 2018b ). This interest was in large

part supported by the availability of public datasets in the form of

medical image analysis challenges. The first challenge on the topic

of on mitosis detection was MITOS 2012 hosted at the International

Conference of Pattern Recognition (ICPR) 2012 ( Roux et al., 2013 ).

In 2013, we organized AMIDA13 in conjunction with the Interna-

tional Conference on Medical Image Computing and Computer As-

sisted Intervention (MICCAI) conference ( Veta et al., 2015 ). Mitosis

detection was also one of the tasks of the MITOS-ATYPIA-14 chal-

lenge, organized as part of ICPR 2014, with the other task being

scoring of nuclear atypia ( Roux, 2014 ). 

A large limitation of all previous challenges was that they fo-

cused solely on mitosis detection in predetermined tumor regions

of interest (ROIs). However, in a real-world scenario, automatic mi-

tosis detection should be performed in WSIs and an automatic

method should ideally be able to produce a breast tumor prolif-

eration score given a WSI as input. To address this, we organized

the TUmor Proliferation Assessment Challenge 2016 (TUPAC16). The

main goal of the challenge was to evaluate (semi-)automatic meth-
n study that investigated tumor proliferation assessment from WSIs. The

given the difficulty of the tasks and weakly-labeled nature of the ground

h is needed to improve the practical utility of image analysis methods for

© 2019 Published by Elsevier B.V.

ds to assess tumor proliferation from WSIs. In this paper, we

resent an overview of the submitted methods and results of the

UPAC16 challenge. 

.1. Challenge format and tasks 

The challenge was organized in the context of MICCAI 2016

onference in Athens, Greece. The participants were able to regis-

er via the TUPAC16 website 1 six months prior to the MICCAI 2016

onference, allowing ample time to develop their algorithms and

ubmit results. Upon registration, the participants were provided

ith a training and testing dataset to develop an automatic tumor

roliferation scoring method. Two auxiliary datasets that could aid

he method development were also provided (see Materials and

ethods section). In order to ensure fair and independent evalu-

tion, only the ground truth for the training dataset was provided.

he ground truth for the testing dataset was retained by the chal-

enge organizers. 

The challenge had two main tasks to predict tumor prolifera-

ion. The first task was to predict mitotic scores. In essence, this

ask aims to reproduce the most common method of assessing tu-

or proliferation by a pathologist. The second task was to predict

he gene expression based PAM50 proliferation scores. While it has

een previously shown that PAM50 proliferation scores correlate

ith manual mitotic scores ( Heng et al., 2017 ), the goal of this task

as to determine whether molecular scores can be predicted from

issue morphology/WSIs. 

A third task on mitosis detection was later added to the chal-

enge upon request from the participants. This task was similar and

elated to the AMIDA13 challenge ( Veta et al., 2015 ). However, due

o the auxiliary nature of this task, we will not present an exten-

ive overview in this paper and focus solely on the tumor prolif-

ration assessment from WSIs. In brief, the top scoring method for

he third task had an F 1 score of 0.652 or mitosis detection. This

s a slight improvement over the top scoring method of AMIDA13

hallenge which had an F 1 score of 0.612. The results table for this

ask is available on the Results page published on the challenge

ebsite. 

All participating individuals or teams submitted their results for

valuation on the challenge website. In order to prevent overfitting

n the test set, the number of submissions was limited to three per

ask. All submitted results before the deadline of October 3rd 2016

ere presented at the challenge workshop and are included in this

aper. Prior to the submission deadline, 159 teams registered on

he challenge website. Twelve teams submitted results for the first

ask 2 and six teams submitted results for the second task. 

. Materials and methods 

.1. Main dataset from the Cancer Genome Atlas 

The Cancer Genome Atlas (TCGA) Network was established to

nderstand the molecular basis of 33 types of cancer. Specifi-

http://tupac.tue-image.nl
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Table 1 

Distribution of the mitotic score (Task 1) and PAM50 score (Task 2) in the training 

and testing datasets. 

Score 1 Score 2 Score 3 PAM50 score (mean ± STD) 

Training 236 (47%) 117 (23%) 147 (30%) −0.166 ± 0.446 

Testing 147 (46%) 77 (24%) 97 (30%) −0.192 ± 0.400 
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ally, the TCGA breast cancer team utilized genomic, transcrip-

omic and proteomic profiling technologies to characterize over

200 invasive breast cancer cases ( The Cancer Genome Atlas Net-

ork, 2012 ). Heng et al. (2017) subsequently curated a highly de-

ailed histopathological annotation database for a subset of 850

CGA breast cancer cases and integrated underlying molecular

echanisms with breast cancer morphological features. 

Each case in Heng et al. (2017) was represented by one WSI

canned at 40 × magnification with an Aperio ScanScore scanner

 Gutman et al., 2013 ). Cases were randomly assigned to a team of

5 international breast pathology experts to assess 12 breast can-

er morphological features. Most features adhered to criteria es-

ablished in clinical practice ( Lester et al., 2009 ), criteria for cer-

ain features had to be modified to assess WSIs. In particular,

he pathologists developed mitotic count thresholds specific to the

CGA study ( Heng et al., 2017 ) where a score of 1 represents 0–

 mitotic counts per 10 HPFS at 40 × magnification; a score of 2

epresents 6–10 mitotic counts per 10 HPFS; and a score of 3 for

 10 mitotic counts per 10 HPFS. To perform mitotic counting, the

athologists maximized their window screen size, pulled the zoom

ar to the maximum and scanned each WSI to find an area with

ighest mitotic activity. Each on-screen area at maximum magnifi-

ation was defined as a high powered field (HPF). The pathologists

ounted the number of mitoses per field in 10 consecutive fields,

xcluded fields with scant numbers of tumor cells or necrosis, and

he sum over the 10 fields was used to determine the score. Mi-

otic scores were available for 821 cases, of which 311 were scored

y at least two pathologists with an inter-rater reliability Krippen-

orff’s alpha of 0.488 and 78% agreement ( Heng et al., 2017 ). In

he 311 cases scored by more than one pathologist, a consensus

as formed by taking the most common mitotic score (in case

f a tie, the highest mitotic score was taken as the consensus).

ene expression based PAM50 proliferation score was available for

ll cases. The PAM50 proliferation score is the average expression

f 11 proliferation-associated genes part of the PAM50 gene sig-

ature: BIRC5, CCNB1, CDC20, CEP55, MKI67, NDC80, NUF2, PTTG1,

RM2, TYMS and UBE2C ( Heng et al., 2017; Nielsen et al., 2010 ). 

Therefore, the main challenge dataset consisted of 821 TCGA

SIs with two types of tumor proliferation data: mitotic score

manual mitosis counting by the pathologists) and PAM50 prolifer-

tion score (derived from gene expression). These 821 cases were

andomly split into a training ( n = 500) and testing ( n = 321) set

 Table 1 ). In total, there are 383 cases with a mitotic score of 1, 194

ases with score 2 and 244 cases with score 3. The mean PAM50

roliferation score is −0.176 with a standard deviation of 0.428. 

.2. Auxiliary datasets 

In addition to the main challenge dataset, two auxiliary datasets

ROI and mitosis detection) were also provided to the participants.

hese two datasets were to facilitate the design of a WSI tumor

roliferation scoring system, e.g., by following a two-step approach

o emulate how a pathologist would assess a slide for tumor pro-

iferation: identify ROIs followed by mitotic counting. 

.2.1. ROI dataset 

The ROI auxiliary dataset contained 148 cases which were ran-

omly selected from the training dataset (this auxiliary dataset
id not contain WSIs from the test set). A blinded pathology res-

dent annotated three ROIs to indicate where a pathologist might

erform mitosis counting, adhering to standard clinical guidelines

 Lester et al., 2009 ). Mitosis counting is performed in tumor re-

ions that have high cellularity and are preferably located at the

eriphery. Note that these ROIs identified by the pathology resi-

ent may not necessarily overlap with the HPFS used by the team

f pathologists who graded the mitotic scores in Heng et al. (2017) .

xamples of ROI annotations by the pathology resident in the aux-

liary ROI dataset are given in Fig. 1 . 

.2.2. Mitosis detection dataset 

The mitosis detection dataset consisted of WSIs from 73 breast

ancer cases from three pathology centers with annotated mitotic

gures by consensus of three observers. Of the 73 cases, 23 were

reviously released as part of the AMIDA13 challenge ( Veta et al.,

015 ). These cases were collected from the Department of Pathol-

gy at the University Medical Center in Utrecht, The Netherlands.

ach case was represented with varying number of HPFS extracted

rom WSIs acquired with the Aperio ScanScope XT scanner at 40 ×
agnification with a spatial resolution of 0.25 μm/pixel. 

The remaining 50 cases previously used to assess the inter-

bserver agreement for mitosis counting were from two other

athology centers in The Netherlands (Symbiant Pathology Expert

enter, Alkmaar and Symbiant Pathology Expert Center, Zaandam)

 Veta et al., 2016 ). Each case was represented by one WSI region

ith an area of 2 mm 

2 . These WSIs were obtained using the Le-

ca SCN400 scanner (40 × magnification and spatial resolution of

.25 μm/pixel). The annotated mitotic figures are the consensus of

t least two pathologists, similar to the AMIDA13 challenge. In to-

al, the mitosis detection auxiliary dataset contained 1552 anno-

ated mitotic figures ( Fig. 2 ). 

.3. Summary of the submitted methods 

All submitted methods broadly fell into two groups depending

n the main strategy to predict proliferation scores from WSIs. The

rst group of methods followed a pathologist’s two-step approach:

dentify ROIs followed by performing mitosis counting within the

elected regions. The prediction for the tumor proliferation scores

as based on the response of the mitosis detector. The second

roup of methods followed a more direct strategy. The first step

as also ROI detection, however, mitosis detection was not per-

ormed and the prediction of tumor proliferation scores was based

n the overall appearance of the ROIs. All teams followed similar

trategy for the prediction of both proliferation scores. 

With the exception of one team, all participants/teams used

eep convolutional neural networks as part of the processing

ipeline. Table 2 presents an overview of the main characteristics

f all submitted methods in the challenge. The remainder of this

ubsection summarizes the main characteristics of the proposed

ethods. A more detailed description of the individual methods

an be found in the Supplementary Materials. 

.3.1. Preprocessing and ROI detection 

One of the major hurdles in histopathology image analysis is

he variability of tissue appearance. The staining color and inten-

ity can be significantly different between WSIs due to variation in

issue preparation, staining and digitization processes. To address

his, the majority of submitted method performed staining normal-

zation as a preprocessing step. The most commonly used method

as the one proposed by Macenko et al. (2009) . This unsupervised

ethod heuristically estimates the absorbance coefficients for the

&E stains for every image and the staining concentrations for ev-

ry pixel. Normalization was performed by recomposing the RGB
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Table 2 

Summary of the submitted methods. 

Team name 

Use of additional 

training data Preprocessing ROI detection Mitosis detection Predictions for Task 1 

Predictions for Task 

2 

LUNIT No Tissue segmentation with Otsu 

thresholding ( Otsu, 1979 ); 

staining normalization 

( Macenko et al., 2009 ) 

Based on cell density estimated 

with CellProfiler 

( Kamentsky et al., 2011 ) 

ResNet architecture ( He et al., 

2015 ); hard negative mining 

SVM classifier with 21 types of features 

related to cell and mitotic figures 

density 

SVM for regression, 

same features as 

for Task 1 

Lunit Inc., Korea Rank for Task 1: 1 Rank for Task 2: 2 

CONTEXTVISION No None Based on heuristic mapping of 

the color channels that 

highlights dark tumor areas 

Architecture similar to 

Cire ̧s an et al. (2013) ; hard 

negative mining 

Heuristic based on the response on 

mitosis detection in the ROIs 

Same as for Task 1 

Contextvision, Sweden 

(SLDESUTO-BOX) 

Rank for Task 1: 3 Rank for Task 2: 4 

SECTRA Yes; non-ROI 

annotations 

None Based on classification with a 

four-layer CNN 

Six-layer CNN; hard negative 

mining 

Heuristic based on the response on 

mitosis detection in the ROIs 

d.n.p. 

Sectra, Sweden Rank for Task 1: 4 

HEIDELBERG No Artifact detection based on 

heuristic mapping of the 

color channels that highlights 

ink and tissue folding 

Based on heuristic mapping of 

the color channels that 

highlights dark tumor areas 

Novel architecture that 

combine residual networks 

with Hough voting 

( Wollmann and Rohr, 2017 ); 

hard negative mining 

Thresholds for the number of detected 

mitotic figures optimized using the 

quadratic weighted Cohen’s kappa 

score 

d.n.p. 

University of Heidelberg, 

Germany 

Rank for Task 1: 5 

IBM Yes; ICPR 2012 and 

2014 datasets 

Staining normalization 

( Macenko et al., 2009 ) 

One-class classification based 

on the reconstruction error 

of convolutional 

autoencoders 

Wide residual network 22-2 

architecture ( Zagoruyko and 

Komodakis, 2016 ); hard 

negative mining 

Random forest classifier using color, 

texture and number of mitoses 

features in the detected ROIs 

d.n.p. 

IBM Research Zurich and Brazil Rank for Task 1: 6 

HARKER No Tissue segmentation with Otsu 

thresholding ( Otsu, 1979 ); 

staining normalization 

( Ehteshami Bejnordi et al., 

2015 ) 

Based on classification with 

four neural network 

architectures: GoogLeNet 

( Szegedy et al., 2015 ), 

ResNet-34 ( He et al., 2015 ), 

VGG-13 ( Simonyan and 

Zisserman, 2014 ) and custom 

architecture 

Custom CNN architecture; hard 

negative mining; end-to-end 

models for predicting the 

mitotic score from the ROIs 

Combination random forest, SVM and 

gradient boosting classifiers using a 

combination of features from the ROI 

detection, mitosis detection and 

end-to-end models 

Regression with the 

same features as 

for Task 1 

The Harker School, United 

States 

Rank for Task 1: 7 Rank for Task 2: 6 

( continued on next page ) 
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Table 2 ( continued ) 

Team name Use of additional 

training data 

Preprocessing ROI detection Mitosis detection Predictions for Task 1 Predictions for Task 

2 

BELARUS No Staining decomposition; the 

hematoxylin channel was 

used in all subsequent 

processing 

One-class classification based 

on L 1 similarity with 

co-occurrence features 

( Kovalev et al., 2001 ) 

n/a Direct prediction using a linear 

classifier with co-occurrence features 

(average of prediction for 20 ROIs) 

Regression with the 

same features as 

for Task 1 

Belarus National Academy of 

Sciences 

Rank for Task 1: 8 Rank for Task 2: 5 

RADBOUD No Tissue detection with 

thresholding; Staining 

normalization 

( Ehteshami Bejnordi et al., 

2015 ) 

n/a n/a End-to-end prediction using a custom 

CNN architecture (average of 500 

predictions for randomly cropped 

regions) 

Same as for Task 1 

Radboud UMC Nijmegen, The 

Netherlands 

Rank for Task 1: 9 Rank for Task 2: 3 

FLORIDA No Staining normalization 

( Macenko et al., 2009 ) 

Based on heuristic mapping of 

the color channels that 

highlights dark tumor areas 

AlexNet architecture 

( Krizhevsky et al., 2012 ) 

Heuristic thresholds for the number of 

detected mitotic figures in the ROIs 

d.n.p. 

University of South Florida, 

United States 

Rank for Task 1: 10 

WARWICK Yes; non-ROI 

annotations 

None Based on tumor segmentation 

with U-Net-like architecture 

( Ronneberger et al., 2015 ) 

Two-stage CNN detector Random forest classifier using number 

of mitoses features in the detected 

ROIs 

d.n.p. 

University of Warwick, United 

Kingdom 

Rank for Task 1: 11 

MICROSOFT No Staining normalization 

( Macenko et al., 2009 ) 

Manual ROI selection n/a RankSVM with linear kernel 

( Joachims, 2002 ); feature extraction 

was done with ResNet ( He et al., 

2015 ) and P-norm pooling( Xu et al., 

2015 ) 

Same as for Task 1 

Microsoft Research Asia, China Rank for Task 1: 2 (note: 

semi-automatic method) 

Rank for Task 2: 1 

(note: 

semi-automatic 

method) 

d.n.p. – did not participate for this task. 

n/a - not applicable for this method. 
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Fig. 1. Examples of two low magnification whole slide images in the auxiliary region of interest (ROI) dataset annotated with three ROIs (green rectangle boxes) each by a 

pathology resident. These ROIs represent areas where a pathologist might perform mitosis counting. 

Fig. 2. Examples from the mitosis detection auxiliary dataset with annotated mitotic figures (green circles). These annotated mitotic figures are the consensus of at least 

two pathologists. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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3 This additional data and the manually annotated ROIs in the testing set used by 

the MICROSOFT team are available on the TUPAC16 website. 
images from the staining concentration maps using common ab-

sorbance coefficients. 

Since large portions of the WSIs are background, many of the

proposed methods resort to tissue segmentation by thresholding

such as Otsu’s method ( Otsu, 1979 ). The HEIDELBERG team also

detected artifacts such as marker annotations or tissue folds based

on heuristic mapping that highlights them. 

The ROI auxiliary dataset contained non-exhaustive annota-

tions of tumor areas where mitosis detection can be performed.

Two teams used this data to train a one-class classifier. The IBM

team trained a convolutional autoencoder with the provided ROIs

and used the reconstruction error as metric to identify ROIs in

test images. BELARUS identified ROIs using the L 1 similarity of

co-occurrence features to the ground truth ROIs ( Kovalev et al.,

2001 ). 

SECTRA and WARWICK made in-house annotations of non-ROI

regions and used this data to train a supervised ROI detection

method (note that the annotated ROIs were used only for train-

ing). The method proposed by HARKER also trained a supervised

model for ROI detection, however instead of manual annotation for

the negative class, HARKER made the assumption that all regions

that were not annotated were negative. LUNIT detected ROIs based

on cell/nuclei density estimated with CellProfiler ( Kamentsky et al.,

2011 ). The MICROSOFT team used manually selected ROIs anno-
ated by an external pathologist. 3 Therefore, their method was

lassified as semi-automatic. 

.3.2. Mitosis detection 

All teams that performed mitosis detection as part of the prolif-

ration scoring pipeline used deep convolutional neural networks.

ost teams trained a two-class classification model: patches cen-

ered at a mitotic figure and background patches. On the testing

ataset, the model evaluated every pixel location and produced a

itosis probability map that could be further processed to identify

itotic figures and/or produce a mitotic score for a ROI. The neu-

al network architectures applied to this problem vary from rela-

ive “shallow” networks with only a few convolutional layers (CON-

EXTVISION and SECTRA) to deep residual neural networks (LUNIT

nd IBM) ( He et al., 2015 ). 

The mitosis detection model by HEIDELBERG did not follow the

atch-based approach. They trained a model that incorporated a

ough voting layer – each pixel location predicted the radius and

ngle to the nearest mitotic figure. 

Since mitoses are generally rare events, even in high grade

ancers, the mitosis/background classification problem is very



M. Veta, Y.J. Heng and N. Stathonikos et al. / Medical Image Analysis 54 (2019) 111–121 117 

u  

m  

a  

p  

p  

t  

d

 

p  

b  

t  

u  

s  

f  

t  

n  

t  

d  

m  

m

2

 

p  

o  

F  

e  

s  

t  

t  

b  

b  

T  

m  

m  

f  

t  

c  

t

 

s  

o  

t  

m  

n  

r  

e  

g  

t

 

C  

s  

o  

o  

s  

f  

B  

o  

n  

w  

d  

C  

a  

R  

d

Table 3 

Results for Task 1. 

Team κb 95% CI 

1 LUNIT 0.567 [0.464, 0.671] 

2 MICROSOFT a 0.543 [0.422, 0.664] 

3 CONTEXTVISION 0.534 [0.422, 0.646] 

4 SECTRA 0.462 [0.340, 0.584] 

5 HEIDELBER 0.417 [0.293, 0.540] 

6 IBM 0.385 [0.266, 0.504] 

7 HARKER 0.367 [0.242, 0.492] 

8 BELARUS 0.321 [0.190, 0.452] 

9 RADBOUD 0.290 [0.171, 0.409] 

10 FLORIDA 0.177 [0.052, 0.302] 

11 WARWICK 0.159 [0.023, 0.294] 

a Semi-automatic method. 
b Quadratic weighted Cohen’s kappa statistic. 
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f  
nbalanced. In order to remedy this, the majority of submitted

ethods resorted to two strategies. The first strategy was data

ugmentation by geometric transformations of the training sam-

les. The mitosis detection problem is invariant to rotations, flip-

ing and small translation and scaling. This can be exploited

o create new plausible training samples to enrich the training

ata. 

The other strategy was hard negative mining, which was first

roposed for mitosis detection by Cire ̧s an et al. (2013) . With this

oosting-like technique, an initial mitosis detection method is

rained with random sampling for the background class and then

sed to detect “difficult” negative instances that are used to train a

econd method. In practice, models trained with random sampling

or the background class result in a large number of false posi-

ives since all hyperchromatic objects (e.g. lymphocytes, apoptotic

uclei, necrotic nuclei etc.) are detected as mitoses. The output of

he initial mitosis detection method can be used to sample such

ifficult background samples and train a second mitosis detection

ethod. This commonly leads to significant improvements of the

itosis detection accuracy. 

.3.3. Prediction of tumor proliferation score for Task 1 

CONTEXTVISION, SECTRA, HEIDELBERG and FLORIDA predicted

roliferation scores for the first task with heuristic methods based

n combining the results from the detection of ROIs and mitoses.

or instance, CONTEXTVISION computed a proliferation score for

very detected ROI by counting the number of pixels in the mito-

is probability map above a certain threshold value that was op-

imized by cross-validation. A slide-level score was produced by

aking the maximum over all ROIs. The final prediction was made

y quantizing the slide-level score into one of the three grades

ased on the grade distribution in the training set. Similarly, SEC-

RA computed a ROI score that combined the number of detected

itotic figures and the per-pixel average of the mitosis detection

odel. A slide-level score was computed by averaging the scores

or all detected ROIs and then stratified into three categories using

wo threshold values optimized on the training set. HEIDELBERG

omputed a slide-level proliferation score as the 95th-percentile of

he mitotic counts for the detected ROIs. 

LUNIT, IBM, HARKER and WARWICK predicted the proliferation

core with a classifier that used a combination of features based

n the output of the mitosis detection method and global ROI fea-

ures. LUNIT trained a support vector machine (SVM) classification

odel using a set of features that summarized the statistics of the

umber of detected mitoses and nuclei in 30 ROIs. IBM trained a

andom forest classifier using global color and texture features (av-

rage intensity of the RGB channels, contrast, energy and homo-

eneity) and number of detected mitoses at four different detec-

ion levels in six ROIs. 

Three of the proposed methods (BELARUS, RADBOUD and MI-

ROSOFT) followed a direct strategy for predicting proliferation

cores that did not rely on mitosis detection. BELARUS was the

nly team that did not employ deep neural networks in any part

f the processing pipeline and predicted the tumor proliferation

core with a linear classifier trained with a set of co-occurrence

eatures ( Kovalev et al., 2001 ). The method submitted by RAD-

OUD was unique among the submissions since it did not rely

n ROI detection. Instead, large image patches from a low mag-

ification level of the WSI (4096 × 4096 pixels, 5 × magnification)

ere cropped with data augmentation and used as input into a

eep neural network model to predict the proliferation score. MI-

ROSOFT computed features in the manually annotated ROIs with

 pre-trained ResNet model ( He et al., 2015 ) and then trained a

ankSVM ( Joachims, 2002 ) with a linear kernel to make the pre-

ictions. 
.3.4. Prediction of proliferation score for Task 2 

All six teams that participated in the second task used a similar

r identical approach as for the first task, e.g. by using a regression

nstead of a classification model. 

.4. Evaluation 

The first task was evaluated using the quadratic weighted Co-

en’s kappa statistic for inter-rater agreement between the ground

ruth and the predictions. This variant of Cohen’s kappa puts

igher weight on larger errors in the predicted grade (e.g. “1” in-

tead of “3” or vice versa) that are of higher clinical consequence.

he second task was evaluated with the Spearman’s correlation co-

fficient between the prediction and the ground truth PAM50 pro-

iferation scores. 

. Results 

The results for the first task in the challenge (prediction of

umor proliferation score based on mitosis counting) are sum-

arized in Table 3 . The top performing method was by LUNIT

ith a quadratic weighted kappa statistic of κ = 0.567, 95% CI

0.464, 0.671]. The semi-automatic method by MICROSOFT and the

ethod submitted by CONTEXTVISION had similar performances

f κ = 0.543, 95% CI [0.422, 0.664] and κ = 0.534, 95% CI [0.422,

.646], respectively. Table 4 presents the confusion matrices of the

redictions using the methods by LUNIT, MICROSOFT and CON-

EXTVISION (the confusion matrices for all methods can be found

n the Supplementary Materials), along with an ensembling by av-

rage voting of the top 3 automatic methods (see Section 3.1 ). As

vident by the per-class accuracies, mitotic score 2 was the most

ommonly misclassified (per-class accuracy of 17%, 50% and 31% for

UNIT, MICROSOFT and CONTEXTVISION). 

Table 5 summarizes the results of PAM50 proliferation score

rediction. The best performance was achieved by the semi-

utomatic method by MICROSOFT ( r = 0.710, 95% CI [0.681 0.737]).

he best scoring automatic method was LUNIT with a Spearman

orrelation coefficient between the ground truth and predicted

cores of r = 0.617, 95% CI [0.581 0.651], followed by RADBOUD

ith r = 0.516, 95% CI [0.474 0.556]. The scatterplots between the

round truth and predicted PAM50 proliferation scores for the MI-

ROSOFT, LUNIT and RADBOUD methods are in Fig. 3 . Scatterplots

or all methods can be found in the Supplementary Materials along

ith evaluation of the agreement between the prediction and the

round truth in terms of the intraclass correlation coefficient. 

.1. Method ensembling 

Exploratory experiments with model ensembling were per-

ormed by averaging the results of the top three automatic meth-
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Table 4 

Confusion matrices for the LUNIT (A), MICROSOFT (B) and CONTEXTVISION (C) methods and the ensembling by average 

voting of the top three automatic methods (LUNIT, CONTEXTVISION and SECTRA; (D). 

Table 5 

Results for Task 2. 

Team r b 95% CI 

1 MICROSOFT a 0.710 [0.681 0.737] 

2 LUNIT 0.617 [0.581 0.651] 

3 RADBOUD 0.516 [0.474 0.556] 

4 CONTEXTVISION 0.503 [0.460 0.544] 

5 BELARUS 0.494 [0.451 0.535] 

6 HARKER 0.474 [0.429 0.516] 

a Semi-automatic method. 
b Spearman correlation coefficient. 
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ods (the semi-automatic methods by MICROSOFT were excluded

from this analysis). For the first task, the predicted scores from the

top three automatic methods (LUNIT, CONTEXTVISION and SEC-

TRA) were averaged and rounded to the nearest integer. This re-

sulted in a score of κ = 0.613, 95% CI [0.504, 0.722], which is an

improvement by 0.046 over the best individual method by LUNIT

( κ = 0.567, 95% CI [0.464, 0.671]). For the second task, the predic-

tions by the top three automatic methods (LUNIT, RADBOUD and

CONTEXTVISION) were first scaled to zero-mean and unit-variance

and then averaged. This was necessary in order to account for the

different scales of the predictions. The combined prediction re-

sulted in a Spearman correlation coefficient of r = 0.682, 95% CI

[0.651 0.711], which is an improvement by 0.065 over the best in-

dividual method by LUNIT ( r = 0.617, 95% CI [0.581 0.651]; Fig. 3 D).

4. Discussion 

Tumor proliferation is an important pathological assessment

that aids the clinical management of cancer patients. The current

method to assess tumor proliferation is manual mitosis counting

by pathologists. This process is highly subjective and time con-

suming. An automatic computational pathology proliferation as-

sessment method will save time and lead to the standardization
f mitotic scores across institutions. The TUPAC16 challenge was

reated to advance the state of the art in automatic assessment of

umor proliferation from WSIs and improve upon previous chal-

enges that focused solely on mitosis detection. 

The first task of the challenge was to predict a mitosis-based

umor proliferation score. The best performing method (LUNIT)

chieved a quadratic-weighted Cohen’s kappa score of κ = 0.567,

hich signifies a moderate agreement with the manual ground

ruth. This κ score was lower compared to previous work. In

eta et al. (2016) , the inter-observer agreement between patholo-

ists was estimated between κ = 0.792 and κ = 0.893. The higher

agreement in Veta et al. was most likely due to the three pathol-

gists performing mitosis counting in a predefined area, which

onsiderably increases the chances for a concordant score as it

liminates the tumor heterogeneity factor, compared to the first

ask of the challenge where the teams may have predicted mitotic

cores in ROIs different from the pathologists in Heng et al. (2017) .

ll three best performing methods for the first task also made a

ubstantial number of errors whereby the predicted and ground

ruth scores differed by two ( Table 4 ). Such discordance may lead

o more severe clinical implications, however similar errors can

lso potentially occur with manual scoring ( Al-Janabi et al., 2013;

obbins et al., 1995 ), although to a lesser extent. 

The manual scoring of tumor proliferation by mitosis counting

nvolves a multi-scale analysis of the tissue. Thus, training an auto-

atic method that predicts mitotic scores using only global, slide-

evel annotations is a challenging task. It should also be noted that

he mitosis detection auxiliary dataset, which was used by the ma-

ority of teams to train a mitosis detector that formed the basis of

he proliferation scoring models, was obtained from three Dutch

edical centers and are different from the TCGA USA medical insti-

utions that provided the main dataset. This constitutes a domain

hift when the mitosis detector trained with the auxiliary dataset

s applied to main dataset, which further increases the difficulty of

his task. 
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A B

r = 0.710, 95% CI [0.681 0.737] r = 0.617, 95% CI [0.581 0.651]

C D

r = 0.516, 95% CI [0.474 0.556] r = 0.682, 95% CI [0.651 0.711]

Fig. 3. Results for Task 2. Scatter plots for the MICROSOFT (A), LUNIT (B) and RADBOUD (C) methods and the average voting of the top three automatic methods (LUNIT, 

RADBOUD and CONTEXTVISION; (D). 
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The top performing automatic methods in the first task fol-

owed a two-stage approach that emulates the scoring by pathol-

gists. However, the individual building blocks vary between the

ethods. While the method by LUNIT performs mitosis detec-

ion with a very deep ResNet architecture ( He et al., 2015 ), the

ethods by SECTRA and CONTEXTVISION that achieved a compa-

able performance used a comparatively “shallower” neural net-

ork architecture. LUNIT use a staining normalization approach

 Macenko et al., 2009 ) to standardize the appearance of the tissue

rior to further processing and the mitosis detector used by SEC-

RA works on grayscale images at a two times reduced resolution

0.5 μm/pixel). The top three automatic methods for the first task

sed different ROI detection methods (heuristic color channel map-

ing, cell-density based detection and CNN classifier) and differ-

nt methods for computing a slide-level proliferation score (SVM

lassifier, heuristic based on the response of the mitosis detector).

he varied method design is likely responsible for the performance

oost when ensembling the predictions of the top three methods

 κ = 0.613 for the average voting). 

The second task of the challenge has the built-in hypothesis

hat the molecular PAM50 proliferation score can be predicted

rom WSIs. The MICROSOFT, NIJMEGEN and BELARUS methods pre-

icted the tumor proliferation scores for both tasks using region-

evel features, without resorting to mitosis detection as an inter-

ediate step. Although their methods worked particularly well for

he second task and achieved good correlation, the best perform-

c  
ng automatic method by LUNIT still relied on mitosis counting.

he results from the second task accepted our hypothesis that the

olecular PAM50 proliferation score could be predicted from WSIs.

redicting molecular scores from WSIs could potentially be a new

linical and research tool to assess tumor proliferation. 

All proposed methods except one can be characterized as auto-

atic as they do not require manual input at test time. The MI-

ROSOFT method is semi-automatic as it requires the ROI regions

o be manually selected at test-time. While such an approach has

ore limited utility compared to automatic methods, it can still be

aluable in clinical practice. For example, pathologists can request

he method to be executed on the same ROIs where they assessed

itotic counts. 

.1. Recommendations for future work and conclusion 

TUPAC16 was the first challenge to predict tumor proliferation

cores from WSIs. The main goal was to gain insights into auto-

atic solutions for this problem and set the state of the art. As tu-

or proliferation is an important prognostic biomarker for breast

ancer, we expect that this topic will continue to be of relevance

n the future. In this subsection, we provide recommendations for

ubsequent research and challenges on this topic. 

.1.1. Modular submission format 

The majority of the submitted methods used a pipeline that

onsisted of four major processing steps: pre-processing, ROI
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detection, mitosis detection and slide-level prediction. Due to the

heterogeneity of the top scoring methods, it is difficult to draw

conclusions about design choices that positively impacted the per-

formance of the methods. One of the major drawbacks of the

TUPAC16 challenge setup was that it was not feasible to con-

duct quantitative evaluation on how each image analysis pipeline

component impacted the performances of the methods. One so-

lution for future challenges is to request submissions in a modu-

lar Docker format. With this setup, the different processing blocks

will be submitted as separate Docker containers that are com-

bined to produce the final submission. The use of Docker contain-

ers for submission can improve the reproducibility of the submis-

sions and reduce the chance of cheating ( Maier-Hein et al., 2018 ).

The modular format can enable evaluating methods that are com-

binations of building blocks submitted by different teams and fa-

cilitate marginalization of the impact of individual design choices,

e.g., by evaluating all methods on a predefined set of ROIs or with

standardized/baseline mitosis detection. 

4.1.2. Evaluation on datasets from external domains 

Systematic differences in the appearance of the WSIs obtained

from different pathology laboratories is one of the major hurdles

in histopathology image analysis. Future challenges and research

on this topic should have an experimental setup to evaluate the

performance of the methods under a domain shift. Minimally, the

independent testing set should include a subset of cases from a

domain that was not included in the training set (e.g. a different

pathology laboratory or scanner manufacturer). 

4.1.3. Investigate the relationship between global/regional features 

and proliferation 

A particularly interesting finding of this challenge was that

both proliferation scores can be predicted with reasonable ac-

curacy from ROI-level features, without resorting to mitosis de-

tection. Future research efforts should focus on investigating the

relationship between global or regional image features and tumor

proliferation, such as visualizing the learned features that are pre-

dictive of high tumor proliferation. This can be particularly of inter-

est for the PAM50 proliferation score as it can establish a relation-

ship between molecular and morphological tissue characteristics. 

4.1.4. Evaluation in terms of prognostication 

The ultimate goal of tumor proliferation assessment is to guide

clinical management and predict patient outcome. We recommend

that future work on this topic also evaluate the proposed meth-

ods in terms of predicting the overall or disease-specific survival

of breast cancer patients. 

The performance of the automatic and semi-automatic methods

submitted to this challenge did not reach a level that is sufficient

to be used as a “second opinion” score. The results from the chal-

lenge are promising given the difficulty of the tasks and weakly-

labeled nature of the ground truth, and have provided valuable

insight into this problem. However, further research is needed to

improve the practical utility of image analysis methods. 
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