

Why do we care so much about explainability in machine learning?

John, a bank customer

John, a bank customer

John, a bank customer

John, a bank customer

John, a bank customer

D

Interpretable Accurate

Complex model

Simple model

Accurate

Complex model

Simple model

Accurate

Complex model

Simple model

Accurate

Complex model

Simple model

Accurate

Complex model

Simple model

Accurate

Complex model

Simple model

Complex models are inherently complex!

But a single prediction involves only a small piece of that complexity.

X: Features Y: Outcome

X: Features Y: Outcome

Credit attributed to feature X_M

X: Features Y: Outcome

Complex model f (.)

Black Box

X: Features Y: Outcome

Complex model f (.)

Black Box

Additive feature attribution

For a particular prediction

X: Features Y: Outcome

Complex model f (.)

Additive feature attribution

For a particular prediction

Credit attributed to feature X_M

Ribeiro et al. 2016

Shapley reg. values

Lipovetsky et al. 2001

QII

Datta et al. 2016

DeepLIFT

Shrikumar et al. 2016

Relevance prop.

Bach et al. 2015

Shapley sampling

Štrumbelj et al. 2011

Saabas

Ribeiro et al. 2016

Shapley reg. values

Lipovetsky et al. 2001

QII

Datta et al. 2016

DeepLIFT

Shrikumar et al. 2016

Relevance prop.

Bach et al. 2015

Shapley sampling

Štrumbelj et al. 2011

Saabas

Ribeiro et al. 2016

Shapley reg. values

Lipovetsky et al. 2001

QII

Datta et al. 2016

Shapley sampling

Štrumbelj et al. 2011

DeepLIFT

Shrikumar et al. 2016

Relevance prop.

Bach et al. 2015

Saabas

Ribeiro et al. 2016

Shapley reg. values

Lipovetsky et al. 2001

QII

Datta et al. 2016

DeepLIFT

Shrikumar et al. 2016

Relevance prop.

Bach et al. 2015

Shapley sampling

Štrumbelj et al. 2011

Saabas

Ribeiro et al. 2016

Shapley reg. values

Lipovetsky et al. 2001

$X_1 - \varphi_1(f, x)$ $X_2 - \vdots$ $X_M - \varphi_M(f, x)$

Shapley sampling

Štrumbelj et al. 2011

DeepLIFT

Shrikumar et al. 2016

Relevance prop.

Bach et al. 2015

Saabas

Saabas 2014

QII

Datta et al. 2016

LIME

Ribeiro et al. 2016

Shapley reg. values

Lipovetsky et al. 2001

$X_{1} = \varphi_{1}(f, x)$ $X_{2} = \vdots$ \vdots $X_{M} = \varphi_{M}(f, x)$

DeepLIFT

Shrikumar et al. 2016

Relevance prop.

Bach et al. 2015

QII

Datta et al. 2016

Shapley sampling

Štrumbelj et al. 2011

Saabas

SHAP

Lundberg and Lee. A unified approach to interpreting model predictions

NeurIPS 2017 (oral presentation)

Lundberg and Lee. An unexpected unity among methods for interpreting model predictions NeurIPS Workshop on Interpretable Machine Learning in Complex Systems 2016 (best paper award)

How should we define $\varphi_i(f,x)$? (the credit for the i'th feature)

Base rate

20%

How did we get here?

Lloyd Shapley

Lloyd Shapley

The order matters!

Local accuracy (additivity) – The sum of the local feature attributions equals the difference between the base rate and the model output.

Local accuracy (additivity) – The sum of the local feature attributions equals the difference between the base rate and the model output.

Consistency (monotonicity) – If you change the original model such that a feature has a larger impact in every possible ordering, then that input's attribution should not decrease.

Consistency (monotonicity) – If you change the original model such that a feature has a larger impact in every possible ordering, then that input's attribution should not decrease.

Shapley values result from averaging over all N! possible orderings.

SHapley Additive exPlanation (SHAP) values

Shapley values result from averaging over all N! possible orderings.

1. Prove that P = NP.

LIME

DeepLIFT

Shapley reg. values

SHAP

Relevance prop.

QII

Shapley sampling

Saabas

LIME

SHAP

LIME Objective

$$\xi = \underset{g \in \mathcal{G}}{\operatorname{arg\,min}} \ L(f, g, \pi_{x'}) + \Omega(g)$$

LIME Objective

Loss function
$$\xi = \operatorname*{arg\,min}_{g \in \mathcal{G}} L(f,g,\pi_{x'}) + \overset{\text{Regularizer}}{\Omega(g)}$$
 Local kernel

LIME Objective

Loss function

$$\xi = \operatorname*{arg\,min}_{g \in \mathcal{G}} L(f,g,\pi_{x'}) + \overset{\text{Regularizer}}{\Omega}(g)$$

The loss L, regularizer Ω , and local kernel π_{χ} , were all chosen heuristically...

$$L(f, g, \square_{x^0}) = \int_{z^0 2Z}^{\Lambda} f(h_x^{-1}(z^0)) - g(z^0)^{\frac{1}{2}} \square_{x^0}(z^0)$$

$$\boxtimes (g) = 0$$

$$\square_{x^0}(z^0) = \frac{(M-1)}{(M \text{ choose } |z^0|)|z^0(M-|z^0|)}$$

This means we can now estimate the Shapley values using linear regression!

This means we can now estimate the Shapley values using linear regression!

(a fundamentally new way to estimate these classic values)

Permutation sampling has high variance

LIME has lower variance but does not converge to the Shapley values

SHAP retains the best of both (low variance and axiomatic agreement)

Application Theory **Practice**

Theory

Unification of explanation methods

Practice

Application

Theory

Unification of explanation methods

Strong uniqueness results

Practice

New estimation methods for the classic Shapley values

Application

Anesthesia safety

Improving anesthesia safety through ML

Improving anesthesia safety through ML

The first public demonstration of Ether in 1846

High frequency measurements from many sensors

- High frequency measurements from many sensors
- Predicting adverse events allows proactive intervention.

- High frequency measurements from many sensors
- Predicting adverse events allows proactive intervention.
- Hypoxemia (low blood oxygen)

- High frequency measurements from many sensors
- Predicting adverse events allows proactive intervention.
- Hypoxemia (low blood oxygen)
- Prescience predicts hypoxemia within the next 5 minutes.

Liver cancer patient with hepatitis C Age: 57 ASA Code: III 15+ other attributes 20+ static features BMI: 34 Inputs Outputs

 Receiver operating characteristic (ROC) curves on a held out test set.

An interpretability vs. accuracy tradeoff

 We replayed prerecorded surgery data in a webbased visualization to 5 anesthesiologists.

- We replayed prerecorded surgery data in a webbased visualization to 5 anesthesiologists.
- Each anesthesiologist provided a relative risk of hypoxemia for ~270 cases without or with the aid of Prescience.

- We replayed prerecorded surgery data in a webbased visualization to 5 anesthesiologists.
- Each anesthesiologist provided a relative risk of hypoxemia for ~270 cases without or with the aid of Prescience.

- We replayed prerecorded surgery data in a webbased visualization to 5 anesthesiologists.
- Each anesthesiologist provided a relative risk of hypoxemia for ~270 cases without or with the aid of Prescience.

- We replayed prerecorded surgery data in a webbased visualization to 5 anesthesiologists.
- Each anesthesiologist provided a relative risk of hypoxemia for ~270 cases without or with the aid of Prescience.

Lundberg et al., Explainable machine-learning predictions for the prevention of hypoxemia during surgery, Nature Biomedical Engineering 2018 (cover article)

Room for improvement: Model agnostic approaches can be slow and variable

Room for improvement: Model agnostic approaches can be slow and variable

Explanation runtime (simulated data)

Room for improvement: Model agnostic approaches can be slow and variable

Options for NP-hard problems:

1. Prove that P = NP.

2. Find an approximate solution.

Options for NP-hard problems:

1. Prove that P = NP.

2. Find an approximate solution.

3. Restrict the problem definition.

Explainable AI for Science and Medicine

Tree-based models are the most popular complex models used in industry

Tree-based models are the most popular complex models used in industry

Direct Solution O(TLM!N) Factorial

Direct Solution O(TLM!N) Factorial $O(TL2^MN)$ Exponential

```
Direct Solution O(TLM!N) Factorial O(TL2^MN) Exponential
```

The solution depends on an exponential number of expected values!

```
Direct Solution O(TLM!\,N) Factorial O(TL2^MN) Exponential to Tree SHAP O(TLD^2) Polynomial
```

Tree SHAP is fast and exact

Tree SHAP is fast and exact

Current tree explanation methods are inconsistent

Current tree explanation methods are inconsistent

Different evaluation metrics

Different explanation methods for trees

Different evaluation metrics

Remove Hegative (resample) Remove Positive Iresample) Remove Negative (Impute) Remove Positive (Impute) Keep Negative (resample) keep absolute tresample) Remove Negative (mask) Keep Positive (resample) Keep Absolute (Impute) Aceq Megative (Impute) Remove Positive Imaski Consistency Guarantees keep Positive limpute) keep hegative (mask) keep Absolute Imagk) Keep Positive Imaski

TreeExplainer (independent)

TreeExplainer

Saabas

Kernel SHAP 1000 mean ref.

IME 1000

mean(|TreeExplainer|)

Gain/Gini Importance

Random

TreeExplainer (independent)

TreeExplainer

Saabas

Kernel SHAP 1000 mean ref.

IME 1000

mean(|TreeExplainer|)

Gain/Gini Importance

Random

Different evaluation metrics

Different evaluation metrics

Different evaluation metrics

Improved feature selection power

Improved feature selection power

Consistency with human intuition

Consistency with human intuition

Consistency with human intuition

Attractive theoretical guarantees

Attractive theoretical guarantees

Excellent performance on XAI metrics

Attractive theoretical guarantees

Excellent performance on XAI metrics

Improves global feature selection power

Attractive theoretical guarantees

Excellent performance on XAI metrics

Improves global feature selection power

Consistent with human intuition

Explainable AI for Science and Medicine

Gobal feature importance

Conflates the prevalence of an effect with the magnitude of an effect

Conflates the prevalence of an effect with the magnitude of an effect

Dependence plots reveal the increased danger of early onset high blood pressure

The varying risk of sex over a lifetime

The varying risk of sex over a lifetime

The varying risk of sex over a lifetime

Can you find where we introduced the bug?

Can you find where we introduced the bug?

Now can you find where we introduced the bug?

Transient electronic medical record

Gradual change in atrial fibrillation ablation procedure durations

Explainable AI for Science and Medicine

Unification of explanation methods

Strong uniqueness results

Anesthesia safety

Mortality risk
Hospital scheduling

github.com/slundberg/shap

BANK OF ENGLAND

github.com/slundberg/shap

BANK OF ENGLAND

Application Theory Practice

Theory

Exploring fundamental interpretability tradeoffs in the presence of correlated features

Practice

Theory

Exploring fundamental interpretability tradeoffs in the presence of correlated features

Using explanation constraints to guide model training

Practice

Theory

Exploring fundamental interpretability tradeoffs in the presence of correlated features

Using explanation constraints to guide model training

Practice

Efficient and general model monitoring tools

Theory

Exploring fundamental interpretability tradeoffs in the presence of correlated features

Using explanation constraints to guide model training

Practice

Efficient and general model monitoring tools

Integrating causal modeling assumptions to enhance the interpretability of feature attributions

Theory

Exploring fundamental interpretability tradeoffs in the presence of correlated features

Using explanation constraints to guide model training

Practice

Efficient and general model monitoring tools

Integrating causal modeling assumptions to enhance the interpretability of feature attributions

Application

In-the-loop high-stakes decision making

Theory

Exploring fundamental interpretability tradeoffs in the presence of correlated features

Using explanation constraints to guide model training

Practice

Efficient and general model monitoring tools

Integrating causal modeling assumptions to enhance the interpretability of feature attributions

Application

In-the-loop high-stakes decision making

Understanding adverse drug interactions /genomics/proteins

Theory

Exploring fundamental interpretability tradeoffs in the presence of correlated features

Using explanation constraints to guide model training

Practice

Efficient and general model monitoring tools

Integrating causal modeling assumptions to enhance the interpretability of feature attributions

Application

In-the-loop high-stakes decision making

Understanding adverse drug interactions /genomics/proteins

Augmented Intelligence for Finance

Su-In Lee

W PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Su-In Lee

Hugh Chen Pascal Sturmfels

Alex Okeson

Nao Hiranuma

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING Francisco of Computer Science & Engineering Su-In Lee Hugh Chen Pascal Sturmfels

Ruqian Chen

UW Math

Nao Hiranuma

Alex Okeson

Hiranuma, Lundberg, and Lee. AlControl: Replacing matched control experiments with machine learning improves ChIP-seq peak identification. Nucleic Acids Research, 2019

Ruqian Chen

Chen, Lundberg, Lee. Hybrid Gradient Boosting Trees and Neural Networks for Forecasting Operating Room Data. NeurIPS Workshop ML4H: Machine Learning for Health, 2017.

Erion, Chen, Lundberg, Lee. Anesthesiologist-level forecasting of hypoxemia with only SpO2 data using deep learning. NeurIPS Workshop ML4H: Machine Learning for Health, 2017.

Estimating drug-drug interaction effects, Manuscript in preparation.

Joe Janizek Gabe Erion Alex DeGrave

Manuscript in under review.

Nao Hiranuma

Ruqian Chen

Alex Okeson

Lee, et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nature communications, 2018.

Safiye Celik

Su-In Lee

Anesthesiology & Pain Medicine

Monica Vavilala

Bala Nair

Jerry Kim

UW Math

Alex Okeson

Nao Hiranuma

Joe Janizek

Gabe Erion

Alex DeGrave

Anesthesiology & Pain Medicine

Monica Vavilala

Bala Nair

Jerry Kim

Kidney Research Institute

Jonathan Himmelfarb

Nisha Bansal

Ronit Katz

Cardiology

Jordan Prutkin

UW Math

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Hugh Chen Pascal Sturmfels

Su-In Lee

Joe Janizek

Gabe Erion

Alex DeGrave

Anesthesiology & Pain Medicine

Monica Vavilala

Bala Nair

Jerry Kim

Jonathan Himmelfarb

Kidney Research Institute

Nisha Bansal

Ronit Katz

Cardiology

Jordan Prutkin

Rugian Chen

UW Math

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Hugh Chen Pascal Sturmfels

Su-In Lee

Nao Hiranuma

Joe Janizek

Gabe Erion

Alex DeGrave

Anesthesiology & Pain Medicine

Monica Vavilala

Bala Nair

Alex Okeson

Jerry Kim

Kidney Research Institute

Jonathan Himmelfarb

Nisha Bansal

Ronit Katz

Collaborations

University of Toronto

Michael Hoffman

Linda Penn

William Tu

Brian Raught

Cardiology

Jordan Prutkin

Ruqian Chen

PAUL G. ALLEN SCHOOL

Hugh Chen Pascal Sturmfels

Su-In Lee

Nao Hiranuma

Joe Janizek

Gabe Erion

Collaborations

University of Toronto

Michael Hoffman

Linda Penn

William Tu

Brian Raught

Lundberg et al. ChromNet: Learning the human chromatin network from all ENCODE ChIP-seq data. Genome Biology, 2016. (F1000Prime recommended)

Monica Vavilala

Bala Nair

Alex Okeson

Jerry Kim

Jonathan Himmelfarb

Nisha Bansal

Ronit Katz

Thanks!

