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Why do we care so much about explainability
in machine learning?
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Input value

Complex models are
inherently complex!

Output value




Input value
Output value

Complex models are But a single prediction involves only a
inherently complex! small piece of that complexity.
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Lundberg and Lee. A unified approach to interpreting model predictions
NeurlPS 2017 (oral presentation)

Lundberg and Lee. An unexpected unity among methods for interpreting model predictions
NeurlPS Workshop on Interpretable Machine Learning in Complex Systems 2016 (best paper award)




How should we define ¢@;(f, x)?
(the credit for the i'th feature)
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Shapley properties

Local accuracy (additivity) — The sum of the local
feature attributions equals the difference between the

base rate and the model output.
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Shapley properties

Consistency (monotonicity) — If you change the original
model such that a feature has a larger impact in every

possible ordering, then that input’s attribution should not
decrease.
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Shapley properties

Consistency (monotonicity) — If you change the original
model such that a feature has a larger impact in every

possible ordering, then that input’s attribution should not
decrease.

I

ol

Violating consistency means you can’t trust feature orderings
based on your attributions.

...even within the same model!
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Shapley values result from averaging over all N! possible orderings.
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SHapley Additive exPlanation (SHAP) values

Shapley values result from averaging over all N! possible orderings.
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LIME Objective
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Loss function

\ Regularizer
}
§ =argmin L(f,g,m) + Q(g)
gey |
Local kernel

The loss L, regularizer {2, and local kernel 1,
were all chosen heuristically...
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consistency !

This means we can now estimate the Shapley
values using linear regression!

(a fundamentally new way to estimate these
classic values)
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The operating room is a data-rich environment

* High frequency measurements from many sensors

* Predicting adverse events allows proactive
Intervention.

* Hypoxemia (low blood oxygen)

* Prescience predicts hypoxemia within the next 5
minutes.




Prescience predicts hypoxemia and explains why




Prescience predicts hypoxemia and explains why

Liver cancer patient with hepatitisC Age:57 BMI:34 ASACode:lll 15+ other attributes 20+ static features




Prescience predicts hypoxemia and explains why

Liver cancer patient with hepatitisC  Age:57 BMI:34  ASA Code: lll

g

/

(%)

o
o

(liters)
o

idal volume SaO2
o U -

20 min

= A

15+ other attributes 20+ static features

Potential
desat. region

45 dynamic features

o

43 other patient time series features

Anaesthesia ready
15 min -10 min -5 min

Procedure history

N

A

prescience

Prediction
window

(I\OW) 5 min

>

Procedure future
28




Prescience predicts hypoxemia and explains why

Liver cancer patient with hepatitisC Age:57 BMI:34 ASACode:lll 15+ other attributes 20+ static features

., 100 —
o ,3 S \//—— .
B N Potential
o 0 desat. region
= 1
=W 45 dynamic features
O gas //—7 \\ Y
Z
™= 0
RS
43 other patient time series features
8

7

o

.

A

O
28 A,
52 2 2.4 Prediction
Vv R prescience
O T
o © 2 5
O O 1 -

e Prediction

o window

=05

< Anaesthesia ready

.20 min 15 min 10 min -5 min (now) +5 min
¢ — +— — =
Procedure history Procedure future

28




Prescience predicts hypoxemia and explains why

Liver cancer patient with hepatitisC Age:57 BMI:34 ASACode:lll 15+ other attributes 20+ static features

. 100 —
OB \/, :
B N Potential
o 90 desat. region
;E, 1 45d f
=W namic features
o 05 = \ )
Z
™= 0
R
43 other patient time series features
8
n
o
3.
A
O
O ==
= QO
B2 m Prediction .
w oA ‘ prescience
O T
T T o
O O 1 -
e Prediction
o window
=05 A
< Anaesthesia ready
.20 min 15 min 10 min -5 min (now) +5 min
¢ — +— ————e >
Procedure history Procedure future

28




Prescience predicts hypoxemia and explains why

Liver cancer patient with hepatitisC Age:57 BMI:34 ASACode:lll 15+ other attributes 20+ static features

. 100 —
OB \/, :
B N Potential
o 90 desat. region
;E, 1 45d f
=W namic features
o 05 = \ )
Z
™= 0
R
43 other patient time series features
8
n
o
3.
A
O
O ==
= QO
B2 m Prediction .
w oA ‘ prescience
O T
T T o
O O 1 -
e Prediction
o window
=05 A
< Anaesthesia ready
.20 min 15 min 10 min -5 min (now) +5 min
¢ — +— ————e >
Procedure history Procedure future

28




Prescience predicts hypoxemia and explains why

Liver cancer patient with hepatitisC Age:57 BMI:34 ASACode:lll 15+ other attributes 20+ static features

100 —
O I v :
B N Potential

qé 80 desat. region

1
=20 45 dynamic features
g gas //_7 \ y
4

T =0
RS,

43 other patient time series features

8
’3
o
©
Al
o
%'c} A,
2
S
o % i WhY? prescience
T T
O O 1
e Prediction
o window
=05
< Anaesthesia ready
.20 min 15 min 10 min -5 min (now) +5 min
Procedure history Procedure future
20




Prescience predicts hypoxemia and explains why

Liver cancer patient with hepatitisC Age:57 BMI:34 ASACode:lll 15+ other attributes 20+ static features

v Potential

desat. region
~ \

43 other patient time series features

g

(%)

o
o

45 dynamic features

(liters)
o

idal volume SaO2
o U -

:

8 Emin: Explanation
odds ratio
4
2 J\_
n WhY? prescience

Odds ratio
(current odds/typical odds)

Prediction
window

Anaesthesia ready
.20 min 15 min 10 min -5 min (now) +5 min

Procedure history Procedure future
28




Prescience predicts hypoxemia and explains why

Liver cancer patient with hepatitisC Age:57 BMI:34 ASACode:lll 15+ other attributes 20+ static features

., 100 —
O G ion Ih \\\\v//”.- ;
B N Potential
o 0 desat. region
= 1
=W 45 dynamic features
S 505 = \ 4
2
™= 0
RS
43 other patient time series features
_
8 High BMI Emin: Explanation

30 odds ratio

2o | Why? e 0

Prediction
window

Odds ratio
(current odds/typical odds)

0.5

Anaesthesia ready
.20 min 15 min 10 min -5 min (now) +5 min

-

Procedure history Procedure future

29




Prescience predicts hypoxemia and explains why

Liver cancer patient with hepatitisC Age:57 BMI:34 ASACode:lll 15+ other attributes 20+ static features

., 100 —
O G ion Ih \\\\v//”.- ;
B N Potential
o 0 desat. region
= 1
=W 45 dynamic features
S 505 = \ 4
Z
™= 0
RS
43 other patient time series features
8 Low tidal Volume High BMI 5 min. Explanation

0.2 liters 30 odds ratio

2o | Why? e 0

Prediction
window

Odds ratio
(current odds/typical odds)

0.5

Anaesthesia ready
.20 min 15 min 10 min -5 min (now) +5 min

-

Procedure history Procedure future

29




An interpretability vs. accuracy tradeoft




An interpretability vs. accuracy tradeoft

o
o
1

~ « Receiver operating characteristic
(ROC) curves on a held out test set.

O
00
T

O
o
1

O
NN
T

O
N
T

Random (AUC 0.5)

TPR (% of desats correctly predicted)

O

1

O | L | |
0.0 0.2 0.4 0.6 0.8 1.0
FPR (% of non-desats incorrectly predicted)




An interpretability vs. accuracy tradeoft

o
o
1

¥

O
0o

O
o

=
I

- Linear lasso (AUC 0.86)
Random (AUC 0.5)

O
N

TPR (% of desats correctly predicted)

O

|

0 | L | |
0.0 0.2 0.4 0.6 0.8 1.0
FPR (% of non-desats incorrectly predicted)

* Receiver operating characteristic
(ROC) curves on a held out test set.

X: Features Y: Outcome

. Xy W,
Generalized " S
. 2
linear model . =Y
Xp IR 30




TPR (% of desats correctly predicted)

©

597
o

O
0o

Q
o

o
N

O
N

0
0.0

A

n interpretability vs. accuracy tradeoft

/ — GBM trees (AUC 0.90)

/ — Random (AUC 0.5)

/ - Linear lasso (AUC 0.86)

|

0.2 0.4 0.6 0.8
FPR (% of non-desats incorrectly predicted)

1.0

* Receiver operating characteristic
(ROC) curves on a held out test set.

Black Box

Complex
model f (.)

Generalized
: X; W
linear model . =Y
X -




An interpretability vs. accuracy tradeoft

1.0 § e . - . -
i R - /—___7 * Receiver operating characteristic
TPR changes +15%
(ROC) curves on a held out test set.
0.8
Black Box
0.6
Complex
model f(.)

o
N

/ — GBM trees (AUC 0.90)

/ - Linear lasso (AUC 0.86)

— Random (AUC 0.5)
Generalized

; : X, Lw,’
0 ? . . | | . linear model . @V—»Y
0.0 0.2 0.4 0.6 0.8 1.0 X - |

O
N

TPR (% of desats correctly predicted)

Y

FPR (% of non-desats incorrectly predicted)




Using SHAP values in the operating room




Using SHAP values in the operating room

base value hypoxemia fold risk
0.125 0.25 0.5 1 2 2.4




Using SHAP values in the operating room

Red features push the risk higher base valie hypoxemia fold risk

0.125 0.25 2 2.4

= »»--——

Succinylcholine |?eak pressure ' SpO2 | Tidal volume \ Height/weight

31




Using SHAP values in the operating room

Red features push the risk higher base valie hypoxemia fold risk
0.125 0.25 2 2.4

= »»--——

Succinylcholine |?eak pressure } SpO2 | Tidal volume

4 »

Feature impact

Height/weight

31




Using SHAP values in the operating room

Red features push the risk higher base valie hypoxemia fold risk

0.125 0.25 2 2.4

= »»--—

Succinylcholine |?eak pressure } SpO2 | Tidal volume

4 »

Feature impact

Height/weight |

31




Using SHAP values in the operating room

Red features push the risk higher Base valite hypoxemia fold risk Green features push the risk lowe
0.125 0.25 0. 2 24 4 8

5 1
= NI
Succinylcholine | Peak pressure‘ SpO2 (Tidal volume | Height/weight | Pulse Sevoflurane Respiration rate abalation in proc text

Feature impact

B Now

hypoxia fold risk

NSR Anesthesia ready




Using SHAP values in the operating room

Red features push the risk higher base valie hypoxemia fold risk

0.125 0.25 2 2.4

= »»--—

Succinylcholine |?eak pressure } SpO2 | Tidal volume

4 »

Feature impact

Height/weight |

31




Using SHAP values in the operating room

Red features push the risk higher Base valite hypoxemia fold risk Green features push the risk lowe
0.125 0.25 0. 2 24 4 8

5 1
= NI
Succinylcholine | Peak pressure‘ SpO2 (Tidal volume | Height/weight | Pulse Sevoflurane Respiration rate abalation in proc text

Feature impact

B Now

hypoxia fold risk

NSR Anesthesia ready




Using SHAP values in the operating room

Red features push the risk higher base valie hypoxemia fold risk

0.125 0.25 2 2.4

= »»--—

Succinylcholine |?eak pressure } SpO2 | Tidal volume

4 »

Feature impact

Height/weight |

31




Using SHAP values in the operating room

Red features push the risk higher Base valite hypoxemia fold risk Green features push the risk lowe
0.125 0.25 0. 2 24 4 8

5 1
= NI
Succinylcholine | Peak pressure‘ SpO2 (Tidal volume | Height/weight | Pulse Sevoflurane Respiration rate abalation in proc text

Feature impact

B Now

hypoxia fold risk

NSR Anesthesia ready




Using SHAP values in the operating room

Red features push the risk higher Base valite hypoxemia fold risk Green features push the risk lowe
0.125 0.25 0. 2 24 4 8

5 1
= NI
Succinylcholine | Peak pressure‘ SpO2 (Tidal volume | Height/weight | Pulse Sevoflurane Respiration rate abalation in proc text

Feature impact

B Now

hypoxia fold risk

NSR Anesthesia ready




Prescience improves anesthesiologist’s
ability to predict hypoxemia

* We replayed prerecorded surgery data in a web-
based visualization to 5 anesthesiologists.

dal volume Sa0 =
(liters) %) <




Prescience improves anesthesiologist’s
ability to predict hypoxemia

* We replayed prerecorded surgery data in a web-
based visualization to 5 anesthesiologists.

* Each anesthesiologist provided a relative risk of
hypoxemia for ~270 cases or with the
aid of Prescience.

dal volume Sa0 =
(liters) %) <




Prescience improves anesthesiologist’s
ability to predict hypoxemia

* We replayed prerecorded surgery data in a web-
based visualization to 5 anesthesiologists.

* Each anesthesiologist provided a relative risk of
hypoxemia for ~270 cases or with the
aid of Prescience.

dal volume Sa0 e
(liters) %) <




Prescience improves anesthesiologist’s
ability to predict hypoxemia

Real-time hypoxemia prediction

* We replayed prerecorded surgery data in a web-
based visualization to 5 anesthesiologists.
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Prescience improves anesthesiologist’s
ability to predict hypoxemia

* We replayed prerecorded surgery data in a web- Real-time hypoxemia prediction

based visualization to 5 anesthesiologists.
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Room for improvement: Model agnostic
approaches can be slow and variable

Explanation runtime (simulated data) Explanation variability (simulated data)

-
N
o

==+ |ME
m—— Kernel SHAP

| === Model Agnostic Lower Bound

—
o
o
(o)}
1

(o8]
o
1
S
1

s = W

N
o
N

N
o
1

Minutes of runtime
(explaining 10k predictions)
(o))

o

o
1
o

1

Std. deviation as % of magnitude

20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90
# of features in the model # of features in the model




Options for NP-hard problems:

1 Prove that P=NP

2. Find an approximate solution.




Options for NP-hard problems:

1 Provethat P=NP

2. Find an approximate solution.

3. Restrict the problem definition.
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Tree-based models are the most popular
complex models used in industry

Logistic Regression
Ensemble Methods
Gradient Boosted Machines
Neural Networks
Bayesian Techniques
SVMs
CNNs

RNNs [T Kaggle 2017 survey of Data Scientists
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SHAP values for trees

Direct Solution O(TLM! N) Factorial
O(TLZMN) Exponential

The solution depends on an exponential number
of expected values!




SHAP values for trees

Direct Solution O(TLM! N) Factorial
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Tree SHAP is fast and exact

Explanation runtime (simulated data)

=== Model Agnostic Lower Bound
=== Tree SHAP

o T =
o N
o o
' |

(o8]
o
1

N
o
1

1

N

o o
L

Minutes of runtime
(explaining 10k predictions)
(o)}

o

] L J L) L L) L)

20 30 40 50 60 70 80 90
# of features in the model

(o)}
1

N oS
1

N
1

o
1

Explanation variability (simulated data)

== |ME
m— Kernel SHAP
== Tree SHAP

s EEEm W

/_\_-

Std. deviation as % of magnitude

] Ll L\ ] L) 1 L)

20 30 40 50 60 70 80 90
# of features in the model

39




Current tree explanation methods are

INnconsistent
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@ Fast exact computation

«~/  Attractive theoretical guarantees

* Excellent performance on XAl metrics
Q Improves global feature selection power

; Consistent with human intuition
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Reveal rare high-magnitude mortality effects
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Reveal rare high-magnitude mortality effects
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Dependence plots reveal the increased
danger of early onset high blood pressure
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The varying risk of sex over a lifetime
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