
Metalearned Neural Memory

Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, Adam Trischler
Microsoft Research

Montréal, Québec, Canada
tsendsuren.munkhdalai@microsoft.com

Abstract

We augment recurrent neural networks with an external memory mechanism that
builds upon recent progress in metalearning. We conceptualize this memory as a
rapidly adaptable function that we parameterize as a deep neural network. Reading
from the neural memory function amounts to pushing an input (the key vector)
through the function to produce an output (the value vector). Writing to memory
means changing the function; specifically, updating the parameters of the neural
network to encode desired information. We leverage training and algorithmic tech-
niques from metalearning to update the neural memory function in one shot. The
proposed memory-augmented model achieves strong performance on a variety of
learning problems, from supervised question answering to reinforcement learning.

1 Introduction

Many information processing tasks require memory, from sequential decision making to structured
prediction. As such, a host of past and recent research has focused on augmenting statistical learning
algorithms with memory modules that rapidly record task-relevant information [38, 8, 41]. A core
desideratum for a memory module is the ability to store information such that it can be recalled
from the same cue at later times; this reliability property has been called self-consistency [41].

vr
t-1

t-1
Output

yt

t+1

𝛥𝜙t

vt
w

Memory f𝜙

Update procedure

Controller g𝜃

t-1
MSE

ht

𝛽t

vt
r

Input xt

kt
wkt

r

Lt
up

-vt
w

Figure 1: Schematic illustration of the
MNM model. Green and blue arrows indicate
data flows for writing and reading operations,
respectively. krt , kwt , vwt and βt denote read-
in key, write-in key, target value and update
rate vectors.

Furthermore, a memory should exhibit some degree of gen-
eralization, by recalling useful information for cues that
have not been encountered before, or by recalling informa-
tion associated with what was originally stored (the degree
of association may depend on downstream tasks). Memory
structures should also be efficient, by scaling gracefully
with the quantity of information stored and by enabling
fast read-write operations.

In the context of neural networks, one widely successful
memory module is the soft look-up table [8, 46, 3]. This
module stores high-dimensional key and value vectors in
tabular format and is typically accessed by a controlled
attention mechanism [3]. While broadly adopted, the soft
look-up table has several shortcomings. Look-up tables
are efficient to write, but they may grow without bound if
information is stored naïvely in additional slots. Usually,
their size is kept fixed and a more efficient writing mecha-
nism is either learnt [8] or implemented heuristically [35].
The read operation common to most table-augmented models, which is based on soft attention, does
not scale well in terms of the number of slots used or in the dimensionality of stored information [32].
Furthermore, soft look-up tables generalize only via convex combinations of stored values. This
burdens the controller with estimating useful key and value representations.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

In this paper, we seek to unify few-shot metalearning and memory. We introduce an external memory
module that we conceptualize as a rapidly adaptable function parameterized as a deep neural network.
Reading from this “neural memory” amounts to a forward pass through the network: we push an
input (the key vector) through the function to produce an output (the value vector). Writing to memory
means updating the parameters of the neural network to encode desired information. We hypothesize
that modelling memory as a neural function will offer compression and generalization beyond that
of soft look-up tables: deep neural networks are powerful function approximators capable of both
strong generalization and memorization [50, 12, 11], and their space overhead is constant.

For a neural network to operate as a useful memory module, it must be possible to record memories
rapidly, i.e., to update the network in one shot based on a single datum. We address this challenge by
borrowing techniques from few-shot learning through metalearning [1, 33, 6, 27]. Recent progress
in this domain has shown how models can learn to implement data-efficient, gradient-descent-like
update procedures that optimize their own parameters. To store information rapidly in memory, we
propose a novel, layer-wise learned update rule. This update modifies the memory parameters to
minimize the difference between the neural function’s predicted output (in response to a key) and a
target value. We find our novel update rule to offer faster convergence than gradient-based update
rules used commonly in the metalearning literature [7].

We combine our proposed neural memory module with an RNN controller and train the full model
end-to-end (Figure 1). Our model learns to remember: we meta-train its reading and writing
mechanisms to store information rapidly and reliably. Meta-training also promotes incremental
storage, as discussed in §3.5. We demonstrate the effectiveness of our metalearned neural memory
(MNM) on a diverse set of learning problems, which includes several algorithmic tasks, synthetic
question answering on the bAbI dataset, and maze exploration via reinforcement learning. Our model
achieves strong performance on all of these benchmarks.

2 Related Work

Several neural architectures have been proposed recently that combine a controller and a memory
module. Neural Turing Machines (NTMs) extend recurrent neural networks (RNNs) with an external
memory matrix [8]. The RNN controller interacts with this matrix using read and write heads. Despite
NTM’s sophisticated architecture, it is unstable and difficult to train. A possible explanation is that its
fixed-size matrix and the lack of a deallocation mechanism lead to information collisions in memory.
Neural Semantic Encoders [28] address this drawback by way of a variable-size memory matrix
and by writing new content to the most recently read memory entry. The Differentiable Neural
Computer [9] maintains memory usage statistics to prevent information collision while still relying on
a fixed-size memory matrix. Memory Networks [46, 40] circumvent capacity issues with a read-only
memory matrix that scales with the number of inputs. The read-out functions of all these models
and related variants (e.g., [20]) are based on a differentiable attention step [3] that takes a convex
combination of all stored memory vectors. Unfortunately, this attention step does not scale well to
large memory arrays [32].

Another line of work incorporates dynamic, so-called “fast” weights [14, 38, 37] into the recurrent
connections of RNNs to serve as writable memory. For instance, the Hebbian learning rule [13] has
been explored extensively in learning fast-weight matrices for memory [38, 2, 23, 26]. HyperNetworks
generate context dependent weights as dynamic scaling terms for the weights of an RNN [10] and are
closely related to conditional normalization techniques [21, 5, 31].

Gradient-based fast weights have also been studied in the context of metalearning. Meta Networks
[27] define fast and slow weight branches in a single layer and train a meta-learner that generates fast
weights, while conditionally shifted neurons [29] map loss gradients to fast biases, in both cases for
one-shot adaptation of a classification network. Our proposed memory controller adapts its neural
memory model through a set of input and output pairs (called interaction vectors below) without
directly interacting with the memory weights. Another related approach from the metalearning
literature [16, 43, 35, 33, 24] is MAML [6]. MAML discovers a parameter initialization from which
a few steps of gradient descent rapidly adapt a model to several related tasks.

Recently, [47, 48] extended the Sparse Distributed Memory (SDM) of [18] as a generative memory
mechanism [49], wherein the content matrix is parameterized as a linear Gaussian model. Memory
access then corresponds to an iterative inference procedure. Memory mechanisms based on iterative

2

and/or neural functions, as in [47, 48] and this work, are also related to frameworks that cast memory
as dynamical systems of attractors (for some background, see [42]).

3 Proposed Method

At a high level, our proposed memory-augmented model operates as follows. At each time step, the
controller RNN receives an external input. Based on this input and its internal state, the controller
produces a set of memory interaction vectors.

In the process of reading, the controller passes a subset of these vectors, the read-in keys, to the neural
memory function. The memory function outputs a read-out value (i.e., a memory recall) in response.
In the process of writing, the controller updates the memory function based on the remaining subset
of interaction vectors: the write-in keys and target values.

We investigate two ways to bind keys to values in the neural memory: (i) by applying one step of
modulated gradient descent to the memory function’s parameters (§3.3); or (ii) by applying a learned
local update rule to the parameters (§3.4). The parameter update reduces the error between the
memory function’s predicted output in response to the write-in key and the target value. It may be
used to create a new association or strengthen existing associations in memory.

Finally, based on its internal state and the memory read-out, the controller produces an output vector
for use in some downstream task. We meta-train the controller and the neural memory end-to-end to
learn effective memory access procedures (§3.5), and call the proposed model the Metalearned Neural
Memory (MNM). In the sections below we describe its components in detail. Figure 1 illustrates the
MNM model schematically.

3.1 The Controller

The controller is a function gθ with parameters θ = {W, b}. It uses the LSTM architecture [15] as
its core. At each time step it takes in the current external input, xt ∈ IRdi , along with the previous
memory read-out value vrt−1 ∈ IRdv and hidden state ht−1 ∈ IRdh . It outputs a new hidden state:
ht = LSTM(xt, v

r
t−1, ht−1). The controller also produces an output vector to pass to external

modules (e.g., a classification layer) for use in a downstream task. The output is computed as
yt =Wy[ht; v

r
t] + by ∈ IRdo and depends on the memory read-out vector vrt . The read-out vector is

computed by the memory function, as described in §3.2.

From the controller’s hidden state ht we obtain a set of interaction vectors for reading from and
writing to the memory function. These include read-in keys krt ∈ IRdk , write-in keys kwt ∈ IRdk ,
target values vwt ∈ IRdv , and a rate vector β′t ∈ IRdk :

[krt,1; . . . ; k
r
t,H ; kwt,1; . . . ; k

w
t,H ; vwt,1 . . . ; v

w
t,H ;β′t] = tanh(Wvht + bv). (1)

The controller outputs H vectors of each interaction type, where H is the number of parallel
interaction heads. The single rate vector is further projected down to a scalar and squashed into [0, 1]:
βt = sigmoid(Wββ

′
t + bβ). Rate βt controls the strength with which the corresponding (key, value)

pairs should be stored in memory. The write-in keys and target values determine the content to be
stored, whereas the read-in keys are used to retrieve content from the memory. We use separate keys
and values for reading and writing because the model interacts with its memory in two distinct modes
at each time step: It reads information stored there at previous time steps that it deems useful to the
task at hand, and it writes information related to the current input that it deems will be useful in the
future. The rate βt enables the controller to influence the dynamics of the gradient-based and local
update procedures that encode information in memory (§3.3 and §3.4).

3.2 The Memory Function

We model external memory as an adaptive function, fφt , parameterized as a feed-forward neural
network with weights φt = {M l}. Note that these weights, unlike the controller parameters θ,
change rapidly from time step to time step and store associative bindings as the model encodes
information. Reading from the memory corresponds to feeding the set of read-in keys through the
memory function to generate a set of read-out values, {vrt,i} = fφt

({krt,i}).

3

At hidden layer l, the memory function’s forward computation is defined as zl = σ(M lzl−1), where
σ is a nonlinear activation function, zl ∈ IRDl is the layer’s activation vector, and we have dropped
the time-step index. We execute this computation in parallel on the set of H read-in keys krt,i at each
time step, yielding H read-out value vectors. We take their mean to construct the single read-out
value vrt that feeds back into the controller and the output computation for yt.

3.3 Writing to Memory with Gradient Descent

A write to the memory consists in rapidly binding the write-in keys {kwt,i} to map to the target values
{vwt,i} in the parameters of the neural memory. One way to do this is by updating the memory
parameters to optimize an objective that encourages binding. We denote this memory objective by
Lup
t and in this work implement it as a simple mean-squared error:

Lup
t =

1

H

H∑
i=1

||fφt−1
(kwt,i)− vwt,i||22 (2)

We aim to encode the target values {vwt,i} obtained from the controller by optimizing Eq. 2. We obtain
a set of memory prediction values, {v̂wt,i} = fφt−1

({kwt,i}), by feeding the controller’s write-in keys
through the memory function as parameterized at the previous time step (by φt−1). The model binds
the write-in keys to the target values at time t by taking a gradient step to minimize Lup

t :

φt ← φt−1 − βt∇φt−1
Lup
t . (3)

Here, βt is the update rate obtained from the controller, which modulates the size of the gradient step.
In principle, by diminishing the update rate, the controller can effectively avoid writing into memory,
achieving an effect similar to a gated memory update [8].

In experiments we find that the mean-squared error is an effective memory objective: minimizing it
encodes the target values in the memory function, in the sense that they can be read out (approximately)
by passing in the corresponding keys.

3.4 Writing to Memory with a Learned Local Update

Writing to memory with gradient descent poses challenges. Writing a new item to a look-up
table can be as simple as adding an element to the corresponding array. In a neural memory, by
contrast, multiple costly gradient steps may be required to store a key-value vector pair reliably
in the parameters. Memory parameter updates are expensive because, in end-to-end training, they
require computation of higher-order gradients (see §3.5; this issue is common in gradient-based
metalearning). Sequential back-propagation of the memory error through the layers of the memory
model also adds a computational bottleneck.

Other researchers have recognized this problem and proposed possible solutions. For example,
the direct feedback alignment algorithm [30], a variant of the feedback alignment method [22],
enables weight updates via error alignment with random skip connections. Because these feedback
connections are not computed nor used sequentially, updates can be parallelized for speed. However,
fixed random feedback connections may be inefficient. The synthetic gradient methods [17] train a
model to locally predict the error gradient and this requires the true gradient as a target.

We propose a memory writing mechanism that is fast and gradient-free. The key idea is to represent
each neural memory layer with decoupled forward computation and backward feedback prediction
functions (BFPF) and perform local updates to the memory layers. Unlike feedback alignment
methods, the BFPF and the local update rules are then meta-trained, jointly. Concretely, for neural
memory layer l, the BFPF is a function qlψ with trainable parameter ψl that makes a prediction for an
expected activation as: z′l = qlψ(v

w
t). We then adopt the perceptron learning rule [34] to update the

layer locally:
M l
t ←M l

t−1 − βlt(zl − z′l)zl−1
T

(4)

where βlt is the local update rate that can be learned for each layer with the controller or separately
with the BFPF qlψ. The perceptron update rule uses the predicted activation as a true target and

approximate the loss gradient w.r.tM l
t−1 via βlt(z

l−z′l)zl−1T . Therefore, the (approximate) gradient

4

is near zero when zl ≈ z′l and there are no changes to the weights. But if the predicted and the
forward activations don’t match, we update the weights such that the predicted activations can be
reconstructed from the weights given the activations zl−1 from the previous layer l − 1.

Therefore, the BFPF module first proposes a regression problem locally for each layer and then the
perceptron learning mechanism here solves the local regression problem. One can use a different
local update mechanism, rather than the perceptron method. Note that it is helpful to choose the
update mechanism that is differentiable w.r.t to its solution to the problem, since the BFPF module is
trained to propose problems whose solutions minimize the meta and task loss (§3.5).

With the proposed local and gradient-free update rule, the neural memory writes to its weights in
parallel and its computation graph need not be tracked during writing. This makes it straightforward
to add complex structural biases, such as recurrence, into the neural memory itself. The proposed
approach can readily be applied in the few-shot learning setup as well. For example, we can utilize
the learned local update method as an inner-loop adaptation mechanism in a model agnostic way. We
leave this to future work.

3.5 End-to-end Training via Meta and Task Objectives

It is important to note that the memory objective function, Eq. 2, and the memory updates, Eqs. 3, 4,
modify the neural memory function; these updates occur even at test time, as the model processes
and records information (they require no external labels). We train the controller parameters θ and
the memory initialization φ0 and the BFPF parameters ψ end-to-end through the combination of a
task objective and a meta objective. The former, denoted by Ltask, is specific to the task the model
performs, e.g., classification or regression. The meta objective, Lmeta, encourages the controller
to learn effective update strategies for the neural memory that work well across tasks. These two
objectives take account of the model’s behavior over an episode, i.e., a sequence of time steps,
t = 1, . . . , T , in which the model performs some temporally extended task (like question answering
or maze navigation).

For the meta objective, we make use again of the mean squared error between the memory prediction
values and the target values, as in Eq. 2. For the meta objective, however, we obtain the prediction
values from the updated neural function at each time step, fφt

, after the update step in Eq. 3 or Eq. 4
has been applied. We also introduce a recall delay parameter, τ :

Lmeta =
1

TH

T∑
τ=0

T∑
t=1

H∑
i=1

λτ ||fφt
(kwt−τ,i)− vwt−τ,i||22 (5)

The sum over τ can be used to reinforce older memory values, and λτ is a decay weight for the
importance of older (key, value) pairs. The latter can be used, for instance, to implement a kind of
exponential decay. We found that λτ is task specific; in this work, we always set the maximum recall
delay as T = 0 to focus on reliable storage of new information.

At the end of each episode, we take gradients of the meta objective and the task objective with respect
to the controller parameters, θ, and use these for training the controller:

θ ← θ −∇θLtask −∇θLmeta. (6)

These gradients propagate back through the memory-function updates (requiring higher-order gra-
dients if using Eq. 3) so that the controller learns how to modify the memory parameters via the
interaction vectors (Eq. 1) and the gradient steps or local updates (Eq. 3 or Eq. 4, respectively).

We attempted to learn the memory initialization (similar to MAML) by updating the initial parameters
φ0 w.r.t. the meta loss. We found that this led to severe overfitting. Therefore, we initialize the
memory function tabula rasa at each task episode from a fixed random parameter set.

Optimizing the episodic task objective will often require the memory to recall information stored
many time steps back, after newer information has also been written. This requirement, along
with the fact that the optimization involves propagating gradients back through the memory update
steps, promotes incremental learning in the memory function, because overwriting previously stored
information would harm task performance.

5

Figure 2: Training curves on the dictionary inference task.

4 Experimental Evaluation and Analysis

4.1 Algorithmic Tasks

We first introduce a synthetic dictionary inference task to test MNM’s capacity to store and recall
associated information. This can be considered a toy translation problem. To construct it, we
randomly partition the 26 letters of the English alphabet evenly into a source and a target vocabulary,
and define a random, bijective mapping F between the two sets. Following the few-shot learning
setup, we then construct a support set of k source sequences with their corresponding target sequences.
Each source sequence consists of l letters randomly sampled (with replacement) from the source
vocabulary, which are then mapped to the corresponding target sequence using F . The objective
of the task is to predict the target given a previously unseen source sequence whose composing
letters have been observed in the support set. For example, after observing the support examples
abc→def;tla→qzd, the model is expected to translate input sequence tca to the output qfd.

The difficulty of the task varies depending on the sequence length l and the size of the support set
k. Longer sequences introduce long-term dependencies, whereas a larger number of observations
requires efficient memory structure and compression. We constructed four different task instances
with support set size of 4, 8, 12, and 16 and sequence length of 1, 4, 8 and 12.

We trained the MNM models with both gradient-based (MNM-g) and local memory updates (MNM-
p). The models have a controller network with 100 hidden units and a three-layer feed-forward
memory with 100 hidden units and tanh activation. We compare against two baseline models: a
vanilla LSTM model and a memory-augmented model with the soft-attention look-up table as memory
(LSTM+SALU). In the LSTM+SALU model, we replace the feed-forward neural memory with the
look-up table, providing an unbounded memory to the LSTM controller. The training setup is given
in Appendix A.

Figure 2 shows the results for our dictionary inference task (averaged over 5 runs). All models solved
the first task instance and all memory-augmented models converged for the second case. As the task
difficulty increased for the last two cases, only the MNM models converged and solved the task with
zero error.

In Figure 3, we compared the training wallclock time and the memory size of MNM(-g, -p) against
LSTM+SALU models on these task runs. When the input length is small, the LSTM+SALU model
is faster than MNM-g and similar in speed to MNM-p, and has a smaller memory footprint than
both. However, as soon as the input length exceeds the size of the MNM memory’s hidden units,
LSTM+SALU becomes less efficient. It exhibits quadratic growth whereas the MNM models grow
approximately linearly in the wallclock time. Figure 3’s left plot also demonstrates that that learned

0

1.5

3

4.5

4 32 96 192

Wallclock time

LSTM+SALU MNM-g MNM-p

0

10000

20000

30000

40000

4 32 96 192

Memory size

LSTM+SALU MNM

Figure 3: Model comparison over varying
input lengths (x-axes).

Figure 4: Training curves on programming tasks.

6

Table 1: Results on bAbI question answering.

Sentence-level Word-level

EntNet TPR-RNN DNC SDNC MNM-g MNM-p
Mean Error 9.7 ± 2.6 1.34 ± 0.52 12.8 ± 4.7 6.4 ± 2.5 3.2 ± 0.5 0.55 ±0.74

Failed Tasks (> 5% error) 5 ± 1.2 0.86 ± 1.11 8.2 ± 2.5 4.1 ± 1.6 1.3 ± 0.8 0.08 ± 0.28

x-axis: target values and y-axis: read-out

x-axis: target values and y-axis: read-out

(a)

x-axis: target values and y-axis: read-out

x and y-axis are target values

x and y-axis are write-in keys

(b)

Figure 5: Visualization of learned memory operations. (a) At each question word (y-axis), the model recalls
memory contents written for entities in the story (x-axis) that are most closely related to the question type (e.g.,
locations for where questions). (b) Towards the end of a story (y-axis), the model learns to access and update
the memory conditioned on structured information (e.g., location and character) memorized earlier in the story
(x-axis).

local updates (MNM-p) confer significant speed benefits over gradient-based updates (MNM-g),
since the former can be applied in parallel.

We further evaluated these models on two standard memorization tasks: double copy and priority
sort. As shown in Figure 4, the MNM models quickly solve the double copy task with input length
50. On the priority sort problem, the LSTM+SALU model demonstrated the strongest result. This is
surprising, since the task was previously shown to be hard to solve [8]. It suggests that the unbounded
memory table and the look-up operation are especially useful for sorting. The MNM models’ strong
performance across the suite of algorithmic tasks, which require precise recall of past information,
indicates that MNM can store information reliably.

4.2 bAbI Question Answering

bAbI is a synthetic question-answering benchmark that has been widely adopted to evaluate long-term
memory and reasoning [45]. It presents 20 reasoning tasks in total. We aim to solve all of them with
one generic model. Previous memory-augmented models addressed the problem with sentence-level
[40, 20] or word-level inputs [9, 32]. Solving the task based on word-level input is harder, but more
general [36]. We trained word-level MNM models following the setup for the DNC [9].

The results are summarized in Table 1. The MNM model with the learned local update solved all
the bAbI tasks with near zero error, outperforming the result of TPR-RNN [36] (previously the best
model operating at sentence-level). It also outperformed the DNC by around 12% and the Sparse
DNC [9] by around 6% in terms of mean error. We report the best results and all 12 runs of MNM-p
in Appendix B. MNM-g with the gradient-based update solved 19 tasks, failing to solve only the
basic induction task.

We also attempted to train a word-level LSTM+SALU baseline as described in the previous section.
However, multiple LSTM+SALU runs did not solve any task and converged to 77.5% mean error
after 62K training iterations. With the same number of iterations, the MNM runs converged to a 9.5%
mean error and solved 16.5 tasks on average. This suggests the importance of a deep neural memory
and a learned memory access mechanism for reasoning.

Analyzing Learned Memory Operations: To understand the MNM more deeply, we analyzed its
temporal dynamics through the similarity between the keys and values of its read/write operations
as it processed bAbI. Here cosine distance is used as a similarity metric. We found that the neural
memory exhibits readily interpretable structures as well as efficient self-organization.

7

Intuitively, keys and values correspond to the locations and contents of memory read/write operations.
Consequently the temporal comparison of various combinations of these vectors can have meaningful
interpretations. For example, given two time steps t1 < t2, when comparing vrt2 against vwt1 , higher
similarity (brighter colors in Figure 5) indicates that the content stored at t1 is being retrieved at
t2. We first applied this comparison to a bAbI story (x-axis in Figure 5a) and the corresponding
question (y-axis), since they are read consecutively by the model. Upon reading the question word
“where”, the model successfully retrieves the location-related memories. When the model reads in
the character names, the retrieval is then “filtered” down to only the locations of the characters in
question. Furthermore, the retrieval also appears to be closer to more recent locations, effectively
modeling this strong prior in the data distribution of bAbI.

Similarly, we analyzed the memory operations towards the end of a story (y-axis) and examined
how the model uses the memory developed earlier (x-axis). Again, comparing vrt2 and vwt1 (row
1 in Figure 5b), the bright vertical stripe at “hallway” indicates that the memory retrieval focuses
more on Daniel’s most recent location (while ignoring both his previous locations and locations of
other characters). In addition, vwt2 and vwt1 are compared in row 2, Figure 5b, where the dark vertical
stripes indicate that the memory is being updated aggressively with new contents whenever a new
location is mentioned — potentially establishing new associations between locations and characters.
In the comparison between kwt2 and kwt1 (row 3 in Figure 5b), two bright diagonals are observed in the
sentences related to the matching character Daniel, suggesting that (a) the model has likely acquired
an entity-based structure and (b) it is capable of leveraging this structure for efficient memory reuse.

More examples can be found in the appendix. Overall, the patterns above are salient and consistent,
indicating our model’s ability to disentangle objects and their roles from a story, and to use that
information to dynamically establish and update associations in a structured, efficient manner — all
of which are key to neural-symbolic reasoning [39] and effective generalization.

4.3 Maze Exploration by Reinforcement Learning

Figure 6: Training curves on the maze ex-
ploration task.

External memory may be helpful or even necessary for
agents operating in partially observable environments,
where current decision making depends on a sequence
of past observations. However, memory mechanisms also
add complexity to an agent’s learning process [19], since
the agent must learn to access its memory during experi-
ence. In our final set of experiments, we train an RL agent
augmented with our metalearned neural memory. We wish
to discover whether an MNM agent can perform well in
a sequential decision making problem and use its memory
to improve performance or sample efficiency.

We train MNM agents on a maze exploration task from the
literature on meta-reinforcement learning [4, 44]. Specif-
ically, we adopted the grid world setup from [23]. In this
task, for each episode, the agent explores a grid-based maze and attempts to reach a goal position.
Reaching the goal earns the agent a reward of 10 and relocates it to a random position. The agent
must then return to the goal to collect more reward before the episode terminates. To the agent, the
goal is invisible in the maze and its position is chosen randomly at the beginning of each episode.
Inputs to the agent are its surrounding 3× 3 cells, the time step, and the reward from the previous
time step. The agent receives -0.1 reward for hitting a wall and 0 reward otherwise. A 9 × 9 grid
maze is shown in Figure 7 (Appendix A) for illustration.

We trained agents on a 9× 9 maze following the setup of [23] to provide a direct comparison with
the differential plasticity agents of that work. We used the Advantage Actor-Critic (A2C) algorithm
for optimization, a non-asynchronous variant of the A3C method [25]. The MNM agent has a neural
memory and controller with 100 and 200 hidden units, respectively. The training curve for the 9× 9
maze (averaged over 10 runs) is plotted in Figure 6, along with results from [23]. As can be seen, the
agents with differential plasticity (denoted Plastic and Homogenous Plastic) converge to a reward
of 175 after training on nearly 1M episodes. MNM, on the other hand, reaches the same reward in
only 250K episodes. It obtains significantly higher final reward after 1M episodes. This result shows

8

that the MNM fosters improved performance and sample efficiency in a sequential decision making
scenario and, promisingly, it can be trained in conjunction with an RL policy.

5 Conclusion

We cast external memory for neural models as a rapidly adaptable function, itself parameterized as a
deep neural network. Our goal was for this memory mechanism to confer the benefits of deep neural
networks’ expressiveness, generalization, and constant space overhead. In order to write to a neural
network memory rapidly, in one shot, and incrementally, such that newly stored information does not
distort existing information, we adopted training and algorithmic techniques from metalearning. The
proposed memory-augmented model, MNM, was shown to achieve strong performance on a wide
variety of learning problems, from supervised question answering to reinforcement learning. Our
learned local update algorithm can be applied in an other setup than the memory one. In future work,
we will investigate different neural architectures for metalearned memory and the effects of recall
delays in the meta objective.

Acknowledgements

We thank Thomas Miconi for sharing data. We thank Geoff Gordon for helpful comments and
suggestions.

References
[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom

Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by
gradient descent. In Advances in Neural Information Processing Systems, pages 3981–3989,
2016.

[2] Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. In Advances in Neural Information Processing Systems,
pages 4331–4339, 2016.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[5] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for
artistic style. CoRR, abs/1610.07629, 2(4):5, 2016.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1126–1135, International Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR.

[7] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual
imitation learning via meta-learning. arXiv preprint arXiv:1709.04905, 2017.

[8] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[9] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature,
538(7626):471, 2016.

[10] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In ICLR 2017, 2017.

9

[11] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in neural information processing systems, pages
1135–1143, 2015.

[12] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, pages 164–171, 1993.

[13] Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology
Press, 1949.

[14] Geoffrey E Hinton and David C Plaut. Using fast weights to deblur old memories. In Proceedings
of the ninth annual conference of the Cognitive Science Society, pages 177–186, 1987.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[16] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient
descent. In International Conference on Artificial Neural Networks, pages 87–94. Springer,
2001.

[17] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves,
David Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1627–1635. JMLR. org, 2017.

[18] Pentti Kanerva. Sparse distributed memory. MIT press, 1988.

[19] Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Vijay Kumar, and
Daniel D Lee. Memory augmented control networks. arXiv preprint arXiv:1709.05706,
2017.

[20] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani,
Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory
networks for natural language processing. In International Conference on Machine Learning,
pages 1378–1387, 2016.

[21] Jimmy Lei Ba, Kevin Swersky, Sanja Fidler, et al. Predicting deep zero-shot convolutional
neural networks using textual descriptions. In Proceedings of the IEEE International Conference
on Computer Vision, pages 4247–4255, 2015.

[22] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synap-
tic feedback weights support error backpropagation for deep learning. Nature communications,
7, 2016.

[23] Thomas Miconi, Jeff Clune, and Kenneth O Stanley. Differentiable plasticity: training plastic
neural networks with backpropagation. arXiv preprint arXiv:1804.02464, 2018.

[24] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. 2018.

[25] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning, pages 1928–1937,
2016.

[26] Tsendsuren Munkhdalai and Adam Trischler. Metalearning with hebbian fast weights. arXiv
preprint arXiv:1807.05076, 2018.

[27] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 2554–2563, International Convention
Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

10

[28] Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics: Volume
1, Long Papers, pages 397–407. Association for Computational Linguistics, 2017.

[29] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and Adam Trischler. Rapid adaptation
with conditionally shifted neurons. In International Conference on Machine Learning, pages
3661–3670, 2018.

[30] Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In
Advances in Neural Information Processing Systems, pages 1037–1045, 2016.

[31] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film:
Visual reasoning with a general conditioning layer. arXiv preprint arXiv:1709.07871, 2017.

[32] Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Senior, Gregory Wayne,
Alex Graves, and Timothy Lillicrap. Scaling memory-augmented neural networks with sparse
reads and writes. In Advances in Neural Information Processing Systems, pages 3621–3629,
2016.

[33] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR
2017, 2017.

[34] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organiza-
tion in the brain. Psychological review, 65(6):386, 1958.

[35] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International conference on
machine learning, pages 1842–1850, 2016.

[36] Imanol Schlag and Jürgen Schmidhuber. Learning to reason with third order tensor products. In
Advances in Neural Information Processing Systems, pages 10003–10014, 2018.

[37] J Schmidhuber. Reducing the ratio between learning complexity and number of time varying
variables in fully recurrent nets. In International Conference on Artificial Neural Networks,
pages 460–463. Springer, 1993.

[38] Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic
recurrent networks. Neural Computation, 4(1):131–139, 1992.

[39] Paul Smolensky. Tensor product variable binding and the representation of symbolic structures
in connectionist systems. Artificial intelligence, 46(1-2):159–216, 1990.

[40] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In
Advances in neural information processing systems, pages 2440–2448, 2015.

[41] Wen Sun, Alina Beygelzimer, Hal Daumé III, John Langford, and Paul Mineiro. Contextual
memory trees. arXiv preprint arXiv:1807.06473, 2018.

[42] Adam Trischler. A Computational Model for Episodic Memory Inspired by the Brain. PhD
thesis, 2016.

[43] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, pages 3630–3638, 2016.

[44] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[45] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer,
Armand Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of
prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015.

[46] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. CoRR, abs/1410.3916,
2014.

11

[47] Yan Wu, Greg Wayne, Alex Graves, and Timothy Lillicrap. The kanerva machine: A generative
distributed memory. ICLR 2018, 2018.

[48] Yan Wu, Gregory Wayne, Karol Gregor, and Timothy Lillicrap. Learning attractor dynamics for
generative memory. In Advances in Neural Information Processing Systems, pages 9401–9410,
2018.

[49] Richard S Zemel and Michael C Mozer. A generative model for attractor dynamics. In Advances
in neural information processing systems, pages 80–88, 2000.

[50] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

12

Table 2: Hyperparameters used in the experiments

Controller Memory

Layers dh do di Layers dk dv Dl H
Algorithmic tasks 1 100 100 100 3 100 100 100 1
bAbI task 1 256 256 256 3 100 100 100 3
Maze expl. 1 200 200 - 3 100 100 100 3

A Training Details

We used tanh activation function and three layer feed-forward neural net for our memory. For the
BFPF qlψ , we performed an initial experiment evaluating feed-forward and LSTM architectures with
different inputs and a simple single-layer MLP with input vwt worked well. The number of parallel
heads H was 1, 3 and 3 for the algorithmic, bAbI and maze exploration experiments, respectively.

For dictionary inference task, we used four special input characters in addition to the main vocabulary
for the end of a sequence, a support example separator, the end of a support set and an input place
holder for target. For double copy task, input sequences of length 50 were constructed by randomly
sampling (with replacement) from 10 unique characters. For the sort task, input sequences were
length of 20 and consisted of 8-bit binary vectors along with their scalar weights. The model were
trained to predict the first 16 vectors sorted. This follows the setup of NTM [8].

For bAbI question answering, we appended each question to the end of its related story and inserted
additional placeholders for answer tokens. The models read the story first and then the question
word-by-word, and once reaching the answer placeholders produce a prediction. The standard data
splits were used in the experiment. We perform an early-stopping based on the standard development
set and evaluate on the test set.

The batch sizes were set to 32 and 128 for the algorithmic and bAbI experiments, respectively. All
models were optimized using Adam optimizer. The hyperparameters for Adam optimizer were set
to default values (alpha=0.001 and beta=0.9) for all learning problems except the RL one. For the
RL task, we used the same hyperparameters as [23]. Table 2 lists our model hyperparameters. In
Figure 7, we have shown an instance of 9× 9 maze.

B Detailed Results on bAbI Task

Table 3 and 4 show the best results of the compared models and the detailed runs of our best
performing model.

13

Table 3: Best results on bAbI question answering.

Sentence-level Word-level

Task EntNet TPR-RNN DNC SDNC MNM-g MNM-p
1: one supporting fact 0.1 0 0 0 0 0
2: two supporting facts 2.8 0.4 0.4 0.6 0.2 0.1
3: three supporting facts 10.6 3.4 1.8 0.7 1.8 0.9
4: two argument rel. 0 0.2 0 0 0 0
5: three argument rel. 0.4 1.0 0.8 0.3 0.4 0.3
6: yes/no questions 0.3 0.1 0 0 0 0
7: counting 0.8 1.0 0.6 0.2 0.2 0.3
8: lists/sets 0.1 0.5 0.3 0.2 0.2 0
9: simple negation 0 0.3 0.2 0 0 0
10: indefinite kd. 0 0.4 0.2 0.2 0.1 0
11: basic coref. 0 1.3 0 0 0 0
12: conjunction 0 0.2 0 0.1 0 0
13: compound coref. 0 2.1 0 0.1 0 0
14: time reasoning 3.6 0.2 0.4 0.1 0.5 0.1
15: basic deduction 0 0 0 0 0 0
16: basic induction 52.1 0.4 55.1 54.1 51.2 0.7
17: positional reasoning 11.7 0.6 12.0 0.3 0 0
18: size reasoning 2.1 0 0.8 0.1 0 0.2
19: path finding 63.0 4.2 3.9 1.2 0.7 0.9
20: agent’s motivation 0 0 0 0 0 0
Mean Error: 7.38 0.81 3.8 2.9 2.76 0.175
Failed Tasks (> 5% error): 4 0 2 1 1 0

14

Table 4: Results from 12 runs of MNM-p model.

Task run-1 run-2 run-3 run-4 run-5 run-6 run-7 run-8 run-9 run-10 run-11 run-12 Mean Best
1: one supporting fact 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0
2: two supporting facts 0.2 0 0.7 0.1 0.1 0.3 0.4 0 0.2 0.1 0.3 0 0.2 ± 0.2 0
3: three supporting facts 2 2.1 2.2 1.7 0.9 1.1 1.9 1.5 2 2.1 2.4 1.7 1.8 ± 0.43 0.9
4: two argument rel. 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0
5: three argument rel. 0.5 0.8 1.1 0.4 0.3 0.7 0.2 0.8 0.8 0.4 0.4 0.7 0.59 ± 0.25 0.2
6: yes/no questions 0 0.2 0 0 0 0 0 0 0 0.1 0.1 0 0.03 ± 0.06 0
7: counting 0 0 0 0 0.3 0.2 0.3 0.3 0.1 0.4 0 0 0.13 ± 0.15 0
8: lists/sets 0 0 0 0.1 0 0.1 0 0 0.1 0.1 0 0 0.03 ± 0.05 0
9: simple negation 0.1 0 0 0 0 0 0 0 0 0 0 0 0.01 ± 0.03 0
10: indefinite kd. 0 0.1 0.1 0.1 0 0 0 0 0.1 0 0 0.1 0.04 ± 0.05 0
11: basic coref. 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0
12: conjunction 0 0 0 0.1 0 0 0 0 0 0 0 0 0.01 ± 0.03 0
13: compound coref. 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0
14: time reasoning 0.1 0.8 3.2 1.3 0.1 0.3 1.9 1 3.7 2.2 3.1 0.2 1.49 ± 1.25 0.1
15: basic deduction 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0
16: basic induction 0.5 0.7 49.2 0.6 0.7 1 0.9 0.3 0.4 0.3 0.4 0.5 4.63 ± 13.44 0.3
17: positional reasoning 0.5 0.3 1.9 0 0 0 0 0 0 1.5 1.3 0 0.46 ± 0.67 0
18: size reasoning 0.1 0.2 0.1 0.6 0.2 0.1 0.3 0.1 0.2 0 0.5 0.6 0.25 ± 0.2 0
19: path finding 1.4 3.1 0.7 4.2 0.9 0.2 0.6 0.1 0.1 1.4 2.1 0 1.23 ± 1.26 0
20: agent’s motivation 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0 0

15

Figure 7: An example maze of 9 × 9 size. The current goal and agent locations are indicated in
yellow and green, respectively.

C Relation to Sparse Distributed Memory

Sparse distributed memory [18] can be seen as a two-layer neural network in which the first layer
outputs an address to read from or write to and the second layer encodes the memory content.
Concretely, given fixed address matrix A ∈ {−1, 1}Dl×dv and content matrix Ct ∈ Zdv×Dl , sparse
distributed memory first calculates an activation vector at ∈ according to

at = σ(Akt), (7)

where kt is an input and σ(m) is an element-wise function that outputs 1 if 1
2 (Dl −m) ≤ δ and

0 otherwise, with δ a threshold. At read time, a memory output v̂t is obtained by multiplying the
activation vector by the content matrix: v̂t = Ctat. At write time, the memory is updated to store a
content vector vt according to:

Ct = Ct−1 + vta
T
t . (8)

We can derive related computations for a memory function parameterized as a two-layer feed-forward
neural network (L = 2). The computation at the first layer is at = σ(M1

t kt), which becomes
identical to that of the SDM if we use the address matrix A for M1

t and the binary activation function
for σ. At read time, the computation at the second layer is v̂t =M2

t at, where M2
t is analogous to the

content matrix Ct.

For our memory update, the derivative of the mean squared error with respect to the second-layer
parameter matrix is:

∂Lup
t

∂M2
t

=
2

dv
(v̂t − vt)aTt . (9)

Then we can rewrite the update for the last layer as

M2
t =M2

t−1 + vta
T
t − v̂taTt , (10)

where we have dropped the normalization constant 2
dv

and set the update rate βt to one for convenience.
Comparing Eq. 10 with Eq. 8, the gradient-based update incorporates the SDM update rule as a
component and performs a slightly smarter computation, since it makes no update whenever the
desired value is already stored (i.e., v̂t = vt).

D Visualization of Learned Memory Operation

16

17

18

19

20

21

22

23

24

25

	Introduction
	Related Work
	Proposed Method
	The Controller
	The Memory Function
	Writing to Memory with Gradient Descent
	Writing to Memory with a Learned Local Update
	End-to-end Training via Meta and Task Objectives

	Experimental Evaluation and Analysis
	Algorithmic Tasks
	bAbI Question Answering
	Maze Exploration by Reinforcement Learning

	Conclusion
	Training Details
	Detailed Results on bAbI Task
	Relation to Sparse Distributed Memory
	Visualization of Learned Memory Operation

