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ABSTRACT 
AI technologies have the potential to dramatically impact the 
lives of people with disabilities (PWD). Indeed, improving 
the lives of PWD is a motivator for many state-of-the-art AI 
systems, such as automated speech recognition tools that can 
caption videos for people who are deaf and hard of hearing, or 
language prediction algorithms that can augment communica­
tion for people with speech or cognitive disabilities. However, 
widely deployed AI systems may not work properly for PWD, 
or worse, may actively discriminate against them. These con­
siderations regarding fairness in AI for PWD have thus far 
received little attention. In this position paper, we identify po­
tential areas of concern regarding how several AI technology 
categories may impact particular disability constituencies if 
care is not taken in their design, development, and testing. We 
intend for this risk assessment of how various classes of AI 
might interact with various classes of disability to provide a 
roadmap for future research that is needed to gather data, test 
these hypotheses, and build more inclusive algorithms. 
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CCS Concepts 
•Computing methodologies → Artificial intelligence; 
•Human-centered computing → Accessibility; •Social and 
professional topics → Codes of ethics; People with disabil­
ities; 

INTRODUCTION 
As AI systems increasingly pervade modern life, ensuring that 
they work fairly for all is an important challenge. Researchers 
have identified unfair gender and racial bias in existing AI 
systems [2, 7, 9]. To understand how AI systems work across 
different groups of people, it is necessary to develop inclusive 
tools and practices for evaluation and to identify cases in 
which homogeneous, non-inclusive data [9] or data reflecting 
negative historical biases [2, 7] is used for system training. 
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Although improving the lives of people with disabilities 
(PWD)1 is a motivator for many state-of-the-art AI systems, 
and although such systems have the potential to mitigate many 
disabling conditions [6], considerations regarding fairness in 
AI for PWD have thus far received little attention [73]. Fair­
ness issues for PWD may be more difficult to remedy than 
fairness issues for other groups, particularly where people with 
particular classes of disability may represent a relatively small 
proportion of a population. Even if included in training and 
evaluation data, they may be overlooked as outliers by current 
AI techniques [73]. Such issues threaten to lock PWD out of 
access to key technologies (e.g., if voice-activated smart speak­
ers do not recognize input from people with speech disabili­
ties), inadvertently amplify existing stereotypes against them 
(e.g., if a chatbot learns to mimic someone with a disability), 
or even actively endanger their safety (e.g., if self-driving cars 
are not trained to recognize pedestrians using wheelchairs). 

We propose the following research agenda to identify and rem­
edy shortcomings of AI systems for PWD: (1) Identify ways 
in which inclusion issues for PWD may impact AI systems; 
(2) Test inclusion hypotheses to understand failure scenarios 
and the extent to which existing bias mitigation techniques 
(e.g., [18, 33, 37]) work; (3) Create benchmark datasets to 
support replication and inclusion (and handle the complex 
ethical issues that creating such datasets for vulnerable groups 
might involve); and (4) Innovate new modeling, bias mitiga­
tion, and error measurement techniques in order to address 
any shortcomings of status quo methods with respect to PWD. 

In this position paper, we take a step toward the first of these 
goals by reflecting on ways in which current key classes of AI 
systems may necessitate particular consideration with respect 
to different classes of disability. Systematically studying the 
extent to which these interactions exist in practice, or demon­
strating that they definitely do not, is an important next step 
toward creating AI inclusive of PWD; however, articulating 
the extent of a problem is a necessary precursor to remediation. 

1Throughout this paper, we use people-first language as suggested by 
the ACM SIGACCESS guidelines [32], but we recognize that some 
people may choose identity-first language or other terminology. Note 
that we use the term “disability” in accordance with the social model 
of disability [62], which emphasizes that an impairment (i.e., due 
to a health condition or even a particular situational context) results 
in disability due to non-accommodating social or environmental 
conditions; under this model, AI systems could either mitigate or 
amplify disability depending on how they are designed. 
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Furthermore, we note that the question of whether it is even 
ethical to build certain categories of AI is an important one 
(and may be dependent on use context). Our mention of vari­
ous classes of AI is not an endorsement of whether we think 
such systems should be built, but is simply describing how 
they may interact with disability. Indeed, there is a larger 
ethical discussion to be had on how limiting some types of 
AI with negative associations (like synthetic voices that could 
be used for deepfakes [11]) might disenfranchise PWD who 
could benefit from such tech (i.e., by limiting the opportunity 
to realistically reproduce the voice of someone who can no 
longer speak). 

RISK ASSESSMENT OF EXISTING AI SYSTEMS FOR PWD 
Here, we group existing classes of AI systems by related 
functionalities, and identify disability constituencies for whom 
these systems may be problematic. This risk assessment is 
meant as a starting point to spark further research, and may 
not be exhaustive. For example, as new AI technologies are 
developed they would require consideration with respect to 
disability. Additionally, while we strove to anticipate ways in 
which classes of AI may fail for some disability groups, we 
may not have exhaustively identified all such groups; indeed, 
the “long tail” of disability and potential co-occurrence of 
multiple disabilities are two of many reasons that ensuring AI 
inclusion for PWD is particularly challenging [73]. 

Computer Vision 
Computer vision systems analyze still or video camera inputs 
to identify patterns, such as the presence and attributes of faces, 
bodies, or objects. Disabilities that may impact a person’s 
physical appearance (facial features, facial expressions, body 
size or proportions, presence of assistive equipment, atypical 
motion properties) are important to consider when designing 
and testing the fairness of computer vision algorithms. 

Face Recognition 
Face recognition systems include capabilities for identifying 
the presence of a face and/or making inferences about its prop­
erties, including face detection, identification (i.e., to guess 
the identity of a specific person), verification (i.e., to validate 
a claimed identity), and analysis (e.g., gender classification, 
emotion analysis). Face recognition systems are already used 
in a wide variety of scenarios, including biometric authen­
tication [3, 52], security systems [21], criminal justice [61], 
interview support software [34], and social/entertainment ap­
plications [23], many of which are controversial. 

We hypothesize that such techniques may not work well for 
people with differences in facial features and expressions if 
they were not considered when gathering training data and 
evaluating models. For instance, various aspects of facial anal­
ysis software may not work well for people with conditions 
such as Down syndrome, achondroplasia, cleft lip/palate, or 
other conditions that result in characteristic facial differences. 
Such systems may also fail for people who are blind, which 
may not only result in differences in eye anatomy, but may 
also result in a person wearing medical or cosmetic aids such 
as dark glasses, and may produce unanticipated behaviors, 
such as a person not holding their face toward a camera at 

the expected angle. Emotion processing algorithms may mis­
interpret the facial expressions of someone with autism or 
Williams syndrome, who may not emote in a conventional 
manner; expression interpretation may also be problematic 
for people who have experienced stroke, Parkinson’s disease, 
Bell’s Palsy, or other conditions that restrict facial movements. 

Body Recognition 
Body recognition systems include capabilities for identifying 
the presence of a body and/or making inferences about its 
properties, such as body detection, identification, verification, 
and analysis. Body recognition systems can power applica­
tions using gesture recognition (e.g., in VR and AR [4, 49] or 
gaming [47]), or gait analysis (e.g., for biometric authentica­
tion [78], sports biomechanics [54], and path predictions used 
by self-driving vehicles [74]). 

Body recognition systems may not work well for PWD char­
acterized by body shape, posture, or mobility differences. For 
example, gesture recognition systems2 are unlikely to work 
well for people with differences in morphology (e.g., a person 
with an amputated arm may be unable to perform bimanual 
gestures, or may grip a device differently than expected; a per­
son with polydactyly’s style of touching a screen may register 
an unanticipated pattern). Failure of gesture recognition sys­
tems is also likely in cases where disability affects the nature 
of motion itself, such as for someone who experiences tremor 
or spastic motion [56, 57]. Fatigue may also impact gesture 
performance (and therefore recognition accuracy) over time, 
particularly for groups that may be more susceptible to fatigue 
such as due to disability or advanced age. The scheduling of 
medications whose main- or side-effects mitigate or amplify 
motor symptoms such as tremor may also result in differential 
gesture performance within or across days. 

People who are unable to move at all or who have severely 
restricted motion (e.g., people with ALS or quadriplegia), may 
be locked out of using certain technologies if body recogni­
tion is the only permitted interaction. Further, body recogni­
tion systems may not work well for people with mobility or 
morphology differences; for example, if a self-driving car’s 
pedestrian-detection algorithm does not include examples of 
people with posture differences such as due to cerebral palsy, 
Parkinson’s disease, advanced age, or who use wheelchairs 
during its training and evaluation, it may not correctly identify 
such people as objects to avoid, or may incorrectly estimate 
the speed and trajectory of those who move differently than 
expected, similar to Uber’s recent self-driving car accident 
that killed a pedestrian walking a bicycle [14]. 

Object, Scene, and Text Recognition 
Object, scene, and optical character recognition (OCR) sys­
tems recognize common objects, logos, text, handwriting, etc., 
and output labels, captions, and/or properties (i.e., location, 
activity, relationship). Systems taking advantage of these capa­
bilities have been widely adopted by PWD, particularly people 
2Many gesture systems use computer vision [40, 49], but some use 
other sensors, such as capacitive touchscreens [15], accelerometers 
within devices [30, 42], etc.; body and mobility differences may 
create problems regardless of sensor type, though different sensor 
classes may have pros and cons for particular populations. 
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with visual impairments, such as Microsoft SeeingAI [51], 
Google Lookout [25], LookTel Money Reader [44], KNFB 
Reader [64], OrCam MyEye [63], etc. 

Most systems for recognizing objects from photos are trained 
using datasets of images taken by people who are sighted, 
and the images are often of high quality since many are taken 
from social media sites such as Flickr [12]. These image data 
are known to be biased with regard to geographic areas and 
household income [17]. When applying the models to process 
images a blind user captures, the error rates often increase 
because images taken by people who are blind differ substan­
tially in quality from those taken by people who are sighted 
due to poor framing, blur, unusual angles, poor lighting, etc. 
[31]. Similar problems may be observed from pictures taken 
by people with tremor or other motor disabilities [55]. Further, 
OCR models for handwriting recognition may not work well 
for people with tremor or other motor disabilities that impact 
writing neatness. Additionally, error metrics used to evaluate 
many vision systems may not be adequate to capture the end-
user experience of such tools, particularly for end users with 
disabilities that may prevent them from verifying the system’s 
output (i.e., someone who is blind must rely on the output of 
an object detection system) [45]. 

Speech Systems 
We use the term “speech systems” to refer to AI systems 
that recognize the content (i.e., words) and/or properties (i.e., 
prosody, speaker demographics) of speech, or that generate 
speech from symbolic inputs such as text, Speech Synthesis 
Markup Language (SSML), or other encodings. Disabilities 
that may impact the content or clarity of a user’s speech, as 
well as those impacting the ability to perceive sound, may 
reduce the accuracy and usability of speech systems. 

Speech Recognition 
Automatic Speech Recognition (ASR) systems take in speech 
and output text. ASR systems have the potential to be im­
portant accessibility tools for people who are deaf or hard of 
hearing (DHH), such as by producing captions that can be 
overlaid as subtitles on videos [24, 76], or possibly even us­
ing augmented reality to live-caption face-to-face speech [35]. 
Speech input is also also useful for people who have difficulty 
using their hands to control traditional input devices [5]. 

ASR may not work correctly for people with atypical speech. 
ASR systems are known to have bias; for instance, many sys­
tems perform better for men than women [58, 66, 68]. Today, 
many ASR systems do not work well for some older adults, 
due to differences in pitch, pacing, and clarity of speech by 
people of very advanced ages, since they are not commonly 
represented in the training and evaluation of the systems [67]. 
People with accents, including accents due to disability (e.g., 
“deaf accent”), also face challenges using current ASR tools 
[20, 27, 68], though it is possible to train personalized models 
for such groups [16, 75]. Speech disabilities such as disarthrya, 
as well as the use of speech-generating augmentative and al­
ternative communication (AAC) devices, can also negatively 
impact ASR functionality [38]. Further, people who are unable 
to speak at all (i.e., some people who are deaf, people with 

some forms of aphasia), may be locked out of using ASR tech­
nologies. Additionally, error metrics used to evaluate many 
ASR systems, such as Word Error Rate, may not be adequate 
to capture the end-user experience of such tools, particularly 
for users with disabilities that may prevent them from verify­
ing the system’s output (i.e., someone who is profoundly deaf 
must trust the output of ASR captioning). 

Speech Generation 
Speech generation technologies include technologies such as 
text to speech (TTS) systems that aim to generate realistic 
audio from symbolic inputs such as text, SSML, or other 
markup, as well as emerging AI tools such as voice fonts [10, 
48], which aim to realistically mimic the sound of a particular 
speaker. TTS systems have been widely deployed in voice 
assistants such as Cortana, Alexa, Siri, and the Google Assis­
tant; TTS is also key to many assistive technologies, including 
screen readers used by people who are blind and AAC de­
vices used by people with speech and motor disabilities. Voice 
banking to create personalized voice fonts may be particularly 
valued by people with degenerative conditions that result in 
progressive loss of speaking abilities (e.g., ALS) [19, 38]. 

System defaults for what constitutes comprehensible speaking 
rates may need adjustments for particular disability segments; 
development of error metrics related to comprehension may 
need inclusion of such populations in order to account for 
diverse user needs – for instance, people with cognitive or in­
tellectual disabilities may require slower speech rates, whereas 
people with visual impairments may find rates too slow [77]. 
Text-based prediction techniques are often deeply intertwined 
with speech generation in the case of AAC technologies; the 
choice of training and evaluation corpora for prediction may 
need to be adapted to be relevant to the topical needs and de­
sired speech attributes of AAC users, supporting expressivity 
and authentic self-representation [38]. 

Speaker Analysis 
Speaker analysis systems include capabilities for speaker iden­
tification, speaker verification, and making inferences about 
the speaker’s attributes such as age, gender, and emotion. 
Speaker analysis systems have a wide range of applications 
including biometric authentication [59], enhancing speech 
transcription [72], and personalization [26]. Speaker analysis 
systems also have the potential to be important accessibility 
tools for people who are DHH, such as by supporting sound 
awareness through visualizations [36]. 

Speaker recognition and speech analysis tools that make in­
ferences about a user’s personal characteristics (i.e., gender, 
age) may not work well for PWD that significantly impact the 
sound of speech (e.g., dysarthria). Analysis tools that attempt 
to infer emotional state from prosodic features are likely to 
fail for speakers with atypical prosody, such as people with 
autism or some types of dementia. 

Text Processing 
Text processing systems perform functions related to under­
standing the content of text data, including tasks such as text 
analysis and translation. Text processing systems are likely to 
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have accuracy and fairness challenges for people with cogni­
tive and/or intellectual disabilities; systems for minority lan­
guages used by disability subcommunities, such as American 
Sign Language, are also a concern [8]. 

Text Analysis 
Text analysis systems take text as input, and may attempt to 
detect content properties (e.g., key phrases, named entities, 
language) and/or author properties (e.g., sentiment, personal­
ity, demographics). Text analysis is broadly applied in record 
management, information retrieval, and pattern mining. Text 
analysis systems have the potential to be helpful for PWD that 
impact reading and writing, such as dyslexia, dysgraphia, or 
other cognitive differences, such as through visual illustration 
and focused highlighting [50] or through intelligent spelling, 
grammar correction, and word or phrase suggestions [28]. 

Cognitive and intellectual disabilities are likely to impact the 
efficacy and utility of many aspects of text analysis systems. 
For example, there is some evidence that spelling correction 
and query rewriting tools may not accurately handle dyslexic 
spelling [53, 65]. Further, people with autism may express 
emotion differently in writing than people who are neurotypi­
cal, resulting in incorrect classifications about their emotional 
state or personality. If these metrics are used as input to an 
automatic hiring system [71] or automatic essay grading sys­
tems used with many standardized aptitude tests, text analysis 
systems can have accuracy and fairness challenges for people 
with cognitive and/or intellectual disabilities. 

Integrative AI 
In addition to the aforementioned classes of systems for vision, 
speech, and text processing, which were focused on single 
models, many complex AI systems are architectures integrat­
ing several models together to achieve more complex behavior. 
Here, we discuss two common examples of integrative AI: 
Information Retrieval and Conversational Agents. 

Information Retrieval 
Information retrieval (IR) tools, such as those that power web 
search engines, rely on AI for a variety of purposes, including 
query rewriting, autocompletion suggestions, spelling cor­
rections, search result ranking, content summarization, and 
question answering. The input and output of IR systems can 
have many formats, e.g., image, video, sound, or text. 

It is likely that many IR systems may inadvertently amplify 
existing biases against PWD, such as through returning stereo­
typed and/or over- and under-represented content in search 
results (a problem that has been documented with respect to 
gender in image search results [39] and word embeddings [7]). 
AI systems for advertising, both content-based (i.e., related to 
the current search query) and behavior-based (i.e., related to a 
user’s personal characteristics), are also a key component of 
many commercial IR systems, as well as other online ecosys­
tems (e.g., social media). Advertising algorithms and other 
types of recommender systems may hold particular risk for 
PWD by actively propagating discriminatory behavior such as 
through differential pricing for products and services and/or 
differential exposure to employment or other opportunities (an 
issue for which Facebook recently encountered legal trouble, 

by allowing housing ads that may have differentiated among 
protected demographics, including PWD [70]). IR systems 
may pose particular challenges for people with cognitive or 
intellectual disabilities if not trained and tested with these 
groups; for example, people with dyslexia have reported that 
status quo query completion and result ranking techniques 
may not match their abilities [53]. 

Conversational Agents 
Conversational agents provide conversational experiences to 
end users for various practical applications, including cus­
tomer service [69], education [13], and health support [22]. 
They are also powered by a variety of models, e.g., ASR, text 
analysis, TTS, and/or speaker analysis. Conversational agents 
have the potential to reduce users’ workload when completing 
unfamiliar tasks [29], and could potentially provide cognitive 
assistance to people with dementia or intellectual disabilities 
that impact memory or executive functioning [43]. 

If not carefully built, conversational agents could amplify exist­
ing biases against PWD, such as through returning stereotyped 
content in conversations (e.g., Microsoft shut down the chatbot 
Tay because it started generating hate speech learned from co­
ordinated malicious users [46]). Further, conversational agents 
may not work well for people with cognitive and/or intellec­
tual disabilities, resulting in poor user experience. Training 
conversational agents on corpora that include data from peo­
ple with a variety of cognitive and intellectual capabilities, as 
well as testing with similarly diverse audiences, is particularly 
important. For example, conversational agents may need to 
correctly interpret atypical spelling or phrasing from users 
with dyslexia, or may need to adjust their vocabulary level to 
be understood by someone with dementia. Further, conver­
sational agents may need to support conversation in a user’s 
preferred expressive medium, which may not be written lan­
guage for some disability segments – i.e., it may be important 
to support communication via sign languages (for people who 
are deaf) or via pictures and/or icons (for people with aphasia 
or autism). 

Other AI Techniques 
In addition to assessing risk factors for particular classes of AI 
applications, it is also worth considering that many AI tech­
niques and practices that comprise the building blocks of such 
systems may lead to biases against PWD, such as techniques 
for outlier detection, practices of evaluating systems through 
aggregate metrics, definition of objective functions, and using 
training data that do not capture the true use cases or the true 
complexity of the real world. 

Outlier detection algorithms flag outlier input, typically for 
punitive action, such as fraud detection. Lack of or low rep­
resentation in training and evaluation data may erroneously 
result in people with a variety of disabilities being inadver­
tently flagged by anomaly detection tools, even when their 
actions should constitute legitimate system inputs. For ex­
ample, many systems use task completion time as a signal 
for automatically determining input legitimacy, ranging from 
CAPTCHAs that aim to distinguish humans from bots to on­
line crowd labor markets that aim to distinguish legitimate 
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workers from spammers [79]. However, many types of dis­
ability might manifest in atypical task performance timing, 
including the use of screen reader or magnifier tools by peo­
ple with vision impairments, difficulty performing quick and 
accurate motions by people with a variety of motor-limiting 
conditions, people accessing devices through switch inputs 
due to motor limitations, slow reading times due to cognitive 
disabilities such as dyslexia, etc. 

A common approach in evaluating AI systems is measuring 
performance with aggregate metrics such as accuracy, area 
under the curve (AUC), or mean square error (MSE). Aggre­
gate metrics hide how performance varies across groups, in 
particular performance drops for small classes such as PWD 
[60]. Objective functions that aim to maximize aggregate met­
rics will likely fail to prioritize performance for PWD. Recent 
work has introduced techniques that expand the objective func­
tions for model training with terms that penalize performance 
discrepancies between subgroups [1]. 

Most AI systems are trained with existing datasets (i.e., data 
scraped from public corpora such as Flickr images [12]). In 
some cases, existing data sets may fail to capture the complex­
ity of the real world and may lack representation of diverse 
groups, such as PWD. This may lead to blind spots in AI 
models [41]. Actively curating inclusive datasets may be par­
ticularly important not only for training, but also for testing 
AI systems against known benchmarks. 

DISCUSSION 
Our research roadmap for increasing fairness in AI for PWD in­
cluded four proposed steps; this position paper mostly focused 
on the first: identifying ways in which (lack of) inclusion in 
training and evaluation of AI systems may negatively impact 
such systems’ fairness for PWD. To address this, we discussed 
ways in which common categories of AI may need to account 
for various types of disabilities. 

Regarding the types of potential harm caused by unfair AI, 
most of our examples are related to quality of service [9], like 
voice-activated smart speakers that may not recognize input 
from people with speech disabilities. Others are related to 
harms of allocation [2], like using an incorrect prediction of 
the emotional state or personality of someone with autism as 
input into an automatic hiring system, or denigration [46], 
like erroneously flagging inputs from PWD as invalid outliers. 
Additional potential harms include stereotyping [7] and over-
or under-representation [39]; IR systems may inadvertently 
amplify existing biases against PWD by returning stereotyped 
and/or poorly represented content in search results. For issues 
related to allocation, quality of service, and representation, 
measuring objective fairness metrics through benchmarking 
could be sufficient to reveal bias, while issues related to stereo­
typing and denigration might require additional qualitative 
investigations. More thorough considerations of all types of 
harms with regard to PWD is important for future work. 

In some cases, as indicated by the referenced citations, ev­
idence already exists of problems for certain classes of AI 
for certain disability groups. For others, we have proposed 
hypotheses based on our knowledge of the domain space and 

analogous error cases for other minority user groups; our use 
of cautionary language such as “may cause” or “is likely” re­
flects this uncertainty. Per point #2 of our research roadmap, 
systematic testing of the hypotheses we have presented here is 
a necessary step for future research. 

Item #3 on our roadmap is the creation of public datasets for 
testing and benchmarking (and handling the complex ethical 
issues that creating such datasets for vulnerable user groups 
might involve); this is another key area for future work. Ques­
tions that must be addressed include: Is it acceptable to create 
datasets representing disability by scraping existing online 
data sources? How could this be done in a way that preserves 
users’ privacy, and that ensures accurate ground-truth labeling 
of disability status? Are there potential harms that aggregating 
data about disability might expose people to? Could such 
data adequately cover rare conditions and/or intersectional­
ity (either of co-occuring disabilities or of the intersection of 
disability with other demographics such as gender, race, geolo­
cation, or socioeconomic status)? If curating data from scratch, 
how can we encourage contributions from target constituen­
cies, and how can we ensure data collection mechanisms are 
sufficiently accessible? Is informed consent in data collection 
possible for people with some types of intellectual disabilities, 
and, if not, what methods can be used to promote fairness in AI 
for this class of end-user? Will it ever be possible to know one 
has complete coverage of all relevant disability communities, 
or will this always be an “unknown unknown” [41]? 

If, as we suspect may be the case, status quo modeling, bias 
mitigation, and/or error measurement techniques are inade­
quate for many scenarios affecting PWD, further research into 
new techniques will be warranted (item #4 in our proposed 
roadmap). One challenge to consider may be the extent to 
which it is possible (or desirable) to develop general mod­
els that are fair across varied demographics versus creating 
personalized models for particular user groups. For example, 
success in developing accurate ASR for deaf speech has thus 
far focused on custom models for particular users [16, 75]. 
The need for personalization may be high given the “long tail” 
of disability, though the need to train personalized models 
may present additional barriers for PWD, as well as creating 
a two-tiered system of people for whom general AI models 
work by default and those for whom they do not. Involvement 
of PWD not only in evaluating AI systems, but also in defining 
meaningful usage scenarios, error metrics, and policies, is 
critical for the development of fair AI. 

CONCLUSION 
In this position paper, we have reflected on the ways in which 
current classes of AI systems, as well as several techniques 
that are the building blocks of AI, may limit the efficacy and 
fairness of these systems for people with disabilities. Ul­
timately, our goal is the creation of new design guidelines, 
datasets, algorithmic techniques, and error metrics that can 
help AI systems realize their enormous potential to benefit 
PWD, while avoiding the possible pitfalls we have outlined 
here. We hope this paper provides a research roadmap that can 
guide AI researchers and practitioners in creating systems that 
are fair to and effective for PWD. 
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