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Abstract
Much recent work focuses on leveraging semantic lexi-
cons like WordNet to enhance word representation learning
(WRL) and achieves promising performance on many NLP
tasks. However, most existing methods might have limitations
because they require high-quality, manually created, semantic
lexicons or linguistic structures. In this paper, we propose to
leverage semantic knowledge automatically mined from web
structured data to enhance WRL. We first construct a seman-
tic similarity graph, which is referred as semantic knowledge,
based on a large collection of semantic lists extracted from
the web using several pre-defined HTML tag patterns. Then
we introduce an efficient joint word representation learning
model to capture semantics from both semantic knowledge
and text corpora. Compared with recent work on improving
WRL with semantic resources, our approach is more general,
and can be easily scaled with no additional effort. Extensive
experimental results show that our approach outperforms the
state-of-the-art methods on word similarity, word sense dis-
ambiguation, text classification and textual similarity tasks.

1 Introduction
Distributed word representations boost performance of
many NLP applications mainly because they are capable of
capturing semantic regularities from a collection of text se-
quences. Much research work tries to enhance word repre-
sentation learning (WRL) from the semantic perspective by
leveraging semantic lexicons. Semantic lexicons can be con-
sidered as a collection of lists, in which each list consists
of semantically related words. Some existing work pulls
the vectors of synonyms close by either a post-processing
model (Faruqui et al. 2015) or a joint representation learn-
ing model with the distances between synonyms as regular-
izers (Kiela, Hill, and Clark 2015; Bollegala et al. 2016).
More recently, many manually well-designed semantic rela-
tions or linguist structures, such as synonyms and antonyms
(Mrkšić et al. 2017; Glavaš and Vulić 2018), concept con-
vergence and word divergence (Liu et al. 2018), have been
used to enhance the semantics of words.

However, it should be noted that most existing models
might have limitations because they require high-quality,
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manually created, semantic lexicons or linguistic structures.
Even for high-quality semantic resources like WordNet1, the
coverage might be quite limited. Taking English WordNet as
an example, it only contains 155K words organized in 176K
synsets, which is rather small compared to the large vocabu-
lary size on the training data. Vulić et al. (2018) and Glavaš
and Vulić (2018) partially solve this problem by first design-
ing a mapping function that learns the specialization process
for seen words, and then applying the learned function to
unseen words in semantic lexicons. Unfortunately, their ap-
proaches still depend on the linguistic constraints derived
from manually created resources. Therefore, we shall lever-
age semantic resources that can be automatically constructed
with a relatively high coverage on the vocabulary.

Figure 1: News categories with HTML structures.2

There is a considerable amount of structured data on the
web, such as tables, select options, drop down lists, etc.
Given a web table, entries in the same column or row are
usually highly semantically related. This inspires the idea
that it is promising to automatically construct the semantic
resources based on those semantically related entries. Fig-
ure 1 shows an example of news categories with their cor-
responding HTML structures. It can be seen that Politics,
Entertainment, Health are semantically related, because all
of them can be treated as news categories. In the HTML
DOM tree, Politics, Entertainment, Health share the same
HTML structure, which means that they can be easily ex-
tracted using HTML tag patterns. Moreover, we find that se-
mantic information in structured data could be an enhance-
ment or complement for text corpora. Consider the entries

1https://wordnet.princeton.edu/
2The categories are from https://abcnews.go.com/.



in news categories again, in text sequences, they hardly ap-
pear with similar contexts, but they might frequently appear
in the navigation bars on news websites.

Therefore, we propose to use some pre-defined HTML tag
patterns to extract semantic lists from web data in a large
scale. However, the extracted semantic lists cannot be di-
rectly used by existing methods, because they contain much
noise, and some of the lists are highly redundant. To address
this issue, we design a similarity function that measures the
semantic relatedness between each co-occurred word pair.
After that, we build a semantic similarity graph, in which
words are represented as vertices and each edge indicates
the similarity score between the corresponding two vertices.
This semantic similarity graph is considered as web seman-
tic knowledge to further enhance WRL.

In this paper, we propose WESEK, Word Embedding
with web SEmantic Knowledge, to capture semantics from
both the text and web semantic knowledge. The intuition
behind WESEK is that, given two words, the similarity of
learned representations shall be high if they are connected
in the semantic similarity graph. Our major contributions
are: 1) we build high-quality semantic knowledge from web
structured data, which can be easily scaled with no addi-
tional human effort; 2) we propose a novel joint represen-
tation learning model that is capable of capturing semantics
from both the text and semantic knowledge. Experimental
results show that WESEK outperforms state-of-the-art word
embeddings on multiple popular NLP tasks like word sim-
ilarity, word sense disambiguation, text classifications and
textual similarity, which demonstrate that leveraging web se-
mantic knowledge improves WRL and that WESEK is capa-
ble of encoding web semantic knowledge effectively.

2 Related Work
Our work is related to 1) word representation specialization
or retrofitting using semantic lexicons or linguistic struc-
tures, and 2) semantic knowledge construction from the web.

2.1 Word Representation Specialization
Most specialization models make use of external resources
like WordNet or the Paraphrase Database3 (PPDB) to derive
semantic lexicons or linguistic structures. Generally, they
fall into two categories: post-processing and joint learning.

Post-processing models. The inputs of post-processing
models are pre-trained word embeddings, which means
that embeddings will not be retrained during specializa-
tion. Faruqui et al. (2015) retrofit embeddings with an ef-
ficient iterative updating method to reduce the distances be-
tween synonyms derived from WordNet. Vulić et al. (2018)
and Glavaš and Vulić (2018) propose to learn specialization
functions of seen words in semantic lexicons and propagate
it to unseen words. Much research work (Mrkšić et al. 2016;
2017; Glavaš and Vulić 2018) utilizes antonyms to further
differentiate the dissimilar words in addition to pulling the
representation of synonyms words close. Some other lin-
guistic structures can also be utilized, for instance, Vulić et

3http://paraphrase.org

al. (2017) exploit morphological synonyms to pull the in-
flectional forms of the same word closer together and push
derivational antonyms further apart.

Joint learning models. Many joint learning models intro-
duce semantic lexicons or linguistic structures as additional
constraints to the representation learning models (Liu et al.
2015; Ono, Miwa, and Sasaki 2015; Nguyen et al. 2017).
Yu and Dredze (2014) integrate word2vec (Mikolov et al.
2013) with synonym constraints that the distances between
synonym representations shall be close. Liu et al. (2018)
introduce the semantic constraints of concept convergence
and word divergence derived from hypernym-hyponym re-
lations in WordNet to word2vec. Bollegala et al. (2016) ex-
tend GloVe (Pennington, Socher, and Manning 2014) by
adding constraints of various semantic relationships such as
synonyms, antonyms, hypernyms and hyponyms. Osborne,
Narayan, and Cohen (2016) propose to find a projection
of the two views (word embeddings and semantic knowl-
edge) in a shared space such that the correlation between the
two views is maximized with minimal redundancy. For other
joint learning models, Kiela, Hill, and Clark (2015) treat se-
mantically related words as alternative contexts by adding
them to the original context window in text corpora; Niu et
al. (2017) utilize word sememes, which are the minimum
semantic units of word meanings, to improve WRL with an
attention scheme.

2.2 Semantic Knowledge Construction
Both post-processing and joint learning models require
high-quality, manually constructed, semantic lexicons or lin-
guistic structures (Nguyen et al. 2017; Liu et al. 2018;
Mrkšić et al. 2016; Glavaš and Vulić 2018). It should be
noted that structured data on the web contains rich semantic
information, which has the advantage that it can be easily
extracted (Zhang et al. 2013). There is much related work
on mining semantic knowledge automatically from web data
(Pasca 2004; Zhang et al. 2009; Shi et al. 2010; Wu et al.
2012); which generally uses Hearst patterns (Hearst 1992)
to discover coordinative words in the text, and HTML tag
patterns to extract words sharing the same HTML struc-
ture. Shi et al. (2010) propose using both textual context
and HTML tag patterns to extract semantic lists from web
data; and Zhang et al. (2009) utilize topic models to try to
obtain high-quality semantic classes from raw semantic lists
extracted from the web. In this paper, we first extract a large
collection of semantic lists with several pre-defined HTML
tag patterns, and then construct a semantic similarity graph
with high quality.

3 Web Semantic Knowledge Extraction
There are two major steps to construct semantic knowl-
edge from web structured data: (1) semantic lists extraction,
and (2) similarity graph construction. The similarity graph,
which is also referred as semantic knowledge, is further uti-
lized to specialize word representation learning.

3.1 Semantic Lists Extraction
We assume that entries in the same list or table on the web
are semantically related. Similar to previous work (Shi et al.



2010), we use HTML tag patterns to extract semantic lists -
an extraction approach that can be easily scaled with more
data. A straightforward way to perform the approach is to
use HTML tags like table or list to extract semantic lists.
In addition, we also use HTML tag repeat patterns. For in-
stance, after parsing the HTML page to a DOM tree, text
nodes on the same level are extracted as a semantic list if
their ancestors upward to the root node are the same.

Type Patterns

table <table> <tr> <td> T </td> ... </tr> ...
<tr> <td> T </td> ... </tr> </table>

list
<ul> <li> T </li> ... <li> T </li> </ul>
<ol> <li> T </li> ... <li> T </li> </ol>

<select> <option> T ... <option> T </select>
Other HTML tag repeat patterns

Table 1: HTML patterns for semantic list extraction.

Table 1 shows the HTML tag patterns utilized in this pa-
per, where T is an entry in the extracted semantic list.

3.2 Similarity Graph Construction
However, semantic lists extracted from the web cannot be
a direct replacement for the semantic lexicons leveraged in
previous work, because they may contain too much noise
or be highly redundant. According to our estimation on the
sampled 10 million semantic lists, at least 20% are near
duplicate or contained by others4. Moreover, for some do-
mains, the extracted lists are not quite semantically related
but have relatively high frequencies. As most existing work
requires high-quality semantic lexicons, directly introducing
the extracted semantic lists might harm performance.

To address this issue, we design a similarity function ex-
tended from Zhang et al. (2009) and Shi et al. (2010) for
each co-occurred word pair as:

sab = (

m∑
i=1

log(1 + ni,ab))

√
log(1 +

N

Na
) log(1 +

N

Nb
), (1)

where ni,ab is the number of times that words a and b co-
occurred in the same list in domain i, and there are m do-
mains in total; N is the total number of semantic lists ex-
tracted from the web; Na, Nb are the numbers of seman-
tic lists that contain words a and b, respectively. To make it
clear, the right-side of this function (the radical part) consid-
ers the frequencies of words a and b in the whole corpora,
which is similar to the inverse document frequency (IDF).
For the left-side, a pair of words should have a high score if
they occurred in multiple websites with relatively high co-
occurrences. It can be seen that the similarity scores can be
computed in parallel; and the overall computation is quite
efficient, as similarity scores are computed only for word

4We use MinHash to detect near duplicate semantic lists. To es-
timate the percentage of “contain” relation, we sort entries in each
list and sort all the lists in lexicographic order. Then all the lists are
divided into small sets, where each set contains 50K consecutive
lists. For each set of lists, we perform a pairwise check to see if
one list is a subset of the other.

pairs that co-occur. Till now, we obtain the similarity graph
constructed from the web semantic lists.

To assure that the semantic resource has high quality,
we prune the graph by removing edges with low similarity
scores. Given a word a, let {b1, b2, ..., bK} denote the neigh-
bors of a in decreasing order of similarity score. We remove
the long tailed neighbors to obtain the top k semantically
related neighbors by

k∑
i=1

sabi ≤ µ
K∑
i=1

sabi <

k+1∑
i=1

sabi , (2)

where µ is the threshold between 0 and 1, sabi is the similar-
ity of a and bi. The pruned similarity graph is considered as
the high-quality semantic knowledge to improve WRL later.

4 WRL with Semantic Knowledge
We leverage our scalable semantic knowledge pipeline
for WRL by extending the word2vec models proposed
by Mikolov et al. (2013). While the word2vec models
include continuous bag-of-word (CBOW) and skip-gram
(SG), due to limited space, we will only discuss details of
WESEK based on SG. It can be easily demonstrated that
our approach also applies to CBOW.

4.1 Skip-gram and Negative Sampling
Skip-gram is an efficient method to learn high-quality word
representations from the text. The objective of SG is to learn
word representations that can accurately predict the sur-
rounding words of a given word. Given a sequence of words
w1, w2, . . . , wT , SG aims to maximize the log probability:

OC =
T∑

t=1

∑
−d≤j≤d,j 6=0

log p(wt+j |wt), (3)

where d is the local window size - words in this window are
treated as contexts of the target word wt. p(wt+j |wt) is the
predictive probability of context word wt+j conditioned on
the target word wt, defined by the softmax function:

p(wc|wt) =
exp(v>c ut)∑|V |
k=1 exp(v

>
k ut)

, (4)

where ut and vc are the “input” and “output” vector repre-
sentations of words wt and wc, respectively. |V | is the num-
ber of words in the vocabulary. The input embedding usually
stands for the original word embedding while output embed-
ding denotes the word in the context. Intuitively, words with
similar contexts shall have similar representations.

Generally, the vocabulary size is very large. It is ex-
tremely expensive to calculate the softmax function over the
whole vocabulary. One computationally efficient approxi-
mation is the negative sampling approach. Instead of mak-
ing predictions on the entire vocabulary space, negative sam-
pling makes a binary prediction of whether a word is present
or absent in the contexts for a target word. Formally, for
a target word wt at position t, let all context words within
the window size be positive examples, and randomly sam-
ple negative instances from the vocabulary. The objective



of negative sampling is to maximize the following negative
log-likelihood:

LC =
T∑

t=1

∑
wc∈Ct

[log σ(v>c ut) +
∑

wn∈Nt,c

log σ(−v>c un)], (5)

where σ(x) = 1/(1 + exp(−x)), Ct is the context set for
target word wt, and Nt,c is a set of negative samples drawn
from the noise distribution Pn(w) for context word wc. Fol-
lowing Mikolov et al. (2013), we set Pn(w) ∝ F

3/4
w , where

Fw is the frequency of word w.

4.2 WESEK: Word Embedding with Semantic
Knowledge

In this section, we present the details on how semantic
knowledge is incorporated in WESEK. The intuition behind
WESEK is that, given two words, the similarity of learned
representations shall be high if they are connected in the se-
mantic similarity graph.

Problem formulation. Let sij denote the similarity score
between wi and wj in the similarity graph. Given a target
word wt, St is the set of all corresponding neighbors in the
pruned similarity graph. For each neighbor word wl of wt,
we define their relevance score as:

r̂(wl|wt) =
stl∑

wk∈St
stk

. (6)

From the view of word representations, we define the se-
mantic relevance score between wt and wl as:

r(wl|wt) = σ(u>l ut), (7)

where σ(x) is the sigmoid function. Since both relevance
scores are defined given target word wt, we simplify
r̂(wl|wt) and r(wl|wt) as r̂tl and rtl, respectively.

Our goal is to maximize the similarity of the learned word
representations if the words are connected in the semantic
similarity graph. Given the word wt and its neighbor set St,
we aim to maximize the following objective:

OSt = log
∏

wl∈St

r
r̂tl
tl =

∑
wl∈St

r̂tl log σ(u
>
l ut). (8)

It can be seen that the OSt
combines both relevance scores

from the text and semantic knowledge, and it can be proved
that maximizing the objective is consistent with our goal.

Instead of optimizing the above objective directly, we em-
ploy the negative sampling approach in a similar way as
(Mikolov et al. 2013). For the target word wt and its neigh-
bor wl, we draw a set of negative samples (words that are
not connected with wt in the graph), denoted as Nt,l, from
the noise distribution Pn(w). It is evident that for each word
wn ∈ Nt,l, its relevance score with wt, denoted by rtn,
should be low. Therefore, we define 1 − rtn as the irrele-
vance score and rewrite the objective OSt as:

OSt =
∑

wl∈St

r̂tl[log rtl +
∑

wn∈Nt,l

log(1− rtn)]

=
∑

wl∈St

r̂tl[log σ(u
>
l ut) +

∑
wn∈Nt,l

log σ(−u>n ut)].
(9)

To jointly learn representations from the text and semantic
knowledge, an easy way is to introduce the objective to the
SG model. However, it is still time-consuming to update the
representations for the target word and all its neighbors. We
propose positive sampling, i.e., instead of updating the rep-
resentations for all the neighbors, we only update a sampled
subset of neighbors, which can be regarded as positive sam-
ples. Given a target wordwt, considering the relevance score
in semantic knowledge, we draw positive samples from the
distribution Pp(t) ∝ r̂tl to obtain the positive sample set Pt.
Therefore, the objective becomes:

OSt =
∑

wl∈Pt

[log σ(u>l ut) +
∑

wn∈Nt,l

log σ(−u>n ut)]. (10)

Then, for every target word wt in training data, the goal is to
maximize the following objective function:

LS =

T∑
t=1

∑
wl∈Pt

[log σ(u>l ut) +
∑

wn∈Nt,l

log σ(−u>n ut)]. (11)

By integrating it with the original SG model, the joint objec-
tive is then to maximize:

L = LC + λLS , (12)

where λ balances the weight between the text and semantic
knowledge. After that, we obtain the resulting word embed-
ding with semantic knowledge (WESEK).

5 Experiments
To demonstrate the effectiveness of incorporating semantic
knowledge for WRL, we evaluate WESEK over several pop-
ular tasks, namely word similarity, word sense disambigua-
tion, text classification, and textual similarity5.

5.1 Experiments Setup
To make sure that comparisons are fair, we train all embed-
dings on the English Wikipedia dump6. Words with a fre-
quency below 5 are filtered out. The training data has around
1.2 billion tokens with a vocabulary size of 2.9 million.

Semantic knowledge construction. We extract a large
collection of semantic lists from the Common Crawl data7

using the patterns defined in Table 1 and filter out entries
that do not exist in the vocabulary of the training data. Lists
with the number of entries lower than 3 are removed, and
we only select words with a frequency above 5. After that,
we construct the semantic similarity graph as described in
Section 3. We prune the graph by removing edges with low
similarity scores using Equation 2, with µ = 0.2, i.e., for
each word, we select top weighted neighbors that their accu-
mulated sum of similarity score contributes to at least 20%
of the total sum. The performance is rather stable when µ is
between 0.1-0.5 and is slightly decreased when it is above
0.5. The resulting pruned similarity graph - semantic knowl-
edge - has 1.6 million nodes and 8.3 million edges (which

5Code and data to reproduce the results are available at
https://github.com/haoyanliu/wesek.

6http://dumps.wikimedia.org/enwiki/
7http://commoncrawl.org/



MC30 MEN-TR MTurk771 RG65 RW WS353-ALL WS353-REL WS353-SIM [AVG]
GloVepre 70.3 73.8 65.0 76.6 41.2 60.5 57.3 66.4 63.9

word2vecpre 78.8 77.1 67.1 75.0 53.4 69.2 62.2 77.7 70.1
fastTextpre 83.6 79.1 71.0 84.5 52.3 70.8 65.0 81.0 73.4
RetroWN 82.1 73.3 66.0 83.6 32.2 63.7 53.1 75.1 66.1

RetroPPDB 81.6 75.5 70.4 81.5 45.1 68.8 61.2 77.3 70.2
CF 77.2 67.7 60.8 76.7 41.0 57.8 50.2 65.3 62.1
AR 85.2 74.6 65.1 80.7 44.9 68.5 60.9 76.4 69.5

PostSpecCF 77.2 66.3 59.7 76.7 39.0 56.9 49.2 63.9 61.1
PostSpecAR 79.2 71.1 63.7 77.8 42.4 65.5 57.3 73.8 66.4

SENSE 82.2 74.2 65.0 76.4 40.0 70.7 63.4 77.7 68.7
GloVe 75.3 67.0 62.9 80.4 30.4 56.3 49.2 67.6 61.1

word2vec 81.3 74.7 65.4 81.8 44.6 70.8 64.1 77.8 70.1
fastText 80.1 76.2 65.7 81.4 47.8 71.1 64.6 77.2 70.5
WESEK 82.7 76.1 67.3 83.0 46.6 72.5 66.2 79.5 71.7

Table 2: Spearman’s ρ coefficient×100 on word similarity tasks. [AVG] means the average over all tasks. The numbers in bold
mean that WESEK outperforms word2vec, GloVe, and fastText. The underlined numbers denote the best performance achieved
on English Wikipedia dump.

suggests the semantic knowledge has a relatively high cov-
erage of the vocabulary).

Baselines and parameter settings. We compare WESEK
with word2vec, fastText (Bojanowski et al. 2017), GloVe,
and some word representation specialization methods that
leverage semantic lexicons or linguistic structures. The de-
fault size of the utilized word vectors is 300. For word2vec,
we use the skip-gram model with negative sampling; set both
context window size and the number of negative samples as
10, learning rate as 0.025; and run the algorithm for 3 iter-
ations. The word2vec embedding is considered as the input
baseline embedding for other representation specialization
methods. GloVe and fastText also use default parameter set-
tings. For other baselines, parameter settings are:

• retrofitting (Retro), proposed by Faruqui et al. (2015), is a
post-processing approach to reduce the distances between
synonyms iteratively. We report retrofitting that uses the
word2vec baseline embedding with lexicons derived from
WordNet and PPDB, denoted by RetroWN and RetroPPDB,
respectively.

• counter-fitting (CF) and attract-repel (AR), proposed by
Mrkšić et al. (2016) and Mrkšić et al. (2017), introduce
antonym and synonymy constraints for WRL. Mrkšić et
al. (2016) show that with antonyms from WordNet and
PPDB, synonyms from PPDB as semantic lexicons, CF
achieves the best performance; we report CF under this
setting, and AR under its default setting, both with the
word2vec baseline embedding as inputs.

• Post-Specialisation (PostSpec), proposed by Vulić et
al. (2018), uses a deep neural network to learn special-
ization functions of seen words in semantic lexicons, and
applies the learned functions to unseen words. We use the
word2vec baseline embedding as inputs to train two Post-
Spec models: PostSpecCF with counter-fitting as the out-
put, PostSpecAR with attract-repel as the output. Then we
obtain the specialized embeddings for the whole vocabu-
lary.

• SENSE, proposed by Liu et al. (2018), introduces con-

cept convergence and word divergence derived from
hypernym-hyponym relations of WordNet to word2vec.
We set both context window size and the number of neg-
ative samples as 10; other parameters remain default.

For fastText and SENSE, we also try other parameters by
changing the number of negative samples or the context
window size, but performance is degraded. As reference
points, we also present results using only pre-trained em-
beddings, e.g., GloVe.6B.300d from GloVe, GoogleNews-
vectors-negative300 from word2vec, and wiki-news-300d-
1M.vec from fastText, denoted by GloVepre, word2vecpre,
and fastTextpre, respectively. Results of other approaches
are not listed here, either because they are similar to the
chosen baselines (Liu et al. 2015; Bollegala et al. 2016;
Glavaš and Vulić 2018), or they cannot efficiently handle
millions of semantic lists (Niu et al. 2017).

The default setting for WESEK is similar to word2vec;
both the window size and the number of negative samples
are 10, and the number of iterations is 3. For the semantic
knowledge step in WESEK, we sample 1 positive neighbor
for each target word from the semantic similarity graph and
draw 10 negative samples. We set λ = 0.1, and experimen-
tal results show that WESEK has robust performance when
λ is less than 0.4, with λ = 0.1 achieving slightly better per-
formance. We run WESEK and the baselines 10 times under
the same settings and report the averaged performance.

5.2 Word Similarity
We use the following datasets to evaluate word similarity:
MC30 (Miller and Charles 1991), MEN-TR (Bruni et al.
2012), MTurk771 (Halawi et al. 2012), RG65 (Rubenstein
and Goodenough 1965), RW (Luong, Socher, and Manning
2013), WS353-ALL (Finkelstein et al. 2001), WS353-REL,
and WS353-SIM (Agirre et al. 2009). These datasets contain
human-assigned similarity judgements for all word pairs.
We calculate the cosine similarity between word pairs and
report the Spearman’s rank correlation coefficient ×100 be-
tween the rankings produced by cosine similarity and human



judgments. The results are shown in Table 2. The compar-
isons suggest that:

• With the same training data, WESEK always achieves
better performance than word2vec, which means that
leveraging semantic knowledge helps improve word rep-
resentation learning and WESEK is capable of encoding
web semantic knowledge effectively.

• Compared with fastText and GloVe trained on the
Wikipedia dump, WESEK has the best performance on
most datasets, except MEN-TR-3k and RW-STANFORD,
on which fastText has a better performance, mainly for the
reason that fastText learns sub-word representations that
better handle rare words or out-of-vocabulary words.

• Compared with other word representation specialization
methods that leverage WordNet or PPDB, WESEK also
achieves better performance on most datasets. It should
be noted that WordNet or PPDB are high-quality semantic
resources while the semantic knowledge incorporated in
WESEK is fully automatically constructed from web data.
The results explain that our web semantic knowledge has
relatively high quality.

• Compared with pre-trained embeddings trained on much
more data, WESEK trained on a Wikipedia dump ob-
tains similar performance, which highlights that introduc-
ing semantic knowledge helps achieve comparable perfor-
mance more efficiently.

5.3 Word Sense Disambiguation
Word sense disambiguation (WSD) aims to assign prede-
fined senses to words in contexts. Iacobacci, Pilehvar, and
Navigli (2016) provide a study of various techniques to com-
bine word embeddings with standard WSD features to train
supervised learning models. They show that word embed-
dings introduced with exponential decay, which gives more
importance to the closer context, achieves the best perfor-
mance. We follow the same settings as (Iacobacci, Pilehvar,
and Navigli 2016), with 400 as embedding size and other
parameters are under default settings. We then use expo-
nential decay to feed WESEK to the IMS system proposed
by Zhong and Ng (2010). The IMS makes use of context
words, POS tags of the context words, and some local col-
location features. We perform evaluation on Senseval-2 (Ed-
monds and Cotton 2001), Senseval-3 (Mihalcea, Chklovski,
and Kilgarriff 2004), and SemEval-2007 (Pradhan et al.
2007) English lexical sample WSD tasks, denoted by SE2,
SE3, and SE7, respectively.

We list all baselines in (Iacobacci, Pilehvar, and Navigli
2016), i.e., Taghipour and Ng (2015), AutoExtend (Rothe
and Schütze 2015), C&W (Collobert and Weston 2008), and
retrofitting (Faruqui et al. 2015). In addition, we also add
the baselines as mentioned above with exponential decay.
To make comparisons fair, for the baselines, the size of em-
beddings is also set to 400, and other parameters remain un-
changed. The results in Table 3 show that WESEK achieves
the best performance on all three benchmarks. Such results
suggest that WESEK successfully captures word senses im-
plicitly contained in semantic lists. For example, in the set of

semantic lists, “apple” might frequently co-occur with “or-
ange” as a fruit, and “microsoft” as a company. When lever-
aging the semantic graph for WRL, WESEK aims to assure
that distances between “apple” and “orange”, “apple” and
“microsoft” are both close, which helps to improve WSD
performance.

SE2 SE3 SE7
IMS 65.3 72.9 87.9

Taghipour and Ng (2015) 66.2 73.4 -
AutoExtend 66.5 73.6 -
IMS + C&W 64.3 70.1 88.0

IMS + Retrofitting 65.9 72.8 88.3
IMS + word2vec 69.9 75.2 89.4

IMS + CF 66.3 73.8 88.6
IMS + AR 66.8 73.6 88.6

IMS + PostSpecCF 66.3 73.8 88.7
IMS + PostSpecAR 66.4 73.6 88.6

IMS + SENSE 69.8 75.4 89.5
IMS + fastText 69.7 75.4 89.7
IMS + WESEK 70.1 75.5 89.8

Table 3: Lexical word sense disambiguation.

5.4 Text Classification and Textual Similarity
We use SentEval (Conneau and Kiela 2018) to evaluate WE-
SEK on text classification and textual similarity. SentEval
is a toolkit to evaluate the quality of sentence representa-
tions. In SentEval, sentence embeddings are considered as
input features for various downstream NLP tasks, including
text classification, natural language inference, and semantic
textual similarity, etc. We use the bag-of-words (average of
word vectors) (BOW) provided by the SentEval toolkit to
obtain sentence embeddings for evaluation. Though we can
try other models, we believe that simpler models might bet-
ter reflect the effectiveness of WESEK.

Text classification. In SentEval, classification tasks in-
clude sentiment analysis (MR, SST, CR and MPQA) (Pang
and Lee 2005; Socher et al. 2013; Hu and Liu 2004;
Wiebe, Wilson, and Cardie 2005), question-type clas-
sification (TREC) (Voorhees and Tice 2000), subjectiv-
ity/objectivity classification (SUBJ) (Pang and Lee 2004),
entailment (SICK-E) (Marelli et al. 2014), and paraphrase
classification on Microsoft Research Paraphrase Corpus
(MRPC) (Dolan, Quirk, and Brockett 2004). The perfor-
mance is evaluated on the logistic regression classifier
trained on the BOW embeddings. We report the F1 score
for MRPC and the accuracy for other tasks.

Semantic textual similarity. For semantic textual sim-
ilarity (STS) tasks, we make evaluations on seman-
tic relatedness tasks (SICK-R and STS-B) (Cer et al.
2017), and STS tasks from 2012 to 2016 (Agirre et
al. 2012; 2013; 2014; 2015; 2016). We calculate the Pearson
correlations×100 between the similarity of sentence repre-
sentations obtained by BOW and human judgement.

Table 4 presents the results for text classification and se-
mantic textual similarity. WESEK achieves the best overall
performance for both tasks. The results also show that:



RetroWN RetroPPDB CF AR PostSpecCF PostSpecAR SENSE GloVe word2vec fastText WESEK
MR 73.4 73.6 73.2 73.3 72.7 74.2 74.6 72.9 74.8 74.1 75.3
CR 72.8 74.2 75.1 75.5 76.7 76.7 76.1 75.2 75.8 75.8 76.5

SUBJ 90.0 89.7 89.6 89.0 89.6 89.9 90.9 90.0 90.8 90.8 91.0
MPQA 86.7 87.4 86.7 87.6 87.1 87.8 86.6 85.6 86.9 87.1 86.8
SST2 79.6 79.4 78.4 77.4 79.4 80.0 79.0 76.6 78.8 78.6 78.7
SST5 40.7 41.6 41.1 39.0 41.6 41.2 41.5 39.6 41.7 40.9 40.9
TREC 64.3 65.0 67.0 68.0 66.8 71.4 72.6 69.0 71.8 66.0 72.8
MRPC 80.1 79.8 78.8 79.2 80.2 79.9 80.1 79.1 79.8 78.8 80.4
SICK-E 76.6 76.4 78.1 76.3 78.7 78.8 77.3 77.2 78.3 78.2 78.4
[AVG] 73.8 74.1 74.2 73.9 74.8 75.5 75.4 73.9 75.4 74.5 75.6
STS12 45.5 53.3 49.7 52.4 52.0 52.0 56.3 40.7 57.4 58.0 58.7
STS13 44.3 50.6 42.0 44.2 44.9 42.9 54.0 35.6 53.9 55.1 56.0
STS14 52.9 57.0 51.7 52.3 55.9 55.2 62.0 43.2 62.3 63.0 64.9
STS15 51.8 55.5 53.0 55.4 54.1 53.8 62.2 44.1 61.8 61.9 64.6
STS16 40.2 49.0 47.0 48.8 44.4 47.4 56.3 31.9 57.8 58.6 61.2

SICK-R 75.1 76.2 75.3 72.8 77.1 76.8 78.2 76.6 79.4 79.4 79.3
STS-B 57.4 61.2 58.2 52.9 61.8 61.1 64.6 58.6 64.2 64.7 64.7
[AVG] 52.5 57.5 53.8 54.1 55.7 55.6 61.9 47.2 62.4 63.0 64.2

Table 4: Text classification (top half) and textual similarity (bottom half). [AVG] means the average over all tasks. The numbers
in bold mean that WESEK outperforms word2vec, GloVe, and fastText. The underlined numbers denote the best performance.

• For text classification, WESEK achieves better perfor-
mance on most datasets compared with each of the base-
lines. WESEK does not perform as well as PostSpecCF
and PostSpecAR on sentiment classification tasks (CR,
SST, and MPQA), mainly because many antonyms intro-
duced in these methods have opinion polarities. For other
classification tasks, the improved results demonstrate that
the semantic representations are enhanced in WESEK.

• On the STS tasks, WESEK significantly outperforms
word2vec, GloVe, and fastText, which explains that se-
mantic knowledge mined from the web can complement
and enhance the semantic representations learned from
text corpora. Other approaches that leverage semantic lex-
icons or linguistic constraints have poor performance.
The reason might be that word representations lose the
original captured semantic regularities in text during spe-
cialization, or the introduced semantic lexicons/linguistic
constraints have limited coverage of the vocabulary.

6 Conclusion and Future Work
Enhancing WRL with semantic lexicons is a hot topic in
NLP research areas. In this paper, we propose WESEK -
an approach to enhance word embeddings with semantic
knowledge. Unlike existing work that leverages WordNet
or PPDB, the semantic knowledge introduced in WESEK
can be fully automatically constructed from web data. WE-
SEK outperforms state-of-the-art embeddings on multiple
NLP tasks, which demonstrates that leveraging web seman-
tic knowledge helps improve WRL and that WESEK is ca-
pable of encoding semantic knowledge effectively.

In future work, we will apply WESEK to downstream
tasks of other languages. We also intend to further investi-
gate semantic relations like hypernyms and hyponyms, syn-
onyms, antonyms that can be automatically, or partially au-
tomatically, constructed from the web to improve WRL.
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