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Abstract 

Recently, we proposed layer trajectory (LT) LSTM (ltLSTM) 

which significantly outperforms LSTM by decoupling the 

functions of senone classification and temporal modeling with 

separate depth and time LSTMs.  We further improved ltLSTM 

with contextual layer trajectory LSTM (cltLSTM) which uses 

the future context frames to predict target labels. Given bi-

directional LSTM (BLSTM) also uses future context frames to 

improve its modeling power, in this study we first compare the 

performance between these two models. Then we apply the 

layer trajectory idea to further improve BLSTM models, in 

which BLSTM is in charge of modeling the temporal 

information while depth-LSTM takes care of senone 

classification. In addition, we also investigate the model 

performance among different LT component designs on 

BLSTM models. Trained with 30 thousand hours of EN-US 

Microsoft internal data, the proposed layer trajectory BLSTM 

(ltBLSTM) model improved the baseline BLSTM with up to 

14.5% relative word error rate (WER) reduction across different 

tasks.    
Index Terms: BLSTM, layer trajectory, future context, senone 

classification 

1. Introduction 

Automatic speech recognition (ASR) has achieved significant 

progress recently since the deep feedforward neural networks 

(DNNs) [1] was replaced by long short-term memory (LSTM) 

[2] based recurrent neural networks (RNNs). Standard RNNs 

usually have the gradient vanishing or exploding issues which 

can be alleviated by LSTM. Therefore, LSTM-RNNs 

[3,4,5,6,7,8] show better capacity of capturing long span 

temporal information and have been shown to outperform 

DNNs on a variety of ASR tasks [9].  

Recently, we proposed a layer trajectory LSTM (ltLSTM) 

model [10], in which depth-LSTMs are used to scan the outputs 

of multi-layer time-LSTMs to extract information for label 

classification. By decoupling the temporal modeling and 

senone classification tasks, ltLSTM allows time and depth 

LSTMs focusing on their individual tasks. In addition, the 

depth-LSTM can make deeper LSTM training easier since it 

creates auxiliary connections for gradient flow to further 

alleviate the gradient vanishing and exploding issues. 

Compared to traditional LSTMs or residual LSTMs [11, 12], 

ltLSTM models achieved significant accuracy improvement 

[10]. In [13], the generated ltLSTM structure with the depth 

processing block was proposed, in which gated and max-

pooling [14, 15, 16] feedforward units were integrated for the 

depth processing component to reduce the computational cost. 

To further improve the performance of ltLSTM models, we 

recently proposed contextual layer trajectory LSTM (cltLSTM) 

which uses context frames to capture future information [17]. 

As shown in [17], the lookahead embeddings from either time-

LSTM or depth-LSTM helped to improve recognition 

performance significantly.  

The extreme case of using lookahead frames is the bi-

directional LSTM (BLSTM) modeling [18] since it has the 

backward LSTM running from the end of utterances to the 

beginning. Since BLSTM models can capture very long future 

information in speech recognition, they often got superior 

performance than uni-directional LSTM models [19]. 

Given the success of ltLSTM and cltLSTM which apply the 

concept of layer trajectory (LT) processing to LSTM modeling, 

a natural question is whether we can improve BLSTM with the 

layer trajectory concept. In this paper, we propose layer 

trajectory BLSTM (ltBLSTM) by decoupling the tasks of 

senone classification using depth LSTM and temporal modeling 

using time BLSTM. Our experiments were performed using 

around 30 thousand hours of anonymized EN-US data. Results 

show that the proposed ltBLSTM can outperform BLSTM with 

up to 14.5% relative word error rate (WER) reduction. It also 

improves cltLSTM significantly because ltBLSTM observes 

longer future context than cltLSTM which is still a uni-

directional model. 

The rest of the paper is organized as following. In Section 

2, we describe cltLSTM and how the context future information 

is integrated. In Section 3, we briefly introduce the standard 

multi-layer BLSTM models. Then we propose ltBLSTM with 

different designs of LT components in Section 4. We evaluate 

the proposed models and compare their performance in Section 

5. Finally, we conclude our study in Section 6.   

2. Contextual Layer Trajectory LSTM 

Standard multi-layer LSTM captures temporal information by 

using the hidden output of the previous time step at the same 

layer and the hidden output of the previous layer at current time 

step as the input of the current time step. The 𝑙-th layer LSTM 

units are calculated at time step 𝑡 as following.       
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     where �⃗�𝑡
𝑙 is the input vector for the 𝑙-th layer with 
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𝑙 =  1. . . 𝐿, where 𝐿 is the total number of hidden layers; 𝑠𝑡 is 

the speech spectrum input at the time step 𝑡. ℎ⃗⃗𝑡
𝑙  is the output of 

the time-LSTM. �⃗⃗⃗⃗�𝑥 .
𝑙  and �⃗⃗⃗⃗�ℎ .

𝑙  are the weight matrices for the 



 

 

inputs �⃗�t 
𝑙  and the recurrent inputs ℎ⃗⃗𝑡−1

𝑙 , respectively. �⃗⃗�.
𝑙 are bias 

vectors. The vectors 𝑖𝑡
𝑙 , �⃗�𝑡

𝑙, 𝑓𝑡
𝑙, 𝑐𝑡

𝑙 are the activations of the input, 

output, forget gates, and memory cells, respectively. 𝑝𝑡
𝑙, 𝑝𝑜

𝑙 , 𝑝𝑓
𝑙  

are parameter vectors associated with peephole connections. 

The functions 𝜎 and ∅ are the logistic sigmoid and hyperbolic 

tangent nonlinearity, respectively. The operation ʘ represents 

element-wise multiplication of vectors. 

We define the standard forward LSTM function 

𝐿𝑆𝑇𝑀( ) using Equations (1) – (5).  Then the time-LSTM at 

time 𝑡 and layer 𝑙 can be simply defined as 

                                ℎ⃗⃗𝑡
𝑙 = 𝐿𝑆𝑇𝑀(ℎ⃗⃗𝑡−1

𝑙 , ℎ⃗⃗𝑡
𝑙−1)                          (7) 

The layer trajectory LSTM (ltLSTM) model [10] uses time-

LSTM in Equation (7) to capture temporal information and 

depth-LSTM to perform senone classification, respectively. It 

was shown to achieve better accuracy than standard time-

LSTM models. The depth-LSTM is similarly defined as 

  𝑔𝑡
𝑙 = 𝐿𝑆𝑇𝑀(𝑔𝑡

𝑙−1, ℎ⃗⃗𝑡
𝑙 )                            (8) 

where 𝑔𝑡
𝑙−1 is the output of depth-LSTM at time 𝑡 and layer 𝑙 −

1, and ℎ𝑡
𝑙  is the output of time-LSTM at time 𝑡 and layer 𝑙. The 

last hidden layer output from depth-LSTM, 𝑔𝑡
𝐿, is then used to 

predict output labels.  

The contextual layer trajectory LSTM (cltLSTM) model 

further improves ltLSTM by incorporating future context 

frames into the modeling [17]. The idea is to learn a fixed size 

vector representation of variable future frames as lookahead 

embedding to provide additional feature input information to 

the network. One simple way to incorporate future frame 

information is to generate an embedding vector of a context 

window from the depth-LSTM through a linear transform as  

         𝜁𝑡
𝑙−1 =  ∑ 𝐺𝛿

𝑙−1𝜏
𝛿=0 𝑔𝑡+𝛿

𝑙−1                        (9) 

where  𝐺𝛿
𝑙−1 denotes the weight matrix for 𝛿th future frame, 

𝑔𝑡+𝛿
𝑙−1  is the output of the depth-LSTM at time 𝑡 + 𝛿 and layer 

𝑙 − 1, and 𝜏 indicates how many future frames we look ahead 

at a layer in depth-LSTM. Then, 𝜁𝑡
𝑙−1 replaces 𝑔𝑡

𝑙−1 in Equation 

(8) to compute the depth-LSTM output 𝑔𝑡
𝑙  at the current layer. 

Equation (9) is applied to all hidden layers in our experiments. 

For a L layer cltLSTM which accesses 𝜏 future context frames 

of hidden vectors from depth-LSTM, the total number of 

lookahead frames is 𝐿𝜏. 

3. BSLTM 

In speech recognition, it is necessary to exploit future context 

to obtain better recognition accuracy. Bidirectional RNNs 

(BRNNs) [22] can do this since they process data in both 

directions with two separate hidden layers, which are then 

concatenated and fed to the upper layer. The BLSTM model 

[23] combines BRNNs with LSTM to access long-range 

context. Its forward LSTM scans an utterance from the 

beginning while its backward LSTM scans from the end of the 

utterance. Equations (1) – (7) shows how a standard forward 

time-LSTM works. For the backward time-LSTM, it works 

similarly except that it starts the computation from the end of 

an utterance. The backward LSTM unit can be simply defined 

as 

                                ℎ⃖⃗𝑡
𝑙 = 𝐿𝑆𝑇𝑀(ℎ⃖⃗𝑡+1

𝑙 , ℎ⃖⃗𝑡
𝑙−1)                          (10) 

In order to make the forward and backward time LSTMs work 

jointly, the input to the current layer should be modified as 

                          ℎ⃡𝑡
𝑙 = [ℎ⃗⃗𝑡

𝑙−1, ℎ⃖⃗𝑡
𝑙−1]                                        (11) 

                            𝑥𝑡
𝑙 =  {

ℎ⃡𝑡
𝑙  ,   𝑖𝑓 𝑙 > 1

𝑠𝑡  ,    𝑖𝑓 𝑙 = 1
                                   (12) 

where ℎ⃗⃗𝑡
𝑙−1 is calculated by forward LSTM and ℎ⃖⃗𝑡

𝑙−1 is by 

backward LSTM. In Figure 1, we show a multi-layer BLSTM 

network topology, where outputs from the forward LSTM and 

the backward LSTM are concatenated as the inputs to the upper 

layer.  

Since both cltLSTM and BLSTM use the future context as 

input to improve the recognition accuracy, it would be very 

interesting compare them. We will provide more experimental 

results in Section 5.     
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Figure 1: Flowchart of multi-layer time-BLSTM (T-BLSTM). 

The outputs from the forward LSTM and the backward LSTM 

are concatenated as the inputs for upper layers.  

 

4. Layer Trajectory Designs on BLSTM 

4.1. Layer trajectory BLSTM 

The concept of layer trajectory (LT) is decoupling the tasks of 

temporal modeling and senone classification in ASR with time-

LSTM and depth-LSTM respectively. Given its success on 

cltLSTM, we want to see how LT could help to the more 

powerful BLSTM models.  

Here, we propose layer trajectory BLSTM (ltBLSTM) by 

using depth-LSTM to scan the multi-layer outputs of time-

BLSTMs.  The output of depth-LSTM at time 𝑡 and layer 𝑙 is 

defined as 

  𝑔𝑡
𝑙 = 𝐿𝑆𝑇𝑀(𝑔𝑡

𝑙−1, ℎ⃡𝑡
𝑙 )                         (13) 

where ℎ⃡𝑡
𝑙  is the time-BLSTM’s output at time 𝑡 and layer 𝑙 as 

defined in Equation (11). The depth-LSTM units at different 

time steps do not have any time dependency while the time 

recurrence is only modelled in time-BLSTM across the time 

axis. Hence, ltBLSTM uses time-BLSTM to capture the 

temporal information while doing senone classification with 

depth-LSTM. Its structure is shown in Figure 2. 
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Figure 2: Flowchart of ltBLSTM. Depth-LSTM (D-LSTM) is 

used to scan the outputs of time-BLSTM (T-BLSTM) across all 

layers at the current time step to get summarized layer 

trajectory information for senone classification. 

4.2. ltBLSTM with two LT components 

Since BLSTM includes 2 LSTM components for both forward 

and backward temporal modeling, it is possible to consider 

applying separate LTs on the forward and backward LSTMs. 

We then investigate using two depth-LSTMs in ltBLSTM and 

each of them is coupled with one directional LSTM component 

in BLSTM model as shown in Figure 3. Compared to the 

ltBLSTM which only uses a single depth LSTM at each layer 

in Section 4.1, the only change is that now we use two depth-

LSTMs at each layer.  

 

Figure 3 shows two design options.  Instead of using 

BLSTM outputs as inputs for a single depth-LSTM model as 

defined in Equation (13), in the first option (Figure 3(a)) the 

outputs from forward and backward LSTM are fed as inputs to 

two separate depth-LSTMs as 

  �⃗�𝑡
𝑙 = 𝐿𝑆𝑇𝑀(�⃗�𝑡

𝑙−1, ℎ⃗⃗𝑡
𝑙 )                         (14) 

  �⃖�𝑡
𝑙 = 𝐿𝑆𝑇𝑀(�⃖�𝑡

𝑙−1, ℎ⃖⃗𝑡
𝑙 )                         (15) 

where �⃗�𝑡
𝑙  and �⃖�𝑡

𝑙  are the outputs of forward and backward depth-

LSTMs at time 𝑡 and layer 𝑙, and ℎ⃗⃗𝑡
𝑙  and ℎ⃖⃗𝑡

𝑙  are the outputs of 

forward and backward time-LSTM at time 𝑡 and layer 𝑙, 
respectively. Finally the outputs of layer 𝐿 from depth-LSTMs 

are [�⃗�𝑡
𝐿, �⃖�𝑡

𝐿] are concatenated to predict the output senone 

labels.  

 

The second option is shown in Figure 3(b), in which the 

outputs of depth-LSTMs at each layer are concatenated as the 

input to both depth-LSTMs at the next layer.  

  �⃗�𝑡
𝑙 = 𝐿𝑆𝑇𝑀(𝑔𝑡

𝑙−1, ℎ⃗⃗𝑡
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𝑔𝑡
𝑙−1 =  {

[�⃗�𝑡
𝑙−1, �⃖�𝑡
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where �⃗�𝑡
𝑙−1 and �⃖�𝑡

𝑙−1 are the outputs of depth-LSTMs at time 𝑡 

and layer 𝑙 − 1, and 𝑠𝑡 is the speech spectrum input at the time 

step 𝑡 as defined in Equation (6). 

We will compare the model performance of different LT 

designs in Section 5.    
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Figure 3: Two LT design for BLSTM models; (a): depth-LSTM 

combination only occurs at the output layer; (b): depth-LSTM 

combination occurs at each hidden layer.  

5. Experiments 

In this section, we evaluate the performance of LSTM, 

cltLSTM, BLSTM, and ltBLSTM. All models were trained 

with 30 thousand hours of anonymized and transcribed 

Microsoft production data, including Cortana and 

Conversational data which is a mixture of close-talk and far-

field speech recorded from a variety of devices. All time-

LSTMs and depth-LSTMs in cltLSTM use 1024 hidden units 

and the output of each LSTM layer is reduced to 512 using a 

linear projection layer. The time forward and backward LSTMs 

in BLSTM models use 800 hidden units and their outputs at 

each layer are reduced to 400 by a linear projection layer. The 

depth-LSTMs in ltBLSTM models use 800 hidden units that are 

projected to 400 dimensional outputs in the standard one LT 

design and use 400 hidden units if two LT components are used. 

All models have 6 hidden layers, which experimentally we 

found is the best compromise between computational cost and 

performance. In addition, more hidden layers may lead to model 

divergence issue [10]. The cltLSTM has 4 frames lookahead at 

each layer, hence 24 frames lookahead in total. We reduce the 

latency of BLSTM and ltBLSTM models by using the concept 

of latency control with 40 frames lookahead [24]. The SoftMax 

layer has 9404 nodes to model the senone labels. The target 

senone label is delayed by 5 frames as in [25]. The 

backpropagation through time (BPTT) [26] with truncation size 

40 is used to train all cltLSTM models. The input feature is 80-

dimension log Mel filter bank for every 10 milliseconds (ms) 

speech. We applied frame skipping by a factor of 2 [8] to reduce 



 

 

the runtime cost. A 5-gram language model  with around 1 

million (M) vocabularies and 100 M n-grams was applied in all 

our experiment evaluations.  

All cross entropy (CE) trained models were evaluated in our 

experiments with Microsoft Cortana and Conversation test sets, 

including both close-talk and far-field recordings with 439k and 

111k words, respectively. Later we also trained sequence based 

discriminative models and obtained the similar performance 

improvement pattern as in [13], but that is not the focus of this 

study. Compared to the Conversation test set that has longer 

utterances from conversations, the Cortana test set has shorter 

utterances of voice search and commands. In addition, the 

models were also evaluated on a third test set named as DMA 

with 29k words, which is a Microsoft internal meeting test set 

from the different domain than Cortana or Conversation data 

and is not covered well in our training data. Therefore, the 

DMA test set measures the generalization capability of our 

models. 

 

Table 1: WERs of LSTM, cltLSTM, BLSTM and ltBLSTM on 

Cortana, Conversation, and DMA test sets 

Model   Cortana Conversation DMA 

LSTM 9.85 19.20 20.19 

    cltLSTM 

 chunk size =16 
8.78 16.51 15.58 

    cltLSTM 

 chunk size =40 
8.01 15.62 14.68 

BLSTM 8.18 15.64 14.98 

     ltBLSTM 7.73 14.39 12.81 

Table 1 shows WERs of LSTM, cltLSTM, BLSTM and 

ltBLSTM models. In our previous study [17], we used truncated 

backpropagation through time to train cltLSTM models. The 

truncation size is 16 in order to speed up training process. That 

means, in a chunk window, the left most frame was able to 

access at most 15 future frames even though we designed the 

model structure to have 24 frames lookahead. This undermines 

the performance of cltLSTM models significantly. In this paper, 

we increased the training chunk window size from 16 to 40. 

This solution is still not perfect in theory, it represents however 

a better tradeoff between training efficiency and accuracy. 

Actually, the chunk window size 80 was also tried in our 

experiments, and we didn’t get significantly better results.   The 

cltLSTM model with chunk window size 40 achieved 8.01%, 

15.62%, and 14.68% WERs on Cortana, Conversation, and 

DMA test sets, respectively, which corresponds to relative 

8.8%,  5.4%, and 5.8% WER reductions from the baseline 

cltLSTM with the training chunk window size 16 in our 

previous research. This is much better than the performance of 

baseline LSTM.  

 

Table 2: WERs of different LT designs on Cortana, 

Conversation, and DMA test sets 

Model Cortana Conversation    DMA 

  ltBLSTM (1LT) 7.73 14.39 12.81 

  ltBLSTM (2LT) 7.74 14.62 13.38 

ltBLSTM 

(2LT-concat) 
7.58 14.44 12.75 

   Since both cltLSTM and BLSTM use future context 

frames for modeling, we also compare their recognition 

performance in Table 1. Overall, cltLSTM obtained slightly 

lower WERs than BLSTM. On Cortana, Conversation, and 

DMA test sets, cltLSTM model got relative 2.1%, 0.1%, and 

2.0% WER reductions over BLSTM model. This is because 

cltLSTM benefits both LT modeling and access to future 

information while BLSTM only has the access of future 

information. After integrating LT modeling into BLSTM using 

the method in Section 4.1 which only has one depth-LSTM at 

each layer, the ltBLSTM model clearly outperformed cltLSTM 

in Table 1. The ltBLSTM model obtained WERs 7.73%, 

14.39%, and 12.81% on Cortana, Conversation, and DMA test 

sets, representing  relative 5.5%, 8.0%, and 14.5% WER 

reductions over the BLSTM baseline across these three test sets 

respectively. It also improved cltLSTM with relative 3.5%, 

7.9%, and 12.7% WER reductions on these three test sets, 

respectively. Finally, ltBLSTM model size is around 1/3 larger 

than the baseline BLSTM model without increasing any 

recognition latency at runtime. However, there were extra 

computational cost in both training and test due to enlarged 

model size. We didn’t compare the performance between equal 

sized ltBLSTM and BLSTM models. However, our past 

observations suggest that simply increasing the BLSTM model 

size would not yield such significant performance 

improvement.  

In Table 2, we compare the ltBLSTM model performance 

among different LT designs discussed in Section 4. The 

ltBLSTM in Section 4.1 is denoted as ltBLSTM (1LT). Using 

two depth-LSTM components and combining their outputs only 

at the last hidden layer as shown in Figure 3(a),  the  ltBLSTM 

(2LT) model got WERs 7.74%, 14.62%, and 13.38% on 

Cortana, Conversation, and DMA test sets, which is slight 

worse than the ltBLSTM (1LT) model . However, if two depth-

LSTMs’ outputs are concatenated at each hidden layer as shown 

in Figure 3(b), the ltBLSTM (2LT-concat) model obtained 

WERs 7.58%, 14.44%, and 12.75% across these three test sets, 

which is relative 1.9%,   -0.3%, and 0.5% WER reductions over 

one depth-LSTM baseline. Actually, since the lower layer 

outputs of forward and backward LSTMs are concatenated as 

inputs to upper layer forward and backward LSTMs in BLSTM, 

the two separated depth-LSTMs get redundant input 

information from lower BLSTM layers as shown in Figure 3. 

Therefore, the options of using two depth-LSTM has no 

obvious advantage over the baseline using one depth-LSTM. In 

other words, the design of using one depth-LSTM at each layer 

is very effective and robust for both uni-directional LSTM and 

BLSTM models.  

6. Conclusions 

In this paper, we proposed a novel model called ltBLSTM 

which scans the outputs of the multi-layer time-BLSTM with a 

depth-LSTM to learn layer trajectory information for senone 

classification. By decoupling the tasks of temporal modeling 

and target classification with time-BLSTM and depth-LSTM, 

this model allows individual LSTM units to focus on their own 

tasks. Trained with 30k hours of Microsoft internal speech data, 

the proposed ltBLSTM achieved relative 5.5%, 8.0%, and 

14.5% WER reduction from the BLSTM baseline. The larger 

improvement on DMA test set also indicates LT component 

significantly improved model generalization capacity on 

unseen test sets. Finally, we investigated different LT designs 

of ltBLSTM models and found that the design with one depth-

LSTM at each layer is effective enough for ltBLSTM models to 

achieve good recognition performance.  
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