

Layer Trajectory BLSTM

Eric Sun, Jinyu Li, Yifan Gong

Microsoft Speech and Language Group

{sun.eric,jinyli,Yifan.Gong}@microsoft.com

Abstract

Recently, we proposed layer trajectory (LT) LSTM (ltLSTM)

which significantly outperforms LSTM by decoupling the

functions of senone classification and temporal modeling with

separate depth and time LSTMs. We further improved ltLSTM

with contextual layer trajectory LSTM (cltLSTM) which uses

the future context frames to predict target labels. Given bi-

directional LSTM (BLSTM) also uses future context frames to

improve its modeling power, in this study we first compare the

performance between these two models. Then we apply the

layer trajectory idea to further improve BLSTM models, in

which BLSTM is in charge of modeling the temporal

information while depth-LSTM takes care of senone

classification. In addition, we also investigate the model

performance among different LT component designs on

BLSTM models. Trained with 30 thousand hours of EN-US

Microsoft internal data, the proposed layer trajectory BLSTM

(ltBLSTM) model improved the baseline BLSTM with up to

14.5% relative word error rate (WER) reduction across different

tasks.
Index Terms: BLSTM, layer trajectory, future context, senone

classification

1. Introduction

Automatic speech recognition (ASR) has achieved significant

progress recently since the deep feedforward neural networks

(DNNs) [1] was replaced by long short-term memory (LSTM)

[2] based recurrent neural networks (RNNs). Standard RNNs

usually have the gradient vanishing or exploding issues which

can be alleviated by LSTM. Therefore, LSTM-RNNs

[3,4,5,6,7,8] show better capacity of capturing long span

temporal information and have been shown to outperform

DNNs on a variety of ASR tasks [9].

Recently, we proposed a layer trajectory LSTM (ltLSTM)

model [10], in which depth-LSTMs are used to scan the outputs

of multi-layer time-LSTMs to extract information for label

classification. By decoupling the temporal modeling and

senone classification tasks, ltLSTM allows time and depth

LSTMs focusing on their individual tasks. In addition, the

depth-LSTM can make deeper LSTM training easier since it

creates auxiliary connections for gradient flow to further

alleviate the gradient vanishing and exploding issues.

Compared to traditional LSTMs or residual LSTMs [11, 12],

ltLSTM models achieved significant accuracy improvement

[10]. In [13], the generated ltLSTM structure with the depth

processing block was proposed, in which gated and max-

pooling [14, 15, 16] feedforward units were integrated for the

depth processing component to reduce the computational cost.

To further improve the performance of ltLSTM models, we

recently proposed contextual layer trajectory LSTM (cltLSTM)

which uses context frames to capture future information [17].

As shown in [17], the lookahead embeddings from either time-

LSTM or depth-LSTM helped to improve recognition

performance significantly.

The extreme case of using lookahead frames is the bi-

directional LSTM (BLSTM) modeling [18] since it has the

backward LSTM running from the end of utterances to the

beginning. Since BLSTM models can capture very long future

information in speech recognition, they often got superior

performance than uni-directional LSTM models [19].

Given the success of ltLSTM and cltLSTM which apply the

concept of layer trajectory (LT) processing to LSTM modeling,

a natural question is whether we can improve BLSTM with the

layer trajectory concept. In this paper, we propose layer

trajectory BLSTM (ltBLSTM) by decoupling the tasks of

senone classification using depth LSTM and temporal modeling

using time BLSTM. Our experiments were performed using

around 30 thousand hours of anonymized EN-US data. Results

show that the proposed ltBLSTM can outperform BLSTM with

up to 14.5% relative word error rate (WER) reduction. It also

improves cltLSTM significantly because ltBLSTM observes

longer future context than cltLSTM which is still a uni-

directional model.

The rest of the paper is organized as following. In Section

2, we describe cltLSTM and how the context future information

is integrated. In Section 3, we briefly introduce the standard

multi-layer BLSTM models. Then we propose ltBLSTM with

different designs of LT components in Section 4. We evaluate

the proposed models and compare their performance in Section

5. Finally, we conclude our study in Section 6.

2. Contextual Layer Trajectory LSTM

Standard multi-layer LSTM captures temporal information by

using the hidden output of the previous time step at the same

layer and the hidden output of the previous layer at current time

step as the input of the current time step. The 𝑙-th layer LSTM

units are calculated at time step 𝑡 as following.

 𝑖𝑡
𝑙 = 𝜎(�⃗⃗⃗⃗�𝑥𝑖

𝑙 �⃗�𝑡
𝑙 + �⃗⃗⃗⃗�ℎ𝑖

𝑙 ℎ⃗⃗𝑡−1
𝑙 + 𝑝𝑖

𝑙ʘ𝑐𝑡−1
𝑙 + �⃗⃗�𝑖

𝑙), (1)

 𝑓𝑡
𝑙 = 𝜎(�⃗⃗⃗⃗�𝑥𝑓

𝑙 �⃗�𝑡
𝑙 + �⃗⃗⃗⃗�ℎ𝑓

𝑙 ℎ⃗⃗𝑡−1
𝑙 + 𝑝𝑓

𝑙 ʘ𝑐𝑡−1
𝑙 + �⃗⃗�𝑓

𝑙), (2)

 𝑐𝑡
𝑙 = 𝑓𝑡

𝑙ʘ𝑐𝑡−1
𝑙 + 𝑖𝑡

𝑙 ʘ∅(�⃗⃗⃗⃗�𝑥𝑐
𝑙 �⃗�𝑡

𝑙 + �⃗⃗⃗⃗�ℎ𝑐
𝑙 ℎ⃗⃗𝑡−1

𝑙 + �⃗⃗�𝑐
𝑙), (3)

 �⃗�𝑡
𝑙 = 𝜎(�⃗⃗⃗⃗�𝑥𝑜

𝑙 �⃗�𝑡
𝑙 + �⃗⃗⃗⃗�ℎ𝑜

𝑙 ℎ⃗⃗𝑡−1
𝑙 + 𝑝𝑜

𝑙 ʘ𝑐𝑡
𝑙 + �⃗⃗�𝑜

𝑙), (4)

 ℎ⃗⃗𝑡
𝑙 = �⃗�𝑡

𝑙ʘ∅(𝑐𝑡
𝑙), (5)

 where �⃗�𝑡
𝑙 is the input vector for the 𝑙-th layer with

 �⃗�𝑡
𝑙 = {

ℎ⃗⃗𝑡
𝑙−1 , 𝑖𝑓 𝑙 > 1

𝑠𝑡 , 𝑖𝑓 𝑙 = 1
 (6)

𝑙 = 1. . . 𝐿, where 𝐿 is the total number of hidden layers; 𝑠𝑡 is

the speech spectrum input at the time step 𝑡. ℎ⃗⃗𝑡
𝑙 is the output of

the time-LSTM. �⃗⃗⃗⃗�𝑥 .
𝑙 and �⃗⃗⃗⃗�ℎ .

𝑙 are the weight matrices for the

inputs �⃗�t
𝑙 and the recurrent inputs ℎ⃗⃗𝑡−1

𝑙 , respectively. �⃗⃗�.
𝑙 are bias

vectors. The vectors 𝑖𝑡
𝑙 , �⃗�𝑡

𝑙, 𝑓𝑡
𝑙, 𝑐𝑡

𝑙 are the activations of the input,

output, forget gates, and memory cells, respectively. 𝑝𝑡
𝑙, 𝑝𝑜

𝑙 , 𝑝𝑓
𝑙

are parameter vectors associated with peephole connections.

The functions 𝜎 and ∅ are the logistic sigmoid and hyperbolic

tangent nonlinearity, respectively. The operation ʘ represents

element-wise multiplication of vectors.

We define the standard forward LSTM function

𝐿𝑆𝑇𝑀() using Equations (1) – (5). Then the time-LSTM at

time 𝑡 and layer 𝑙 can be simply defined as

 ℎ⃗⃗𝑡
𝑙 = 𝐿𝑆𝑇𝑀(ℎ⃗⃗𝑡−1

𝑙 , ℎ⃗⃗𝑡
𝑙−1) (7)

The layer trajectory LSTM (ltLSTM) model [10] uses time-

LSTM in Equation (7) to capture temporal information and

depth-LSTM to perform senone classification, respectively. It

was shown to achieve better accuracy than standard time-

LSTM models. The depth-LSTM is similarly defined as

 𝑔𝑡
𝑙 = 𝐿𝑆𝑇𝑀(𝑔𝑡

𝑙−1, ℎ⃗⃗𝑡
𝑙) (8)

where 𝑔𝑡
𝑙−1 is the output of depth-LSTM at time 𝑡 and layer 𝑙 −

1, and ℎ𝑡
𝑙 is the output of time-LSTM at time 𝑡 and layer 𝑙. The

last hidden layer output from depth-LSTM, 𝑔𝑡
𝐿, is then used to

predict output labels.

The contextual layer trajectory LSTM (cltLSTM) model

further improves ltLSTM by incorporating future context

frames into the modeling [17]. The idea is to learn a fixed size

vector representation of variable future frames as lookahead

embedding to provide additional feature input information to

the network. One simple way to incorporate future frame

information is to generate an embedding vector of a context

window from the depth-LSTM through a linear transform as

 𝜁𝑡
𝑙−1 = ∑ 𝐺𝛿

𝑙−1𝜏
𝛿=0 𝑔𝑡+𝛿

𝑙−1 (9)

where 𝐺𝛿
𝑙−1 denotes the weight matrix for 𝛿th future frame,

𝑔𝑡+𝛿
𝑙−1 is the output of the depth-LSTM at time 𝑡 + 𝛿 and layer

𝑙 − 1, and 𝜏 indicates how many future frames we look ahead

at a layer in depth-LSTM. Then, 𝜁𝑡
𝑙−1 replaces 𝑔𝑡

𝑙−1 in Equation

(8) to compute the depth-LSTM output 𝑔𝑡
𝑙 at the current layer.

Equation (9) is applied to all hidden layers in our experiments.

For a L layer cltLSTM which accesses 𝜏 future context frames

of hidden vectors from depth-LSTM, the total number of

lookahead frames is 𝐿𝜏.

3. BSLTM

In speech recognition, it is necessary to exploit future context

to obtain better recognition accuracy. Bidirectional RNNs

(BRNNs) [22] can do this since they process data in both

directions with two separate hidden layers, which are then

concatenated and fed to the upper layer. The BLSTM model

[23] combines BRNNs with LSTM to access long-range

context. Its forward LSTM scans an utterance from the

beginning while its backward LSTM scans from the end of the

utterance. Equations (1) – (7) shows how a standard forward

time-LSTM works. For the backward time-LSTM, it works

similarly except that it starts the computation from the end of

an utterance. The backward LSTM unit can be simply defined

as

 ℎ⃖⃗𝑡
𝑙 = 𝐿𝑆𝑇𝑀(ℎ⃖⃗𝑡+1

𝑙 , ℎ⃖⃗𝑡
𝑙−1) (10)

In order to make the forward and backward time LSTMs work

jointly, the input to the current layer should be modified as

 ℎ⃡𝑡
𝑙 = [ℎ⃗⃗𝑡

𝑙−1, ℎ⃖⃗𝑡
𝑙−1] (11)

 𝑥𝑡
𝑙 = {

ℎ⃡𝑡
𝑙 , 𝑖𝑓 𝑙 > 1

𝑠𝑡 , 𝑖𝑓 𝑙 = 1
 (12)

where ℎ⃗⃗𝑡
𝑙−1 is calculated by forward LSTM and ℎ⃖⃗𝑡

𝑙−1 is by

backward LSTM. In Figure 1, we show a multi-layer BLSTM

network topology, where outputs from the forward LSTM and

the backward LSTM are concatenated as the inputs to the upper

layer.

Since both cltLSTM and BLSTM use the future context as

input to improve the recognition accuracy, it would be very

interesting compare them. We will provide more experimental

results in Section 5.

T-BLSTM

T-BLSTM

T-BLSTM

T-BLSTM

T-BLSTM

T-BLSTM

Softmax

t+1

1

2

L

Softmax

t

Figure 1: Flowchart of multi-layer time-BLSTM (T-BLSTM).

The outputs from the forward LSTM and the backward LSTM

are concatenated as the inputs for upper layers.

4. Layer Trajectory Designs on BLSTM

4.1. Layer trajectory BLSTM

The concept of layer trajectory (LT) is decoupling the tasks of

temporal modeling and senone classification in ASR with time-

LSTM and depth-LSTM respectively. Given its success on

cltLSTM, we want to see how LT could help to the more

powerful BLSTM models.

Here, we propose layer trajectory BLSTM (ltBLSTM) by

using depth-LSTM to scan the multi-layer outputs of time-

BLSTMs. The output of depth-LSTM at time 𝑡 and layer 𝑙 is

defined as

 𝑔𝑡
𝑙 = 𝐿𝑆𝑇𝑀(𝑔𝑡

𝑙−1, ℎ⃡𝑡
𝑙) (13)

where ℎ⃡𝑡
𝑙 is the time-BLSTM’s output at time 𝑡 and layer 𝑙 as

defined in Equation (11). The depth-LSTM units at different

time steps do not have any time dependency while the time

recurrence is only modelled in time-BLSTM across the time

axis. Hence, ltBLSTM uses time-BLSTM to capture the

temporal information while doing senone classification with

depth-LSTM. Its structure is shown in Figure 2.

T-BLSTM

T-BLSTM

T-BLSTM

T-BLSTM

T-BLSTM

T-BLSTM

D
-LSTM

Output

1

2

L

D
-LSTM

D
-LSTM

Output

D
-LSTM

D
-LSTM

D
-LSTM

t t+1

Figure 2: Flowchart of ltBLSTM. Depth-LSTM (D-LSTM) is

used to scan the outputs of time-BLSTM (T-BLSTM) across all

layers at the current time step to get summarized layer

trajectory information for senone classification.

4.2. ltBLSTM with two LT components

Since BLSTM includes 2 LSTM components for both forward

and backward temporal modeling, it is possible to consider

applying separate LTs on the forward and backward LSTMs.

We then investigate using two depth-LSTMs in ltBLSTM and

each of them is coupled with one directional LSTM component

in BLSTM model as shown in Figure 3. Compared to the

ltBLSTM which only uses a single depth LSTM at each layer

in Section 4.1, the only change is that now we use two depth-

LSTMs at each layer.

Figure 3 shows two design options. Instead of using

BLSTM outputs as inputs for a single depth-LSTM model as

defined in Equation (13), in the first option (Figure 3(a)) the

outputs from forward and backward LSTM are fed as inputs to

two separate depth-LSTMs as

 �⃗�𝑡
𝑙 = 𝐿𝑆𝑇𝑀(�⃗�𝑡

𝑙−1, ℎ⃗⃗𝑡
𝑙) (14)

 �⃖�𝑡
𝑙 = 𝐿𝑆𝑇𝑀(�⃖�𝑡

𝑙−1, ℎ⃖⃗𝑡
𝑙) (15)

where �⃗�𝑡
𝑙 and �⃖�𝑡

𝑙 are the outputs of forward and backward depth-

LSTMs at time 𝑡 and layer 𝑙, and ℎ⃗⃗𝑡
𝑙 and ℎ⃖⃗𝑡

𝑙 are the outputs of

forward and backward time-LSTM at time 𝑡 and layer 𝑙,
respectively. Finally the outputs of layer 𝐿 from depth-LSTMs

are [�⃗�𝑡
𝐿, �⃖�𝑡

𝐿] are concatenated to predict the output senone

labels.

The second option is shown in Figure 3(b), in which the

outputs of depth-LSTMs at each layer are concatenated as the

input to both depth-LSTMs at the next layer.

 �⃗�𝑡
𝑙 = 𝐿𝑆𝑇𝑀(𝑔𝑡

𝑙−1, ℎ⃗⃗𝑡
𝑙) (16)

 �⃖�𝑡
𝑙 = 𝐿𝑆𝑇𝑀(𝑔𝑡

𝑙−1, ℎ⃖⃗𝑡
𝑙) (17)

𝑔𝑡
𝑙−1 = {

[�⃗�𝑡
𝑙−1, �⃖�𝑡

𝑙−1] , 𝑖𝑓 𝑙 > 1
𝑠𝑡 , 𝑖𝑓 𝑙 = 1

 (18)

where �⃗�𝑡
𝑙−1 and �⃖�𝑡

𝑙−1 are the outputs of depth-LSTMs at time 𝑡

and layer 𝑙 − 1, and 𝑠𝑡 is the speech spectrum input at the time

step 𝑡 as defined in Equation (6).

We will compare the model performance of different LT

designs in Section 5.

T-BLSTM

T-BLSTM

T-BLSTM

D
-LSTM

Output

1

2

L

D
-LSTM

D
-LSTM

D
-LSTM

D
-LSTM

D
-LSTM

forward backward

backwardforward

forward backward

T-BLSTM

T-BLSTM

T-BLSTM

D
-LSTM

Output

1

2

L

D
-LSTM

D
-LSTM

D
-LSTM

D
-LSTM

D
-LSTM

forward backward

backwardforward

forward backward

t t

(a) (b)

Figure 3: Two LT design for BLSTM models; (a): depth-LSTM

combination only occurs at the output layer; (b): depth-LSTM

combination occurs at each hidden layer.

5. Experiments

In this section, we evaluate the performance of LSTM,

cltLSTM, BLSTM, and ltBLSTM. All models were trained

with 30 thousand hours of anonymized and transcribed

Microsoft production data, including Cortana and

Conversational data which is a mixture of close-talk and far-

field speech recorded from a variety of devices. All time-

LSTMs and depth-LSTMs in cltLSTM use 1024 hidden units

and the output of each LSTM layer is reduced to 512 using a

linear projection layer. The time forward and backward LSTMs

in BLSTM models use 800 hidden units and their outputs at

each layer are reduced to 400 by a linear projection layer. The

depth-LSTMs in ltBLSTM models use 800 hidden units that are

projected to 400 dimensional outputs in the standard one LT

design and use 400 hidden units if two LT components are used.

All models have 6 hidden layers, which experimentally we

found is the best compromise between computational cost and

performance. In addition, more hidden layers may lead to model

divergence issue [10]. The cltLSTM has 4 frames lookahead at

each layer, hence 24 frames lookahead in total. We reduce the

latency of BLSTM and ltBLSTM models by using the concept

of latency control with 40 frames lookahead [24]. The SoftMax

layer has 9404 nodes to model the senone labels. The target

senone label is delayed by 5 frames as in [25]. The

backpropagation through time (BPTT) [26] with truncation size

40 is used to train all cltLSTM models. The input feature is 80-

dimension log Mel filter bank for every 10 milliseconds (ms)

speech. We applied frame skipping by a factor of 2 [8] to reduce

the runtime cost. A 5-gram language model with around 1

million (M) vocabularies and 100 M n-grams was applied in all

our experiment evaluations.

All cross entropy (CE) trained models were evaluated in our

experiments with Microsoft Cortana and Conversation test sets,

including both close-talk and far-field recordings with 439k and

111k words, respectively. Later we also trained sequence based

discriminative models and obtained the similar performance

improvement pattern as in [13], but that is not the focus of this

study. Compared to the Conversation test set that has longer

utterances from conversations, the Cortana test set has shorter

utterances of voice search and commands. In addition, the

models were also evaluated on a third test set named as DMA

with 29k words, which is a Microsoft internal meeting test set

from the different domain than Cortana or Conversation data

and is not covered well in our training data. Therefore, the

DMA test set measures the generalization capability of our

models.

Table 1: WERs of LSTM, cltLSTM, BLSTM and ltBLSTM on

Cortana, Conversation, and DMA test sets

Model Cortana Conversation DMA

LSTM 9.85 19.20 20.19

 cltLSTM

 chunk size =16
8.78 16.51 15.58

 cltLSTM

 chunk size =40
8.01 15.62 14.68

BLSTM 8.18 15.64 14.98

 ltBLSTM 7.73 14.39 12.81

Table 1 shows WERs of LSTM, cltLSTM, BLSTM and

ltBLSTM models. In our previous study [17], we used truncated

backpropagation through time to train cltLSTM models. The

truncation size is 16 in order to speed up training process. That

means, in a chunk window, the left most frame was able to

access at most 15 future frames even though we designed the

model structure to have 24 frames lookahead. This undermines

the performance of cltLSTM models significantly. In this paper,

we increased the training chunk window size from 16 to 40.

This solution is still not perfect in theory, it represents however

a better tradeoff between training efficiency and accuracy.

Actually, the chunk window size 80 was also tried in our

experiments, and we didn’t get significantly better results. The

cltLSTM model with chunk window size 40 achieved 8.01%,

15.62%, and 14.68% WERs on Cortana, Conversation, and

DMA test sets, respectively, which corresponds to relative

8.8%, 5.4%, and 5.8% WER reductions from the baseline

cltLSTM with the training chunk window size 16 in our

previous research. This is much better than the performance of

baseline LSTM.

Table 2: WERs of different LT designs on Cortana,

Conversation, and DMA test sets

Model Cortana Conversation DMA

 ltBLSTM (1LT) 7.73 14.39 12.81

 ltBLSTM (2LT) 7.74 14.62 13.38

ltBLSTM

(2LT-concat)
7.58 14.44 12.75

 Since both cltLSTM and BLSTM use future context

frames for modeling, we also compare their recognition

performance in Table 1. Overall, cltLSTM obtained slightly

lower WERs than BLSTM. On Cortana, Conversation, and

DMA test sets, cltLSTM model got relative 2.1%, 0.1%, and

2.0% WER reductions over BLSTM model. This is because

cltLSTM benefits both LT modeling and access to future

information while BLSTM only has the access of future

information. After integrating LT modeling into BLSTM using

the method in Section 4.1 which only has one depth-LSTM at

each layer, the ltBLSTM model clearly outperformed cltLSTM

in Table 1. The ltBLSTM model obtained WERs 7.73%,

14.39%, and 12.81% on Cortana, Conversation, and DMA test

sets, representing relative 5.5%, 8.0%, and 14.5% WER

reductions over the BLSTM baseline across these three test sets

respectively. It also improved cltLSTM with relative 3.5%,

7.9%, and 12.7% WER reductions on these three test sets,

respectively. Finally, ltBLSTM model size is around 1/3 larger

than the baseline BLSTM model without increasing any

recognition latency at runtime. However, there were extra

computational cost in both training and test due to enlarged

model size. We didn’t compare the performance between equal

sized ltBLSTM and BLSTM models. However, our past

observations suggest that simply increasing the BLSTM model

size would not yield such significant performance

improvement.

In Table 2, we compare the ltBLSTM model performance

among different LT designs discussed in Section 4. The

ltBLSTM in Section 4.1 is denoted as ltBLSTM (1LT). Using

two depth-LSTM components and combining their outputs only

at the last hidden layer as shown in Figure 3(a), the ltBLSTM

(2LT) model got WERs 7.74%, 14.62%, and 13.38% on

Cortana, Conversation, and DMA test sets, which is slight

worse than the ltBLSTM (1LT) model . However, if two depth-

LSTMs’ outputs are concatenated at each hidden layer as shown

in Figure 3(b), the ltBLSTM (2LT-concat) model obtained

WERs 7.58%, 14.44%, and 12.75% across these three test sets,

which is relative 1.9%, -0.3%, and 0.5% WER reductions over

one depth-LSTM baseline. Actually, since the lower layer

outputs of forward and backward LSTMs are concatenated as

inputs to upper layer forward and backward LSTMs in BLSTM,

the two separated depth-LSTMs get redundant input

information from lower BLSTM layers as shown in Figure 3.

Therefore, the options of using two depth-LSTM has no

obvious advantage over the baseline using one depth-LSTM. In

other words, the design of using one depth-LSTM at each layer

is very effective and robust for both uni-directional LSTM and

BLSTM models.

6. Conclusions

In this paper, we proposed a novel model called ltBLSTM

which scans the outputs of the multi-layer time-BLSTM with a

depth-LSTM to learn layer trajectory information for senone

classification. By decoupling the tasks of temporal modeling

and target classification with time-BLSTM and depth-LSTM,

this model allows individual LSTM units to focus on their own

tasks. Trained with 30k hours of Microsoft internal speech data,

the proposed ltBLSTM achieved relative 5.5%, 8.0%, and

14.5% WER reduction from the BLSTM baseline. The larger

improvement on DMA test set also indicates LT component

significantly improved model generalization capacity on

unseen test sets. Finally, we investigated different LT designs

of ltBLSTM models and found that the design with one depth-

LSTM at each layer is effective enough for ltBLSTM models to

achieve good recognition performance.

7. References

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The

shared views of four research groups,” IEEE Processing

Magazine, vol. 29, no. 6, pp. 82–97, 2012.
[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[3] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. ICASSP, 2013,

pp. 6645–6649.

[4] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic

modeling.,” in Proc. Interspeech, 2014, pp. 338–342.

[5] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R.
Monga, and M. Mao, “Sequence discriminative distributed

training of long short-term memory recurrent neural networks,” in

Proc. Interspeech, 2014.
[6] X. Li and X. Wu, “Constructing long short-term memory based

deep recurrent neural networks for large vocabulary speech

recognition,” in Proc. ICASSP, 2015, pp. 4520–4524.
[7] Y. Miao and F. Metze, “On speaker adaptation of long short-term

memory recurrent neural networks.,” in Proc. Interspeech, 2015,

pp. 1101–1105.
[8] Y. Miao, J. Li, Y. Wang, S. Zhang, and Y. Gong, “Simplifying

long short-term memory acoustic models for fast training and

decoding,” in Proc. ICASSP, 2016.
[9] D. Yu and J. Li, “Recent progresses in deep learning based

acoustic models,” IEEE/CAA J. of Autom. Sinica., vol. 4, no. 3,

pp. 399–412, July 2017.
[10] J. Li, C. Liu, and Y. Gong, “Layer trajectory LSTM,” in Proc.

Interspeech, 2018.

[11] Y. Zhao, S. Xu, and B. Xu, “Multidimensional residual learning
based on recurrent neural networks for acoustic modeling,” in

Proc. Interspeech, 2016, pp. 3419–3423.

[12] J. Kim, M. El-Khamy, and J. Lee, “Residual LSTM: Design of a

deep recurrent architecture for distant speech recognition,” arXiv

preprint arXiv:1701.03360, 2017.

[13] J. Li, L. Lu, C. Liu, and Y. Gong, “Exploring layer trajectory
LSTM with depth processing units and attention,” in Proc. IEEE

SLT, 2018.

[14] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y.
Bengio, “Maxout networks,” arXiv preprint arXiv:1302.4389,

2013.

[15] Y. Miao, F. Metze, and S. Rawat, “Deep maxout networks for
low-resource speech recognition,” in Automatic Speech

Recognition and Understanding (ASRU), 2013 IEEE Workshop

on. IEEE, 2013, pp. 398–403.
[16] P. Swietojanski, J. Li, and J. Huang, “Investigation of maxout

networks for speech recognition,” in Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International

Conference on. IEEE, 2014, pp. 7649–7653.

[17] J. Li, Liang Lu, C. Liu, and Y. Gong, “Improving layer trajectory
LSTM with future context frames,” in Proc. ICASSP, 2018.

[18] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural

networks,” IEEE Transactions on Signal Processing, vol. 45, no.
11, pp. 2673–2681, 1997.

[19] H. Sak, A. Senior, K. Rao, O. Irsoy, A. Graves, F. Beaufays, J.

Schalkwyk, “Learning acoustic frame labeling for speech
recognition with recurrent neural networks,” ICASSP, 2015.

[20] H. Jaeger, Tutorial on training recurrent neural networks,

covering BPPT, RTRL, EKF and the “echo state network”
approach, vol. 5, GMD-Forschungszentrum Informationstechnik

Bonn, 2002.

[21] M. Schuster and K. K. Paliwal, “Bidirectional Recurrent Neural
Networks,” IEEE Transactions on Signal Processing, vol. 45, pp.

2673–2681, 1997.

[22] M. Schuster and K. K. Paliwal, “Bidirectional Recurrent Neural
Networks,” IEEE Transactions on Signal Processing, vol. 45, pp.

2673–2681, 1997.

[23] A. Graves and J. Schmidhuber, “Framewise Phoneme

Classification with Bidirectional LSTM and Other Neural

Network Architectures,” Neural Networks, vol. 18, no. 5-6, pp.
602–610, June/July 2005.

[24] Y. Zhang, G. Chen, D. Yu, K. Yao, S. Khudanpur, and J. Glass,

“Highway long short-term memory RNNs for distant speech
recognition,” ICASSP, 2016.

[25] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory

recurrent neural network architectures for large scale acoustic
modeling.,” in Proc. Interspeech, 2014, pp. 338–342.

[26] H. Jaeger, Tutorial on training recurrent neural networks,

covering BPPT, RTRL, EKF and the “echo state network”
approach, vol. 5, GMD-Forschungszentrum Informationstechnik

Bonn, 2002.

