
UStore: A Low Cost Cold and Archival Data
Storage System for Data Centers

Quanlu Zhang
Peking University
zql@net.pku.edu.cn

Yafei Dai
Peking University

dyf@pku.edu.cn

Fengqian Li
Shanghai Jiao Tong University

lfq0505@gmail.com

Lintao Zhang
Microsoft Research Asia

lintaoz@microsoft.com

Abstract—Recent trend in cloud computing demands vast and
ever increasing storage capacity for data centers. For many cloud
service providers, much of the storage capacity demand is driven
by cold and archival data, such as user uploaded contents, system
logs, and backups. In this paper, we describe UStore, a hard disk
based storage system designed for such workloads. We make
the assumption that most data centers are already populated
with computer servers and networking gears, and propose a
solution to attach additional disks to these servers reliably at
extremely low cost. The main component of UStore is a novel fat
tree interconnect fabric to connect hard disks to existing servers
and network infrastructure. To reduce cost, UStore leverages the
mature commodity USB 3.0 technology to build the fabric, which
has extremely low amortized cost per disk while still providing
sufficient throughput to satisfy cold and archival workload. The
software of the UStore system abstracts the system’s physical
topology and provides a consistent view of the storage capacity
to the upper layer services such as distributed file systems or
backup services. In a sense, UStore can be regarded as external
USB hard disks designed for data centers.

I. INTRODUCTION

Cloud computing provides many cost saving opportunities
for the end users, while opening new usage scenarios that
were impossible before. Cloud services, such as web email,
video hosting, cloud drive [1], and cloud archiving [2], provide
large amount of storage space for user contents at very low
cost, often free at the lowest service tier. To operate these cloud
services, huge amount of storage capacity needs to be available
in the data centers. Moreover, the cloud operators need to be
able to keep up with the storage demand as business expands.
Due to the scale of operation, infrastructure cost is often a
significant part of the costs for cloud service providers [3].
Cost savings on storage capacity is a significant competitive
advantage in this space.

Much of the data stored in the cloud are cold or archival.
We distinguish cold data from archival data based on their
access patterns. Cold data are for interactive usage scenarios.
They are accessed rarely, but when accessed, a user would
expect the response to come back after a short amount of
time, usually in the range of seconds. Examples of cold data
include older emails and shared photos of non-celebrity users.
In contrast, archival data are usually accessed in large batches
on a predictable schedule. Examples of archival data include
file system backups and system logs. For archival data, the
access latency requirement is usually less stringent, but they
often demand high throughput.

Due to latency requirements, cold data usually has to be
stored on spinning hard disks. As disk cost comes down, we
are seeing many archival systems built on top of hard disks
as well [4], [5], [6]. In this paper, we assume that the storage
system is built with hard disks. Though other storage mediums,
such as magnetic tapes, optical disks, have been used for
archiving purposes, hard disk is still likely to be the preferred
medium for cold and archival storage in data centers in the
near future.

To address the demand for storage capacity in a data center
setting, we describe a design of a storage system called UStore.
We make the observation that most data centers are already
populated with computer servers and networking gears. To
add storage capacity, a cost effective solution would be to
attach large amount of hard disks to existing servers. By
separating storage from computation and networking demand,
UStore provides more flexibility for cloud service providers.
Of course, UStore can be co-deployed with additional servers,
while still maintaining its cost advantage.

UStore is a combined hardware and software solution to
cost effectively attach disks to servers with good performance
and availability. A UStore system consists of one or more
deploy units. A deploy unit is a hardware piece that contains
many disks to be connected to multiple servers called UStore
hosts. To connect the disks to servers, we leverage the widely
adopted USB technology, whose recent iteration (USB 3.0)
provides up to 5Gb/s full duplex throughput, competitive to
other connection technologies at a much lower price point. We
build a fat tree interconnect fabric with USB hubs and USB
switches (i.e., 2-1 multiplexer) to avoid single point of failure
and provide higher throughput. Through reconfiguration, the
fabric allows any of the disks to be connected to any hosts
of the unit, thus providing fault tolerance. The traditional
wisdom of multi-path attached storage being expensive is no
longer true in our design. UStore builds the interconnect fabric
at a much lower cost than traditional storage architectures.
Based on the novel hardware platform, we design a software
stack that provides storage capacity to upper layer applications
in a flexible manner. The software hides the complexity of
hardware failure detection and quick failover. It manages the
huge storage pool (see § IV), and allows clients to access the
allocated storage space as remotely attached disks.

The basic problem we want to solve with the UStore system
is to find a method to connect hard disks to servers in a cost

effective manner and offer flexible access interface, while still
providing high availability and good performance. We do not
intend to build a fully functional storage system, instead, we
set up a well-managed storage platform for upper layer usage.
More specifically, traditional storage systems can be deployed
above UStore with little modification, using UStore storage as
raw disks, while employing their own specific techniques for
data durability and availability.

To evaluate the UStore architecture, we built a proof-of-
concept UStore prototype with a single deploy unit consisting
of 16 hard disks. We evaluated the system with 4 hosts
connected with the unit. Our evaluation shows that the system
can sustain a total throughput of 2160MB/s and can recover
from an arbitrary single host failure in 5.8 seconds.

The key contributions of this paper are:
1) We observe several desirable properties of a cloud based

archival and cold data storage system, and argue that a
cost effective way to add storage to data centers is to
attach more disks to existing servers.

2) We describe the hardware design of UStore deploy unit,
which employs a novel USB 3.0 based fat tree intercon-
nect fabric to connect large numbers of hard disks to
multiple existing hosts with no single point of failure.
The hardware design offers extremely low amortized cost
for each additional disk, while still providing reasonable
performance.

3) We describe the UStore software system architecture,
which leverages the UStore deploy unit hardware to
provide a scalable and fault tolerant storage.

4) We built a prototype of UStore with 16 disks, and
provide detailed measurement on performance and power
consumption under different workloads.

II. BACKGROUND

A. Storage Interconnect Technologies

We briefly review some popular interconnection technolo-
gies below.
SATA/SAS/FC: SATA (Serial ATA) [7] supports a native
transfer rate of up to 6.0 Gb/s in SATA 3.0, and SAS(Serial
Attached SCSI) [8] also allows transfer speed of 6 Gb/s.
SATA multiplier and SAS expander can be used to deal with
limited native ports on servers. However, SATA multiplier
only supports up to 15 devices and does not support cascaded
connections (i.e., one multiplier plugged into another). SAS
is often used in high-end storage systems, which is usually
costly. On the other hand, SAS supports Dual-path and dual-
domain architectures to avoid single point of failure, which
trades off much more monetary cost for reliability and fast
recovery. Another interconnection technology is fibre channel
(FC) [9] which can reach 3200 MB/s (i.e., 16 GFC). However,
fibre channel is obviously not cost effective for archival and
cold storage.
Ethernet: As a widely adopted and low-cost technology for
connecting computers, Ethernet is also used for interconnect-
ing disks [6]. The capital cost of building an Ethernet fabric

Disks

Interconnect Fabric

Software Management

Mail Server File Server HDFS

Cloud ArchivingWeb Email Cloud Drive Video Hosting

UStore

Services

Fig. 1: Holistic system stack overview.

is relatively low. However, in order to make a disk accessible
on the network, a microprocessor (e.g., low-power ARM)
has to be attached to the disk, which inevitably increases
capital expense (see § VI for detailed comparison). Moreover,
low performance microprocessor may also be a bottleneck
to support high network throughput and mechanisms such as
erasure coding and encryption.

B. USB 3.0 Technology

USB is arguably the most widely adopted technology to
connect peripheral devices to computer hosts. USB intercon-
nects form a tiered tree structure, with hubs forming the
internal nodes of the tree. Up to 5 levels of tiers are allowed
in a USB tree. Each USB tree can contain a maximum of 127
devices including hubs (see § V-B for some discussions).

USB 3.0 [10] was introduced in 2008 as the second major
revision of the USB standard. USB 3.0 specifies the Super-
Speed transfer mode, which supports 5.0Gb/s duplex transfer
with 8b/10b encoding. Realistically, one can expect to achieve
300∼400MB/s transfer rate on a single USB 3.0 port. Very
recently, a revision called USB 3.1 was announced, which
provides a 10Gb/s transfer mode called SuperSpeed+. Though
it will take some time before devices supporting 10 Gb/s
appear on the market. There is no explicit length limit for USB
3.0 cable in the specification, but the electrical properties of
the cable may limit the practical length to around 3 meters.
This is sufficient to connect disks and servers in the same rack
or even adjacent racks. Moreover, this length can be extended
through the use of hubs or signal repeaters.

Since low cost hard disks usually come with native SATA
interface, a bridge chip is required to connect disks to USB
hosts. SATA to USB 3.0 bridges are widely used in commodity
external USB hard drive enclosures. It is extremely cost
effective since USB 3.0 technology is shipped in extremely
high volumes with numerous vendors competing in the market.
Moreover, USB 3.0 protocol is universally supported by all of
the major operating systems in data centers, and almost all new
chipsets and motherboards come with native USB 3.0 support.

III. INTERCONNECT FABRIC

We first give a high level overview from upper layer services
down to the basic infrastructure, as shown in Figure 1. UStore

Legend：

Hub

Switch

Disk

Fig. 2: Interconnect fabric. The left design uses hubs and switches to form two full trees to connect disks to two hosts, while
the right design places switches at a higher level of the tree to allow better throughput.

manages large numbers of disks and supports the storage
demand of various upper layer services. We elaborate the
interconnect fabric in this section, and then demonstrate the
software management in § IV.

As the core of the deploy unit, the interconnect fabric
connects large numbers of disks in a UStore deploy unit
to multiple computer servers called hosts of the unit. It is
constructed with two primitives: USB hubs and USB switches.
The hub is an aggregation device. It accumulates multiple
downstream flows into a single upstream flow. We assume
each hub can have at most k downstream flows, where k is
called the fan-in factor of the hub. The switch is a multiplexer
that multiplexes one downstream between two upstream flows.
A control signal determines which of the two upstreams to
connect with.

A. The Data Plane

In the scenario of cold data storage, we would like to
connect a large number of disks (e.g., 60 to 100 disks) to
servers. The most simplistic way to connect disks to computers
is through point-to-point interconnection, which requires an
extra port on the server for each additional disk. Though
providing good performance, such scheme is not scalable for
cold data storage and very costly.

A common way to connect multiple disks to a single port
is to use hubs. In this case, the interconnection forms a tree
with disks at the leaf and hubs on internal nodes. Though
such a solution is used widely in the industry, it is not ideal.
There are two major drawbacks. The first is performance.
Multiple disks share the same connection bandwidth at the
root of the tree, which makes the host port a bottleneck: just
4 modern hard disks can saturate a SAS/SATA/USB port 1.
The second problem is the single point of failure at the root.
If the server at the root of the tree is down, due to software or
hardware failures, the entire tree of disks will be unavailable.
Though modern data center storage systems can tolerate device
failures through software means, reconstructing large amount
of data still puts a heavy toll on the network and other non-
faulty servers. SAS protocol supports dual-path capability, but
it is traditionally used in demanding enterprise settings and is
priced accordingly. The design requires special storage devices

1SATA multiplier can only access one downstream disk at a time, which
makes the situation even worse.

(e.g., dual port SAS disks), which are not cost effective for
providing cheap cold storage in data center environment.

We propose to use both hubs and switches to build the
interconnection topology. To tolerate a single server failure,
two independent hub trees can be constructed as shown in the
left part of Figure 2. Each disk at the leaf is connected to
both hub trees through a switch. By controlling the switch,
the disk can be connected to either host at the root of the
trees. Therefore, when a server fails, by reconfiguring the
interconnection with the switches, the disks can be reconnected
to a non-faulty server.

With the topology at the left of Figure 2, a disk can
be independently connected to one of the two trees. This
design can tolerate not only failures of a single host, but
also any single failure of the hubs. In this design, disks are
independent, each occupies a leaf node. The workload of
the disks are distributed among the roots. To increase the
aggregated bandwidth, it is possible to construct more than
2 full hub trees and switch the disks multiple ways at the
leaf. This also provides tolerance for more than one failures.
However, this is overkill, since single failure tolerance is most
likely sufficient for the scale of a deploy unit. For a multi-
level hub tree, it is possible to switch at a higher level of the
tree, closer to the root as shown in the right part of Figure 2.
By doing so, we can reduce the number of hubs and switches
required to implement the fabric, thus reducing the overall
cost.

The topology discussed is essentially the well known fat
tree [11] or Clos network [12] topology, which has seen
adoption in data center networking recently [13], [14]. A
formal analysis of the fault tolerance property of the topology
is out of the scope of this paper. In our setting, any switch
configuration is a valid partition of the fabric into multiple
non-overlapping trees, which connect each leaf node to one
of the root ports.

B. The Control Plane

In order to deal with device failures and possible load
balance, we should make the interconnect fabric configurable.
So the switches in the fabric must be controlled through
a side channel signalling. In our implementation, we use a
microcontroller connected through USB to one of the host
machines to control the switches. The microcontroller receives
commands from the Controller (elaborated in § IV) software

UStore EndPoint

iSCSI Target

USB Monitor

Primary
Controller

iSCSI Target

USB Monitor

iSCSI Target

USB Monitor

iSCSI Target

USB Monitor

Backup
Controller

UStore EndPoint UStore EndPoint UStore EndPoint

Heartbeat

Messages

Control Hubs,
Switches, Disks

… ...

… ... Interconnect
Fabric

Control
Commands

Legend:

Data Flow

Messages

Control

Commands

iSCSI initiator

Host Host Host Host

One Deploy Unit

USB Status Messages

Paxos

UStore

Master UStore ClientLib

Fig. 3: The software architecture of UStore. The interconnect fabric uses the topology elaborated in § III, upper layer services
interact with hosts directly for data flow after retrieving metadata from the Master.

in the connected host, and changes the signal to the switches
accordingly.

Since the Controller runs on a host, if the host fails, we
lose the ability to reconfigure the fabric. This would be
unfortunate, because when the failure happens, we actually
need to reconfigure the fabric, so that the disks originally
connected to the failed host can be access through alternative
paths. To avoid this failure scenario, we establish a secondary
control path by adding a redundant copy of the microcontroller
to a different host. The signals of the two microcontrollers
are XOR-ed together to form the final controlling signal to
the switches. During normal operation, only one of them is
powered on. And when the control of this microcontroller is
lost, we can switch to the other one, thus avoid the single point
of failure in the control plane. When switch signals change, the
configuration of the interconnect fabric is altered accordingly.
And from a host’s view, the USB devices are just inserted to
or removed from the host.

Besides controlling the switches, it is also possible to
control the power supplies to the individual disks and the
hubs. Being able to control power supply enables us to
perform rolling spin-up at the power-on time, thus avoiding
a large number of disks spinning up at the same time and
overwhelming the power supply. It is also possible to power
down certain disks and part of the interconnection under
predictable workloads to save energy.

IV. SOFTWARE ARCHITECTURE

Given that a large number of disks are attached to existing
servers through the interconnect fabric elaborated above, the
management of this huge storage pool is equally important.
The software has to be carefully designed to meet three
main objectives: (i) serving the storage allocation and access,

(ii) monitoring failures and implementing quick failover, (iii)
providing an appropriate interface for upper layer services and
applications.

We design the software architecture of UStore, as illustrated
in Figure 3. It consists of four components: Master, EndPoint,
Controller, and ClientLib. A typical UStore deployment is
composed of one Master and a number of deploy units, each
of which is connected to multiple hosts that run the EndPoint
and Controller. And the hosts are the servers that have already
existed in data centers. We demonstrate the four components
respectively, and then elaborate failure detection and power
management.

A. UStore Master
The UStore system has a single Master that maintains

the holistic view of the system to implement centralized
controlling and scheduling. To make the Master fault tolerant,
it is implemented as a replicated state machine using the
Paxos consensus protocol [15], [16]. To control the whole
system, the Master maintains three types of metadata: system
configuration (SysConf), system status (SysStat), and storage
allocation (StorAlloc).

SysConf includes basic system parameters, such as the
number of deploy units in the system, the numbers of hosts
and disks in each deploy unit, and the mappings from hosts
to deploy units and from disks to deploy units.

SysStat is the real-time status of the system. It contains
the status of the hosts and the disks (i.e., online, spun down,
or powered off), and the mapping from disks to hosts. The
mapping reflects the current status of the interconnect fabric.
SysStat is only kept in memory since the Master can always
reconstruct it by interrogating the hosts.

StorAlloc is maintained to manage storage space (e.g.,
allocating, reclaiming). We use a global namespace, i.e.,

< /DeployUnitID/DiskID/SpaceID >, to uniquely i-
dentify each allocated storage space. This metadata is stored
persistently in the Master synchronously. We apply two rules
for storage allocation. Firstly, a physical disk is preferred
to be allocated to the same service, which facilitates power
management since the service can control the disk without
interfering with other services (see § IV-F). Secondly, a disk
located near the client on the network is more likely to be
allocated to this client, which improves locality and reduces
networking overhead.

B. UStore EndPoint

An EndPoint runs in each host that is connected to a deploy
unit. It has two main functions: monitoring the host’s status,
and exposing disk storage to clients. The EndPoint sends the
healthiness and workload information of both the hosts and
the disks back to the Master, through periodical heartbeat
messages. USB Monitor monitors and sends the detailed status
of the observed local USB tree (e.g., lsusb -t in Linux) to
the Controller, which gives the Controller a integrated view
of the interconnect fabric to implement failure detection and
reconfiguration.

On the other hand, the EndPoint is responsible for exposing
the disks onto the network, through a network storage protocol.
It is potentially possible to use any SAN protocols to expose
the raw disks or expose a networking file system interface.
In our implementation, we choose iSCSI [17] as the protocol
for exposing the storage (i.e., iSCSI Target). When a client
requests storage space, the Master allocates a piece of storage
space (could be a disk, a disk partition or a big file in a disk)
from UStore, and the corresponding host exposes it as a iSCSI
target which can be mounted by the client.

C. UStore Controller

For each deploy unit, we have two Controllers running on
two of the controlling hosts to avoid single point of failure.
Though not strictly necessary, the Controllers usually run in a
primary-backup manner. The Master sends commands to only
one of the Controllers in normal operations. Only when the
primary fails will the Master send commands to the backup
Controller.

The Controller keeps track of the detailed interconnect fab-
ric configuration of each deploy unit by collecting USB status
from the EndPoints. The Master can change the configuration
by sending explicit topology scheduling commands, such as
“connect disk A to host H1 and disk C to host H2” to the
Controller. After receiving the command, the Controller tries
to execute it based on its knowledge of the current fabric. If the
command cannot be accomplished, the Controller will report
the error status back to the Master. For example, “connecting
A to H1 will force disk E to be disconnected from host H3”.
In this case, the Master can either abort the command or issue
another command that accommodates the conflicts.

We illustrate the execution of the command “connect disk
A to host H1” in detail. The Controller takes the following
three steps after receiving this command.

Algorithm 1 Lookup the switches to be turned to execute a
command.
Parameters: Pairs of disk and host specified in the command.
Return Value: Switches to be turned or ErrInfo if conflict.

1: function SWITCHESTOTURN(List disk host pairs)
2: Set OccupiedSwitches
3: Set SwitchesToTurn
4: for all disk i ∈ DeployUnit
5: if disk i 6∈ disk host pairs
6: host j ← GETATTACHEDHOST(disk i)
7: k switches ← GETSWITCH(disk i,host j)
8: add k switches to OccupiedSwitches
9: for all disk host pair ∈ disk host pairs

10: k switches ← GETSWITCH(disk host pair)
11: for all switch i ∈ k switches
12: if switch i 6∈ OccupiedSwitches
13: if desired status 6= current status
14: add switch i to SwitchesToTurn
15: add switch i to OccupiedSwitches
16: else if expected status 6= current status
17: return ErrInfo
18: return SwitchesToTurn

1. Lock the interconnect fabric to avoid another concurrent
command causing inconsistency [16]. During the process of
scheduling a command, no other commands will be accepted.

2. Determine which switch(es) should be turned to achieve
the goal of this command. Firstly, the Controller traces from
the disk up to the host, and finds out the k switches on the path
from disk A to host H1 (i.e., GETSWITCH() in Algorithm 1).
Some of them may already stay in the desired state, while
others have to be turned. Before turning them, the Controller
has to check the conflict with other disks, i.e., comparing
with the switch status of other disks which is maintained
in the set OccupiedSwitches in Algorithm 1. If there is
no conflict or the conflict can be ignored, we collect the
to-be-turned switches first, and then turn them one by one.
Otherwise, the Controller will report error status with detailed
information back to the Master. The detailed process is shown
in Algorithm 1.

3. Send commands to the microcontroller to turn the
switches collected above. The Controller then checks whether
this scheduling is completed properly, through checking USB
status reported by the involved EndPoints. If the expected
connections cannot be detected in a pre-set time (e.g., 30s),
we roll back the command by turning the switches to original
state, and report the situation back to the Master for further
actions.

D. UStore ClientLib

The ClientLib abstracts away the details of the disk-host
connection and exposes a consistent view of the storage
capacity to the upper layer applications. Different users may
want to provide different services based on UStore, we thus
decide to provide the most basic storage interface, i.e., the

block device interface in UStore. The interface is implemented
through iSCSI protocol, so that the upper layer services can
access UStore just like accessing local disks.

We design a simple UStore client library to facilitate
building different access layers. The client library provides
storage management APIs, such as applying for new storage
space, mounting allocated storage. It provides simple directory
lookup service to find a disk’s host IP and provides notification
call backs to notify the upper layer of disk status changes.

In the normal operation, the ClientLib keeps track of the
locally mounted storage in UStore. If the storage becomes un-
accessable due to the failover action of UStore, the ClientLib
will retrieve the new host IP from the Master and remount
the storage automatically. From the client’s view, there is a
temporary high latency accessing local disks, which usually
does not have much impact. This is especially true for storage
services that have their own redundancy mechanisms to deal
with temporary unavailability (e.g., HDFS).

E. Failure Detection

We design automatic failure detection in UStore, which can
reduce failover time and make the system easy to operate.
There are three main failure domains in a storage system:
hosts, interconnect fabric and disks. In practice, hosts are more
likely to fail due to software and network issues. According
to [18], the MTTF of servers is 3.4 months while that of
disks is 10-50 years, and physical interconnects have similar
failure rate as disks [19]. We handle the host failures in a
simple manner: if the Master does not hear the heartbeat
message from a host for an extended period of time, the
Master will treat the host as crashed and send command to
the corresponding Controller to move the disks on this host to
a non-faulty one.

For interconnect fabric, the Controller receives the detailed
USB tree information from each host which obtains the USB
tree from local operating system. So, it can detect the disap-
pearance of hubs and disks by combining the non-overlapping
USB trees. Since USB switches and bridges do not show up
in the tree, we consider them to be part of the hubs or disks,
viewing them as a single failure unit. For example in Figure 2,
the switch with the hub connected to its downstream in the
second layer is one failure unit. Similarly, in the last layer, each
disk with its bridge and switch is one failure unit. If a device
in the interconnect fabric fails, the Master switches away the
paths going through this device, while reports the failure to
system administrator for future replacement or repair.

UStore delegates data recovery of failed disks to the data
redundancy mechanisms supported by upper layer services. It
does not provide data redundancy by itself. On the other hand,
the interconnect fabric of UStore can potentially facilitate disk
data reconstruction. Since disks are not tightly coupled with
servers, the involved disk can be switched to one or a small
set of servers in order to reduce network load. We leave this
for further work.

F. Power Management

Power consumption is one of the key metrics of modern
storage systems. Spinning down or powering off disks is the
most obvious way to reduce power consumption. However,
the strategy to determine when to spin down disks greatly
depends on the workloads. The upper layer services, which
know the workload better, may have their own power saving
mechanisms such as rearranged data placement [20] and pow-
ering off the disks that store redundant data [21]. We expose
disk management interface (e.g., spin up and down disks,
change disk speed if supported) to the upper layer services
by allowing them to change the state of the disks belonging
to them. By default, UStore only provides a simple power
saving mechanism: when a disk stays idle for a preconfigured
period of time, it is spun down. But if it is detected that the
disk is spun up and down too frequently, the host will increase
the time interval. Furthermore, if the disks are spun down or
powered off, the part of the interconnect fabric that connects
these disks is powered off as well.

V. PHYSICAL DESIGN AND PROTOTYPE

In this section, we briefly discuss the physical design of a
UStore deploy unit, and then present the prototype of UStore.

A. Physical Design

We envision that a deploy unit would be a rack-mountable
enclosure. The physical volume, weight limitation, max power
dissipation, cooling capability and vibration isolation of the
enclosure dictate the number of disks that can be contained
in a unit. In practice, a 4U rack unit can host around 40∼70
3.5 inch hard disks comfortably [22], [23], [24], while leav-
ing enough space for interconnect fabric, power supply and
cooling. In this case, external connection to 4 hosts would be
a reasonable configuration of the interconnect fabric. Such a
unit would be able to provide around 200 terabytes of raw disk
storage capacity using the available 4TB SATA disks, and has
about 2∼3 GB/s total aggregated throughput on all 4 ports.

USB connectors are designed for frequent plugging and un-
plugging. It might be desirable to use a more robust connector
design in the data center settings. The maximum cable length
of USB 3.0 is sufficient to connect disks and servers within the
same rack. Moreover, it would greatly simplify the cabling if
we integrate the interconnect fabric into a printed circuit board
(PCB).

B. Prototype

We implemented a minimal proof-of-concept UStore pro-
totype, as shown in Figure 4, to demonstrate the feasibility
of the UStore design. The prototype only contains a single
UStore deploy unit with 16 disks connected to 4 hosts, using
the interconnect fabric shown in the right part of Figure 2.

The hard disks we use are 3TB 7200 RPM 3.5” TOSHIBA
DT01ACA300. To connect them to USB 3.0 ports, we use
commodity external USB 3.0 HDD enclosures (i.e., SSK HE-
G130) as the USB bridge. For the hub we use commodity 4-
port hubs of UNITEK Y-3044. The switch is also a commodity

4 USB 3.0 Ports
4 Hosts

Hub

2 Arduino

Controllers

Switch

16 Disks Power Supply

Relay

Fig. 4: UStore prototype.

USB 3.0 switch of SIIG JU-SW0012-S1. We modified the
switch so that it can be controlled by electric signals instead
of manual switches. The 12v power supply to each of the
HDD enclosures pass through a relay, which can be turned on
and off by the Controller. We implemented the control plane
using commodity Arduino Mega 2560 boards to control the
switches and the power relays.

USB 3.0 is still a relatively new technology. Therefore, some
wrinkles still exist in current implementations. One major
problem we found is that current Intel USB 3.0 root hub
drive can only recognize less than 15 devices and we can only
evaluate the throughput for up to 15 disks attached to a single
server (we report 12 disk cases in evaluation). Another issue is
that sometimes disk switching is not detected reliably by the
hosts, forcing us to power cycle the devices. We found that
USB 2.0 does not have these issues, which suggests that future
iterations of the software driver and chipsets implementation
might fix the problems.

For the software stack, we implement the UStore Master
based on ZooKeeper [25], which acts as a fault tolerant
metadata storage and execution coordinator. The Master and
ZooKeeper are co-deployed in a small cluster (e.g., 5 ma-
chines). The master processes are running in the active-standby
mode. At any time, there is only one active master process
and the others are standby. The active process is elected by
ZooKeeper. The metadata of UStore is stored in ZooKeeper
and is organized in a hierarchical tree structure. Each host
creates an ephemeral znode in ZooKeeper to represent its
liveness.

TABLE I: The comparison in price of different storage solu-
tions. “AttEx” means the capital expense without disks. (unit:
thousands of dollars)

System Media CapEx AttEx
DELL PowerVault

MD3260i
Near-line SAS $3,340 $1,525

Sun StorageTek SL150 LTO6 Tape $1,748 -
Pergamum SATA HD $756 $415

BACKBLAZE SATA HD $598 $257
UStore SATA HD $456 $115

VI. COST COMPARISON

UStore is cost-efficient for two reasons: (a) leveraging the
low cost USB technology for the interconnect fabric, and
(b) utilizing existing infrastructure as much as possible. We
compare UStore with other storage solutions in monetary cost.
The cost of a storage system includes two aspects: the capital
expense (CapEx) and the operational expense (OpEx).
The CapEx. CapEx of a storage system includes not only
the cost for the medium (e.g., disks), but also the cost of
enclosure, power supply, cooling, and the cost of connecting
them to the computers and network. Table I shows the esti-
mated CapEx of a 10PB raw storage capacity. The first two
systems are commercially supported products. The PowerVault
MD3260i [26] enclosure is configured to contain 60 near-line
SAS drives of 3TB each. It is intended for performance critical
workloads and has much higher costs than other solutions.
StorageTek SL150 is a tape storage system. It is much cheaper
than MD3260i, but has poor performance for random access.

We use 3TB SATA HDDs, which cost about $100 each,
as the storage medium for the last three solutions. BACK-
BLAZE [22] is a custom-made low-cost cloud storage solu-
tion. It attaches 45 disks to a low-end motherboard in a 4U
enclosure. Though the cost is relatively low, it suffers from
single point of failure that may render all 45 disks unavailable,
and its performance is rather poor since all 45 disks share
only a single GbE network interface. Pergamum [6] uses low-
power ARM microprocessors to attach and expose disks on the
network. The ARMs are interconnected through Ethernet. In
order to make a fair side-by-side comparison, we remove the
NVRAM in each tome of Pergamum and put 45 tomes into the
same enclosure used by [22]. We use BACKBLAZE numbers
to estimate the cost of the enclosure, power supply, fans and
so forth. Cubieboard3 [27] is used to estimate the price of
the ARM in the tome. We choose Cubieboard3 because it has
native SATA and GbE support, and is one of the most widely
used commodity ARM single board computers. Ethernet tree
topology is used to interconnect the tomes 2.

At last, we estimate the CapEx of UStore. Due to huge
amount of shipments and fierce competition among the ven-
dors, USB 3.0 technology is extremely cost effective. All

21Gb/s port is $4 and 10Gb/s port is $100. These prices are much lower
than that in [28].

TABLE II: The performance of one disk for three connection types. H&S means hub and switch, i.e., the third connection
type. 100%, 50% and 0% represent the percentage of read operations.

Workloads 4KB(IO/s) Seq 4KB(IO/s) Rand 4MB(MB/s) Seq 4MB(MB/s) Rand
Read Percentage 100% 50% 0% 100% 50% 0% 100% 50% 0% 100% 50% 0%

SATA 13378 8066 11211 191.9 105.4 86.9 184.8 105.7 180.2 129.1 78.7 57.5
USB 5380 4294 6166 189.0 105.2 85.2 185.8 119.7 184.0 147.9 95.5 79.3
H&S 5381 4595 6181 189.2 106.0 87.9 185.8 118.6 184.9 147.7 97.7 79.9

the IC components used in the interconnect fabric cost less
than $1 each. We multiply bill of materials (BOM) cost by
2 [29] to estimate the cost of the interconnect fabric. We
use deploy unit of 64 disks in one 4U enclosure to estimate
the system cost. Similar to Pergamum, we estimate the cost
of the enclosure and other components using the numbers
from [22]. We justify UStore’s larger number of disks in a
single enclosure by noticing the large empty space occupied
by motherboard in [22], and noticing that other systems can
accommodate similar number of disks in a 4U enclosure [23],
[24]. The result in Table I shows that UStore has the obvious
advantage over other solutions in CapEx. For example, UStore
costs 24% lower than BACKBLAZE, the next lowest cost
solution, when media cost is included. Excluding the disk
cost 3, UStore is 55% cheaper. Notice that UStore achieves
the cost advantage while providing a much better throughput
and fault tolerance.
The OpEx. OpEx usually includes power, cooling, data center
floor space and maintenance cost. We are not able to compare
different solutions quantitatively since it is very difficult to do
such estimation without full deployment and years of usage
data. Here we qualitatively compare the OpEx. UStore can
pack more disks in an enclosure due to its simple construction
and the power consumption is relatively low (see § VII-C),
so it should be competitive in power consumption, cooling
and space efficiency. Moreover, UStore system can detect
failure through software (see § IV-E), implement fast failover
automatically, and pinpoint the components that need repair,
so the maintenance cost should also be competitive.

VII. EXPERIMENTS

In this section, we evaluate the prototype described above to
address the following questions: what throughput can UStore
provide, how long does it take to switch disks and what the
power consumption of UStore is.

A. Throughput

In order to show the throughput of UStore, we evaluate
the prototype with different workloads by combining differ-
ent values of three parameters: transfer size, read/write mix
percentage and access patterns. We use Iometer [30] for this
evaluation.

First, we evaluate the throughput of a single disk with three
different connection configurations. The first configuration

3Since the disk-based systems in Table I all use 3TB disks, “AttEx” can
also represent the amortized cost per disk.

connects a disk to host directly with SATA, while the second
one goes through an USB3.0 bridge. The third configuration
is the full fabric as described in § V, except that only one
disk is powered on and working. The disk goes through two
hubs, two switches and a bridge. The results are shown in
Table II. All three connection methods have similar throughput
in large transfer workloads. In the 4KB sequential workloads,
throughput of direct SATA connection is 2 times better than
going through USB. We suspect this is due to the added latency
introduced by the SATA to USB bridge. From this experiment
we conclude that for large reads and writes, going through
USB bridge, hub and switch almost have no impact on the
performance of a single disk.

In the next experiment, we test the performance implications
of sharing hubs in our prototype. Different numbers of disks
are attached to a single host through the fabric of our proto-
type. We set the disk numbers to be 1, 2, 4, 8, 12 respectively.
For the cases with 1, 2, 4, disks are connected to the same
hub. For the cases with 8 and 12 disks, the disks are connected
to 2 hubs and 3 hubs respectively. We use multiple workers in
Iometer to test the system, each worker operates on one disk.
We only show some workloads in Figure 5, other workloads
have similar results. As shown in the left two figures, for
small transfers the throughput increases with the number of
disks. The sequential throughput of 8 disks can saturate the
USB tree. For large transfers, two disks are enough to fill up
the root hub’s bandwidth, which is around 300MB/s. Though
not shown in the graph, our experiments also find that when
multiple disks are connected to a single host, the bandwidth
is shared evenly among the disks.

Since USB3.0 is a duplex transfer protocol, the total
throughput doubles when half of disks are read and the other
half are written simultaneously. We perform the experiments
for the 4MB workloads, the total throughput reaches 540MB/s
which is the sum of the read throughput and the write through-
put. Thus, with four root paths the prototype can sustain a total
throughput of 2160MB/s.

B. Switching Time

We also measured the switching time which is the delay of
switching disks from one host (i.e., safely rejected) to another
one. The delay is composed of three parts. The first part is
between the disk being rejected from one host and being
recognized by the USB driver of another host. The second
part is the time between the disk being recognized to being
exposed onto the network. The last part is from the time of

 0
 20
 40
 60
 80

 100
 120
 140
 160

4K-S-R 4K-S-W

T
ot

al
 B

an
dw

id
th

(M
B

/s
)

 0

 2

 4

 6

 8

 10

4K-R-R 4K-R-W

T
ot

al
 B

an
dw

id
th

(M
B

/s
)

 0

 50

 100

 150

 200

 250

 300

4M-S-R 4M-S-W

T
ot

al
 B

an
dw

id
th

(M
B

/s
)

 0

 50

 100

 150

 200

 250

 300

4M-R-R 4M-R-W

T
ot

al
 B

an
dw

id
th

(M
B

/s
)

 1disk 2disks 4disks 8disks 12disks

Fig. 5: Total throughput of multiple disks. The workload name in this figure is comprised of three parts. The first part is transfer
request size. For the second part, S and R mean sequential and random respectively. For the third part, R means operations
are all read, W means operations are all write.

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 8 16

La
te

nc
y(

s)

Number of Disks

Recognize delay
Expose delay
Mount delay

Fig. 6: Switching Time.
TABLE III: Power consumption of one disk. Specs means
official disk specification [31]. (unit: watt)

Mode Spin Down Idle Read/Write
Specs 1 5.2 6.4
SATA 0.05 4.71 6.66

USB bridge 1.56 5.76 7.56

the disk being exposed to being remotely mounted by the
ClientLib. In the experiment, we switch different numbers of
disks simultaneously and repeat each case 6 times to measure
the delay. The result is shown in Figure 6, the first part delay
increases with the number of switched disks while the second
and third parts have little variation.

The delay is short enough for most services in data centers
to be regarded as temporary failure and avoid a full rebuild of
the disks. To verify this, we deployed Hadoop-1.2.1 on the four
hosts of the prototype using disks in UStore as storage. We
use one host for namenode and three hosts for datanodes. The
system is configured with three replicas. When writing a file in
HDFS, we switch one disk, the HDFS client encounters error
only for several seconds, then it resumes the operation again.
Read operation is not interrupted at all since there are three
replicas. Due to the limited space, we do not show detailed
performance numbers. It is sufficient to say that most services
in data centers show similar behavior to Hadoop, which means
switch operation has little impact on these services.

C. Power Consumption

In this section, we investigate the power consumption of two
key components: USB bridge and hub. USB switch consumes
very little power [32] (around 0.06W in our case). Then we
measure the power consumption of the full UStore deploy unit
and compare it with alternative solutions to demonstrate its
power efficiency.

TABLE IV: The power consumption of one hub with different
number of disks connected. (unit: watt)

Disk Count 0 1 2 3 4
Power 0.21 1.06 1.23 1.47 1.67

For the bridge, we evaluate one disk connected with SATA
and with USB bridge respectively, in three different workloads
including spin down, idle and normal read/write. The result
shows that different read/write patterns (e.g., different block
size, sequential percentage) make little difference and the
variation is within 1W. The power consumption of USB3.0
bridge is around 1W. The detailed result is shown in Table III.

For the hub, we evaluate one hub with 0 to 4 disks
connected. The result is shown in Table IV, different modes
of the disk, such as idle or busy, make no difference on hub’s
power consumption. We can see that the hub only consumes
0.21W if there is no disk device connected. Furthermore, with
the increase of disks connected on the hub, the power increases
in a linear manner except the first one.

We obtain the power consumption of the whole interconnect
fabric by measuring the current in the root hub. With the
measured power of disks and the estimated power consumption
of fans (1W each x6), USB 3.0 host adaptor (2.5W each x4)
and power supply (power factor 90plus), the total power con-
sumption of UStore with 16 disks is estimated in Table V. In
order to give a glimpse of the comparison with other solutions,
we list the numbers quoted from other papers or estimated
based on specifications and real measurement in Table V. We
compare UStore with two other solutions: Pergamum (without
NVRAM, using the same disks, power supplies and fans
with UStore), EMC DD860/ES30 [33] which is an enterprise
disk-based backup storage products. The numbers in Table V
are the amortized power consumption of 16 disks for each
solution (15 disks for DD860/ES30). There are two common
states in archival storage system: disks serving read/write and
disks spun-down/powered-off. For the first state, the ARM in
Pergamum consumes around 2.5W and the amortized power
consumption of one Ethernet port is 1.5W [34], so the power
consumption of Pergamum is about 193.5W. UStore consumes
less power in this state, because the power consumption
of the interconnect fabric is relatively low at only 13.6W.
For the purpose of comparison, the power consumption of
DD860/ES30 in idle is much higher. When the workload of

TABLE V: Power comparison of different storage solutions
(unit: watt). The first line is when disks are spinning, and the
second line is when disks are powered off.

Solutions DD860/ES30 Pergamum UStore
Spinning 222.5 193.5 166.8

Powered off 83.5 28.9 22.1

the storage system becomes low, the disks can be spun down or
powered off. In this state, DD860/ES30 still consumes much
power. For Pergamum, the ARM staying in idle consumes
around 0.8W and the power of each Ethernet port becomes
0.5W, making the total to be 28.9W. UStore still consumes
much less power since there is no disk and bridge power
consumption and the interconnect fabric consumes about 71%
less power. Furthermore, UStore hosts can directly cut the
power to the root hubs of the fabric to reduce power even
further.

VIII. RELATED WORK

Storage systems. Tape storage has been a low-price archival
solution for a long time, with systems such as Oracle Tape
Storage [35], Tape Cloud [36]. Archival systems using com-
pact disc are also available [37]. Recently, due to the dramatic
drop in price, hard disk is becoming an appealing storage
medium for cold and archival data [38]. Venti [4] is an
archival storage system which applies write-once model and
uses secure hash for de-duplication. Other examples of disk-
based secondary storage systems include Data Domain [5],
HYDRAstor [39]. Pergamum [6] uses low-power CPUs (e.g.,
ARM) to transform disks into self-contained network attached
storage devices. However, it requires a dedicated network, and
the performance of low-power CPUs are rather poor, which
may limit throughput. Recently, Seagate introduced Kinetic
drive [40] that provides Ethernet interface and key-value store
API similar to Pergamum. This product is still in its early stage
and is not yet widely available. Other large-scale mass storage
systems such as Oceanstore [41], Glacier [42], FAB [43],
implement decentralized design to provide persistent storage.
Petal [44] focuses on providing virtual disks on a pool of
physical disks. UStore also focuses on providing raw storage
capacity, but unlike Petal, UStore does not natively support
redundancy, load balancing, and shared access. It leaves the
upper layer services to implement these features.
Commercial products. Commercial companies are providing
cold and archival storage solution to the end users. Disk-based
commercial products, such as Dell’s MD3260i [24] and EMC
NL400, provide mass storage capacity. These solutions are of-
ten pricey, and consume considerable amount of power [33]. In
the cloud side, Amazon Glacier [2] provides cheap storage for
archival purposes, but the internal technology is not publicly
disclosed. From the physical perspective, BACKBLAZE [22]
and Evtron [23] demonstrate how to pack disks densely into a
4U enclosure. A cold storage design [45] by Facebook packs
SATA HDs densely in a rack and the disks are mounted by
powerful servers interconnected through 10Gb network. This

design is still relatively costly and it also suffers from single
point of failure.
Reliability and availability. Data reliability is an important
aspect of long-term storage systems. Many works have studied
different factors that induce data loss, such as latent sector
errors (LSEs) [46], disk failure [18] and failures from physical
interconnects and protocol stacks [19]. Most of the systems
forgo RAID and use software techniques, such as replica-
tion [47] and erasure coding [48], to provide fault tolerance
under hardware failures. Even though failure of a few nodes
can be tolerated in such systems, they still present challenges
due to increased recovery traffic on the network and extended
window of vulnerability with reduced replicas. Recent work
shows that fast data recovery is possible provided that the
networking infrastructure is well designed [49]. However, even
with the throughput provided with these systems, it would still
take many hours to recover all the data on the hard disks
in a single deploy unit. UStore alleviate the burden with the
reconfigurable interconnect fabric.
Power management. Power-saving is another main concern
in data centers. Works, such as Rabbit [50], Sierra [21],
rely on the arrangement of replicas. While PARAID [51]
proposes power-saving mechanism for server-class RAIDs.
Some works apply cache mechanism to prolong idle period
of disk clusters [20]. Moreover, disk speed controlling is
shown to be an effective approach of saving power [52]. These
techniques can be applied on UStore with little modification.

IX. CONCLUSION

To gain competitive advantage, non-traditional hardware
and software architecture is often required for cloud service
operators. Vast demand for storage capacity in data centers
motivates us to rethink current storage system design, and
come up with more cost effective methods to connect disks
to servers. UStore is designed with cost efficiency as the
primary goal. It provides a substrate of reliable and high
performance storage by attaching disks onto the existing
servers and networks in a data center. The cost efficiency is
mainly achieved by leveraging USB 3.0 technology, which
is the cheapest way to connect peripherals. We designed a
switching fabric to overcome the bandwidth and reliability
limitations of the simple USB tree topology. UStore can be
used as the storage capacity provider to a variety of upper layer
services, such as distributed file systems and backup services.

X. ACKNOWLEDGMENTS

The work was supported by the National High Technolo-
gy Research and Development Program (“863” Program) of
China under Grant 2013AA013203, National Basic Research
Program of China (“973”) under Grant 2011CB302305, and
China NSF under Grant 61232004. We would like to thank
our ICDCS reviewers for their valuable feedback.

REFERENCES

[1] “DropBox,” http://www.dropbox.com/.
[2] “Amazon Glacier,” http://aws.amazon.com/glacier/.

[3] L. A. Barroso, J. Clidaras, and U. Hoelzle, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
2nd ed. Morgan and Claypool Publishers, 2013.

[4] S. Quinlan and S. Dorward, “Venti: A New Approach to Archival
Storage,” in Proceedings of the 1st USENIX Conference on File and
Storage Technologies (FAST), 2002.

[5] B. Zhu, K. Li, and H. Patterson, “Avoiding the Disk Bottleneck in the
Data Domain Deduplication File System,” in Proceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST), 2008.

[6] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti, “Perga-
mum: Replacing Tape with Energy Efficient, Reliable, Disk-based
Archival Storage,” in Proceedings of the 6th USENIX Conference on
File and Storage Technologies (FAST), 2008.

[7] “SATA Technical Overview,” https://www.sata-io.org/technical-
overview.

[8] “Redundancy in enterprise storage networks using dual-domain
SAS configurations,” http://h20565.www2.hp.com/hpsc/doc/public/
display?docId=emr na-c01451157-2&docLocale=.

[9] “Fibre Channel SAN Topologies,” http://www.emc.com/collateral/
hardware/technical-documentation/h8074-fibre-channel-san-tb.pdf.

[10] “SuperSpeed USB from the USB-IF,” http://www.usb.org/developers/
ssusb.

[11] C. E. Leiserson, “Fat-trees: Universal Networks for Hardware-efficient
Supercomputing,” IEEE Transactions on Computers, vol. 34, no. 10, pp.
892–901, 1985.

[12] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks. Elsevier, 2003.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proceedings of the ACM SIGCOMM 2009
conference on Data communication, 2009.

[14] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Da-
ta Center Network Architecture,” in Proceedings of the ACM SIGCOMM
2008 conference on Data communication, 2008.

[15] L. Lamport, “Paxos Made Simple,” ACM Sigact News, vol. 32, no. 4,
pp. 18–25, 2001.

[16] M. Burrows, “The Chubby Lock Service for Loosely-coupled Dis-
tributed Systems,” in Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2006.

[17] J. Satran and K. Meth, “Internet Small Computer Systems Interface
(iSCSI),” 2004.

[18] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in Globally Distributed Storage
Systems,” in Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[19] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky, “Are Disks the Dominant
Contributor for Storage Failures?: A Comprehensive Study of Storage
Subsystem Failure Characteristics,” in Proceedings of the 6th USENIX
Conference on File and Storage Technologies (FAST), 2008.

[20] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P. Cao, “Re-
ducing Energy Consumption of Disk Storage Using Power-Aware Cache
Management,” in Proceedings of the 10th International Symposium on
High Performance Computer Architecture (HPCA), 2004.

[21] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: Practical Power-
proportionality for Data Center Storage,” in Proceedings of the 6th
Conference on Computer Systems (EuroSys), 2011.

[22] “Storage Pod 4.0: Direct Wire Drives C Faster, Simpler and Less
Expensive,” https://www.backblaze.com/blog/backblaze-storage-pod-4/.

[23] “Evtron,” http://evtron.com/.
[24] “Dell PowerVault MD3260i,” http://www.dell.com/support/Manuals/us/

en/19/Product/powervault-md3260i.
[25] “Apache ZooKeeper,” http://zookeeper.apache.org/.
[26] “PowerVault MD3 1GB iSCSI SAN storage array series,” http://

www.dell.com/us/business/p/powervault-md32x0i-series/fs.
[27] “Cubietruck Cubieboard3,” http://cubieboard.org/model/.
[28] A. Hospodor and E. L. Miller, “Interconnection Architectures for

Petabyte-Scale High-Performance Storage Systems,” in Proceedings of
the 21st IEEE/12th NASA Goddard Conference on Mass Storage Systems
and Technologies (MSST), 2004.

[29] “Retail Pricing, Markup, and Margins,” http://ceklog.kindel.com/2012/
08/30/retail-pricing-markup-and-margins/.

[30] “Iometer,” http://www.iometer.org/.
[31] “TOSHIBA DT01ACAxxx Disk Specs,” https://storage.toshiba.eu/cms/

en/hdd/computing/product detail.jsp?productid=447.

[32] “USB 3.0 and USB 2.0 Differential Switch 2:1/1:2 MUX/DEMUX,”
http://www.ti.com/lit/ds/slas975/slas975.pdf.

[33] Z. Li, K. M. Greenan, A. W. Leung, and E. Zadok, “Power Consumption
in Enterprise-scale Backup Storage Systems,” in Proceedings of the 10th
USENIX Conference on File and Storage Technologies (FAST), 2012.

[34] “Cisco 200 Series Smart Switches Cisco Small Business,”
http://www.cisco.com/c/en/us/products/collateral/switches/small-
business-100-series-unmanaged-switches/data sheet c78-634369.pdf.

[35] “Oracle Tape Storage,” http://www.oracle.com/us/products/servers-
storage/storage/tape-storage/overview/index.html.

[36] V. S. Prakash, X. Zhao, Y. Wen, and W. Shi, “Back to the Future: Using
Magnetic Tapes in Cloud Based Storage Infrastructures,” in Proceedings
of the ACM/IFIP/USENIX International Middleware Conference (Mid-
dleware), 2013.

[37] T. Tanabe, M. Takayanagi, H. Tatemiti, T. Ura, and M. Yamamoto,
“Redundant Optical Storage System Using DVD-RAM Library,” in
Proceedings of the 16th IEEE Symposium on Mass Storage Systems,
1999.

[38] K. Zhou, H. Wang, and C. Li, “Cloud Storage Technology and Its
Applications,” ZTE Communications, vol. 8, no. 4, pp. 27–30, 2010.

[39] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P. Strzel-
czak, J. Szczepkowski, C. Ungureanu, and M. Welnicki, “HYDRAstor:
A Scalable Secondary Storage,” in Proceedings of the 7th USENIX
Conference on File and Storage Technologies (FAST), 2009.

[40] “Seagate Kinetic Open Storage Platform,” http://www.seagate.com/
solutions/cloud/data-center-cloud/platforms/?cmpid=friendly- -pr-
kinetic-us.

[41] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer et al., “Oceanstore:
An Architecture for Global-Scale Persistent Storage,” in Proceedings of
the 9th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2000.

[42] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly Durable,
Decentralized Storage Despite Massive Correlated Failures,” in Proceed-
ings of the 2nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2005.

[43] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence, “FAB:
Building Distributed Enterprise Disk Arrays from Commodity Compo-
nents,” in Proceedings of the 11th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2004.

[44] E. K. Lee and C. A. Thekkath, “Petal: Distributed Virtual Disks,”
in Proceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
1996.

[45] “OPEN Compute Project Cloud Storage Hardware v0.5 ST-draco-
abraxas-0.5,” http://www.opencompute.org/assets/download/Open-
Compute-Project-Cold-Storage-Specification-v0.5.pdf.

[46] B. Schroeder, S. Damouras, and P. Gill, “Understanding Latent Sector
Errors and How to Protect Against Them,” in Proceedings of the 8th
USENIX Conference on File and Storage Technologies (FAST), 2010.

[47] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[48] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure Coding in Windows Azure Storage,” in Proceed-
ings of the 2012 USENIX Annual Technical Conference (USENIX ATC),
2012.

[49] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and
Y. Suzue, “Flat Datacenter Storage,” in Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2012.

[50] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan, “Robust and Flexible Power-proportional Storage,” in Pro-
ceedings of the 1st ACM Symposium on Cloud Computing (SoCC), 2010.

[51] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang, P. Reiher, and G. Kuen-
ning, “PARAID: A Gear-Shifting Power-Aware RAID,” in Proceedings
of the 5th USENIX Conference on File and Storage Technologies (FAST),
2007.

[52] E. V. Carrera, E. Pinheiro, and R. Bianchini, “Conserving Disk Energy
in Network Servers,” in Proceedings of the 17th Annual International
Conference on Supercomputing (ICS), 2003.

