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Continua™ SaaS Platform
Improves any process,
software bot, system

First Markets:

Automotive Engine Control

Robotics Control

Semiconductor Control

.@ Cogitai  Continua

Performance Metric
(Reward Signal)
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Decision Making
Customer service bots

Manufacturing
Processes

Use Cases are Endless
Easy to Replicate Across Industries
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Web marketing Fitness coaches

Robotic process Building
automation management

Self-learning
vehicle




CogitAl's Aggressive Roadmap to Continual Learning

Acquires

Skills,
Knowledge
on Own

Self-Learns
From Reward

Supervised
Learning
Trained from human labels
Good for matching patterns

(Face Detection)

Reinforcement
Learning

Self-Learns through trial and reward

Continual Learning

Accumulates capabilities

Good for managing highly

complex processes

Good for decision making processes ,
(Mult-use robotics, plant control,

autonomous cars,
digital assistants)

(Robotics, energy management,
video games)

PyTorch,
TensorFlow, etc.

essssssssssssssssssssss CONtiNUa ™ ———— . - - - »
Continua™ Saa$ Platform improves any process, robot, software bot, decision system
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RoboCup Soccer

@ Grand challenge: beat World Cup champions by 2050
@ Still in relatively early stages

@ Many virtues as a challenge problem:

— Incremental challenges, closed loop at each stage
— Robot design to multi-robot systems
— Relatively easy entry s
— Inspiring to many
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Legged Robot League Humanoid League
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@ Grand challenge: beat World Cup champions by 2050
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@ Visible progress

E: ' " Simulation League

Legged Robot League Humanoid League
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RoboCup Soccer

@ Grand challenge: beat World Cup champions by 2050

@ Still in relatively early stages

@ Many virtues as a challenge problem:

— Incremental challenges, closed loop at each stage
— Robot design to multi-robot systems
— Relatively easy entry - gl
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UT Austin Villa
3D Simulation Team
RoboCup 2017 Highlights

World Champions
Record: 23-0
Goals For: 171, Goals Against: O

_ AUSTIN VILLA

ROBOT SOCCER TEAM
THE UNIVERSITY OF TEXAS AT AUSTIN




RoboCup Soccer

@ Grand challenge: beat World Cup champions by 2050
@ Still in relatively early stages

@ Many virtues as a challenge problem:
— Incremental challenges, closed loop at each stage
— Robot design to multi-robot systems
— Relatively easy entry X
— Inspiring to many
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RoboCup@Home
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RoboCup@Home

- ikis VWVYI

b \‘:\;‘ a L

S

Peter Stone



Open-world Reasoning for
Service Robots

Yuqgian Jiang*, Nick Walker*, Justin Hart, Peter Stone
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Efficient Robot Skill Learning

@ Motivation: RoboCup
@ Sim2Real: Grounded Simulation Learning
@ Imitation Learning from Observation: BCO and GAIfO
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Reinforcement Learning for Physical Robots
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Reinforcement Learning for Physical Robots

Patrick Josiah
MacAlpine  Hanna

Learning on physical robots:

@ Not data-efficient

@ Requires supervision
@ Manual resets

@ Robots break

@ Wear and tear make learning
non-stationary

Peter Stone Robot Skill Learning UT Austin = 7



Reinforcement Learning in Simulation

Learning in simulation:

@ Thousands of trials in parallel
@ No supervision needed

@ Automatic resets

@ Robots don't break
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Sim2Real
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Environment

(Cutler and How, “Efficient Reinforcement Learnng for Robots using Informative Simulated Priors”);
(Cully et al., “Robots that can adapt like animals”);
(Rusu et al., “Sim-to-real robot learning from pixels with progressive nets”)
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Sim2Real

Policy
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Environment

(Jakobi, Husbands, and Harvey, “Noise and the reality gap: The use of simulation in evolutionary robotics™);
(Peng et al., “Sim-to-Real Transfer of Robotic Control with Dynamics Randomization”);
(Tobin et al., “Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World")
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Sim2Real

Policy

il Policy A Policy e’
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Environment

Data

(Abbeel, Quigley, and Ng, “Using Inaccurate Models in Reinforcement Learning”);
(Ross and Bagnell, “Agnostic System Identification for Model-Based Reinforcement Learning”)
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Grounded Simulation Learning

Simulator
Grounding
Real world Grounded
State'action Simulator
trajectories
Real World \ Policy Improvement in
Policy Execution : Simulation
Improved
Policy

Farchy, Barrett, MacAlpine, and Stone, AAMAS 2013
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Simulator Grounding
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Sim2Real
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(Jakobi, Husbands, and Harvey, “Noise and the reality gap: The use of simulation in evolutionary robotics™);
(Peng et al., “Sim-to-Real Transfer of Robotic Control with Dynamics Randomization”);
(Tobin et al., “Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World")
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Simulator Grounding
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Simulator Grounding
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Grounded Action Transformation

t
v
> Policy
Sti1 g
Simulated
Environment D .
a
t

[
Replace robot’s action a; with an action that produces a more
“realistic” transition.

Hanna and Stone, AAAI 2017
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Grounded Action Transformation

t
v
> Policy
Sti1 g
Simulated
Environment D .
a
t

[
Replace robot’s action a; with an action that produces a more
“realistic” transition.

Learn this action as a function g(s;, a;).

Hanna and Stone, AAAI 2017
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Grounded Action Transformation
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Grounded Action Transformation
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Supervised Implementation

Transformed
Action
120 Units
4
200 Units
r Y
T_ Predicted Next State
%
120 Units
200 Units
4 B
State Action

@ Forward model:
— trained with 15 real world trajectories of 2000 time-steps
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Supervised Implementation
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— trained with 15 real world trajectories of 2000 time-steps
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Supervised Implementation

Transformed
Aclion

1

120 Units

i

200 Units

3
T_ Predicted Next State
%
120 Units
200 Units
4 B
State Action

@ Forward model:
— trained with 15 real world trajectories of 2000 time-steps

@ Inverse model:
— trained with 50 simulated trajectories of 1000 time-steps

@ Initial policy in Initial vs. grounded simulator

Peter Stone




Empirical Results

(a) Softbank NAO (b) Gazebo NAO (c) SimSpark NAO

Applied GAT to learning fast bipedal walks for the Nao robot.
@ Initial policy: University of New South Wales Walk Engine.
@ Policy Search Algorithm: CMA-ES stochastic search method.

Peter Stone ‘Robot Skill Learning UT Austin 15



Empirical Results
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Real world Grounded
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Real World Policy Improvement in
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Empirical Results

Simulator
Grounding
Real world Grounded
state-action Simulator
trajectories
Real World Policy Improvement in
[Policy ExecutionJ [ Simulation ]

o

» Improved

Policy
Method Velocity (cm/s) % Improve
Initial policy 19.3 0.0
1st iteration 26.3 34.6

N O R e Y T
P s B - P ,...vi'\‘l‘r'_ a‘~.\.-'| . B Yy .»vl PR
HMOannot Sl aarmir .

eter Stone HODOT oKl Learning
>t

S ar



Empirical Results

Simulator

Grounding
Real world Grounded
state-action Simulator
trajectories

Real World Policy Improvement in
Policy Execution Simulation
Improved
Policy

Method Velocity (cm/s) % Improve
Initial policy 19.3 0.0
1st iteration 26.3 34.6
2nd iteration 28.0 43.3
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GSL Summary

@ Introduced Grounded Simulation Learning for Sim2Real.

Hanna and Stone, AAAI 2017
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GSL Summary

@ Introduced Grounded Simulation Learning for Sim2Real.

@ Improved walk speed of Nao robot by over 40% compared to
state-of-the-art walk engine.

@ Fastest known stable walk on the Nao

Lete..
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Patrick Josiah
MacAlpine Hanna

Hanna and Stone, AAAI 2017
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@ Introduced Grounded Simulation Learning for Sim2Real.

@ Improved walk speed of Nao robot by over 40% compared to
state-of-the-art walk engine.

@ Fastest known stable walk on the Nao

b Vo

Patrick Josiah
MacAlpine Hanna
Ongoing Work:

@ Extending to other robotics tasks and platforms

@ When does grounding actions work and when does it not?

Hanna and Stone, AAAI 2017
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@ Motivation: RoboCup

@ Sim2Real: Grounded Simulation Learning

@ Imitation Learning from Observation:
» Model-based approach: BCO
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Robot Skill Learning: Real World to Sim and Back

@ Motivation: RoboCup

@ Sim2Real: Grounded Simulation Learning

@ Imitation Learning from Observation:

» Model-based approach: BCO
» Model-free approach: GAIfO

Faraz Torabi Garrett Warnell

Peter Stone



Imitation Learning

Goal:
@ Learn how to make decisions by trying to imitate another agent.
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Imitation Learning

Goal:
@ Learn how to make decisions by trying to imitate another agent.
Conventional Imitation Learning:

@ Observations of other agent (demonstrations) consist of
state-action pairs.’

" Niekum et al., “Learning and generalization of complex tasks from unstructured demonstrations”.
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Imitation Learning

Goal:
@ Learn how to make decisions by trying to imitate another agent.
Conventional Imitation Learning:

@ Observations of other agent (demonstrations) consist of
state-action pairs.’

Challenge: b

@ Precludes using a large amount of demonstration data where
action sequences are not given (e.g. Youlube videos).

" Niekum et al., “Learning and generalization of complex tasks from unstructured demonstrations”.
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Imitation Learning

Algorithms:
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Imitation Learning

Algorithms:

@ Behavioral Cloning:
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Imitation Learning

Algorithms:

@ Behavioral Cloning:
» End to End Learning for Self-Driving Cars.?

2Zhang and Cho, "Query-Efficient Imitation Learning for End-to-End Simulated Driving."
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Imitation Learning

Algorithms:

@ Behavioral Cloning:
» End to End Learning for Self-Driving Cars.?

@ Inverse Reinforcement Learning:
[

2Zhang and Cho, “Query-Efficient Imitation Learning for End-to-End Simulated Driving."

= NN e (] _.r‘- s WALy

r n HMOonnt Sk 1 aarminn
MMUUOL ORI LCalinng

‘p’

gt



Imitation Learning

Algorithms:

@ Behavioral Cloning:
» End to End Learning for Self-Driving Cars.?

@ Inverse Reinforcement Learning:

» Generative Adversarial Imitation L.earning.?
» Guided Cost Learning.*

2Zhang and Cho, “Query-Efficient Imitation Learning for End-to-End Simulated Driving.”
3Ho and Ermon, “Generative adversarial imitation learning”.
4Finn, Levine, and Abbeel, “Guided cost learning: Deep inverse optimal control via policy optimization”.
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Imitation from Observation
Goal:
@ Learn how to perform a task given state-only demonstrations.
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Imitation from Observation

Goal:
@ Learn how to perform a task given state-only demonstrations.
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Imitation from Observation

Goal:
@ Learn how to perform a task given state-only demonstrations.

Formulation:
@ Given:
> Dgemo = (S0, St1, ---)
@ Learn:
r 7:S— A
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Imitation from Observation

Previous work:
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Imitation from Observation

Previous work:

@ Time Contrastive Networks (TCN).>

@ Imitation from observation: Learning to imitate behaviors from raw
video via context translation.®

@ Learning invariant feature spaces to transfer skills with
reinforcement learning.’

SSermanet et al., “Time-contrastive networks: Self-supervised learning from multi-view observation”.
SLiu et al., “Imitation from observation: Learning to imitate behaviors from raw video via context translation”.
7'Gupta et al., “Learning invariant feature spaces to transfer skills with reinforcement learning”.
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Imitation from Observation

Previous work:

@ Time Contrastive Networks (TCN).>

@ Imitation from observation: Learning to imitate behaviors from raw
video via context translation.®

@ Learning invariant feature spaces to transfer skills with
reinforcement learning.’

Concentrate on perception; require time-aligned demonstrations.

SSermanet et al., “Time-contrastive networks: Self-supervised learning from multi-view observation”.
SLiu et al., “Imitation from observation: Learning to imitate behaviors from raw video via context translation”.
7'Gupta et al., “Learning invariant feature spaces to transfer skills with reinforcement learning”.
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Efficient Robot Skill Learning

@ Motivation: RoboCup

@ Sim2Real: Grounded Simulation Learning

@ Imitation Learning from Observation:

» Model-based approach: BCO
» Model-free approach: GAIfO

Peter Stone




Model-based Approach

@ Imitation Learning: Diemo = {(80::80); (81::81); -}
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Model-based Approach

@ Imitation Learning: Diemo = {(80::80); (81::81); -}
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Model-based Approach

@ Imitation Learning: Diemo = {(80::80); (81::81); -}
@ Imitation from Observation: Dgemo = {(S0,7),(51,7), ...}

Model-based Approach:

Learn an inverse) {I f . 1 fPerform a conventional
dynamics modeIJ 1 st actnonsJ 1 IL method

Peter Stone



Behavioral Cloning from Observation (BCO)

Algorithm:
f =)
STiRT Behavioral Cloning from Observation (BCO)
[nitialize 7T(,', Run {(s%,s¢+1)} |Collect data
policy 7 policy 7 {a:} Ty A
l’];raa Aﬂ'
Update Update
policy 7, model My

State-only
demonstrations
Ddemo

Torabi, Warnell, and Stone, IJCAI 2018
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Behavioral Cloning from Observation (BCO)

Experimental Results:

@ Domain:

» Mujoco domain "Ant" with 111 dimensional state space and 8
dimensional action space.
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Behavioral Cloning from Observation (BCO)

Experimental Results:
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Behavioral Cloning from Observation (BCO)

Experimental Results:
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Behavioral Cloning from Observation (BCO)

Experimental Results:
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Behavioral Cloning from Observation (BCO(«))

Issue:
@ Inverse dynamics model is learned using a random policy.
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Behavioral Cloning from Observation (BCO(«))

Issue:
@ Inverse dynamics model is learned using a random policy.

Solution: BCO(«x)

@ Update the model with the learned policy.

@ *Parameter « controls tradeoff between performance and
environment interactions

» a = 0: no post-demonstration interaction.
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Behavioral Cloning from Observation (BCO(«))

Issue:
@ Inverse dynamics model is learned using a random policy.

Solution: BCO(«x)

@ Update the model with the learned policy.

@ *Parameter « controls tradeoff between performance and
environment interactions

» a = 0: no post-demonstration interaction.
» Increasing «: increasing the number of interactions allowed at each
iteration.

Peter Stone




Behavioral Cloning from Observation (

B3CO(a))

Algorithm:
a
STiRT Behavioral Cloning from Observation (BCO)
[nitialize ﬂ'g, Run {(sf,s{r1)} |Collect data
policy 7 policy 7 {a;} TS A

lT:, Ar

State-only
demonstrations

,

Update

olicy mg

Update
model My

Peter Stone
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Behavioral Cloning from Observation (

Algorithm:
START
Initialize
policy 7"

State-only
demonstrations

B3CO(a))

-~
Behavioral Cloning from Observation (BCO)

7% Run {(s¢,s¢4+1)} Append to
policy e, {a:} T s A%

g

{p

pdale
Oll(,\’ /t

actions

Update
Qoo model M,

Peter Stone

Ddcnz.o




Behavioral Cloning from Observation (BCO(«))

Interaction time:

(i : ) )
Pre-demonstration Post-demonstration
|Z*
BCO(0) [
| ZP® alZ?®| alIP®| I or| ZP®
BCO((}) L 90| DO D0 100
IlﬂLi
GAIL% FEM ] =] i
\& - Y,
Time !
] Environment Interactions
@) Inverse Model Update
@) Policy Learning Update

Peter Stone




Behavioral Cloning from Observation (BCO(«))

Effect of varying a on BCO(«):
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Behavioral Cloning from Observation (BCO(«))

Effect of varying a on BCO(«):
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Behavioral Cloning from Observation (BCO(«))

Effect of varying a on BCO(«):
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Efficient Robot Skill Learning

@ Motivation: RoboCup

@ Sim2Real: Grounded Simulation Learning

@ Imitation Learning from Observation:

» » Model-based approach: BCO
» Model-free approach: GAIfO

Peter Stone




Gen. Adversarial Imitation from Observation (GAIfO)

Motivation:

(a) Random Policy (b) Demonstration

Figure: State transition distribution in Hopper domain.
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Gen. Adversarial Imitation from Observation (GAIfO)

Algorithm:

Demonstrator Imitator

Peter Stone




Gen. Adversarial Imitation from Observation (GAIfO)

Comparison against other IfO approaches and GAIL.:
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Comparison against other IfO approaches and GAIL.:
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Gen. Adversarial Imitation from Observation (GAIfO)

Comparison against other IfO approaches and GAIL.:
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Gen. Adversarial Imitation from Observation (GAIfO)

Challenges:
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Gen. Adversarial Imitation from Observation (GAIfO)

Challenges:
@ States are not fully-observable.
@ States are not Markovian.

Solution:

Peter Stone




Gen. Adversarial Imitation from Observation (GAIfO)

Algorithm:

P I I I I I U U

Policy

)

878 cony
stride 4

Ao nAuYg

'\

/ 5%5 conv 5%5 cony 5*5 comy
stride 2 stride2 stride 2 ||
; ¢ L-ReLU L RelLU L ReLU ¢
! | —_— ——— —_

Demonstration

Maamrmmr -
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Gen. Adversarial Imitation from Observation (GAIfO)

Demonstration:
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Gen. Adversarial Imitation from Observation (GAIfO)

Learned Policy:

Peter Stone



Gen. Adversarial Imitation from Observation (GAIfO)

Comparison against other IfO approaches:
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Gen. Adversarial Imitation from Observation (GAIfO)

Comparison against other IfO approaches:
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Ongoing Work
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Ongoing Work

@ Testing algorithms on more domains.

3 - T TR T (| o o

Peter Stone ‘Robot Skill Learning
>l

R



Ongoing Work

@ Testing algorithms on more domains.

@ Adapt algorithms for physical robots.
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Ongoing Work

@ Testing algorithms on more domains.
@ Adapt algorithms for physical robots.

@ Sim-to-real transfer using the algorithms.

»
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Imitation Learning Summary

> riRl Behavioral Cloning from Observation (BCO)

s T B i o) a . YT TR
Initialize e Run | {(s?,5051)} Append to
policy 7" p()llg\ . ‘ {a:} { P B
|'T" Ax
U Pd e demo Inttl U U P(l ie
p()llL\ . Simo u[mn\ mndd \i,

State-only

demonstrations |

DJ_ mo

(a) BCO

Demonstrator Imitator
e vl O
D9 14- ¢ B D
o—’---. @y @ @ W W s
(/_ FEnv ll()l;llll-nt )
BV BV 3 sl
s & | e
(3 E g{ ; D ,;) -
e s

Garrett Warnell
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Research Question

To what degree can autonomous
intelligent agents learn in the presence of
teammates and/or adversaries in real-time,
dynamic domains?

Research Areas
e Autonomous agents
e Multiagent systems
e Machine learning
— Reinforcement learning
e Robotics

=t Sadg R DA v P TR A L
P t St o »—_._o,'\:('_': ;\‘-‘:f b “:'J-t‘., \T'HJ? :.y'-'.}
'‘nhnt ! ‘ ! a
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e Human interaction

— Advice, Demonstration
— Positive/Negative Feedback

Transfer learning for RL

Curriculum Learning

RL for musical playlist recommendation

TEXPLORE for Robot RL
— Sample efficient; real-time
— Continuous state; delayed effects

Deep RL in continuous action spaces

Peter Stone

[Knox & Stone, '09]
[Taylor & Stone, '07]

[Narvekar et al., ’16]

Liebman et al., '15]

ester & Stone, '13]

|[Hausknecht & Stone, "16]

UT Austin 44



Selected MAS Contributions

@ Autonomous traffic management
@ Trading Agent Competition (PowerTAC)
@ Ad Hoc Teamwork

Peter Stone




Ad Hoc Teams

e Ad hoc team player is an individual
— Unknown teammates (programmed by others)

Challenge: Create a good team player

e Introduced as AAAI Challenge Problem [AAAI'10]
— Theory: repeated games, bandits [AlIJ’13
— Experiments: pursuit, flocking (Genter & Stone, '12]
— RoboCup experiments [Genter et al., '15

Peter Stone




Benchmarking Robot Cooperation
without Pre-Coordination in the
RoboCup Standard Platform League
Drop-In Player Competition

Katie Genter*, Tim Laue®, Peter Stone*

* University of Texas at Austin, Austin, TX, USA

° University of Bremen, Germany




Ad Hoc Teams

e Ad hoc team player is an individual
— Unknown teammates (programmed by others)

Challenge: Create a gooc:i team player

e Introduced as AAAI Challenge Problem [AAAI'10]
— Theory: repeated games, bandits [AlIJ’13
— Experiments: pursuit, flocking (Genter & Stone, '12]
— RoboCup experiments [Genter et al., '15
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Ad Hoc Teams

e Ad hoc team player is an individual
— Unknown teammates (programmed by others)

Challenge: Create a gooc:i team player

e Introduced as AAAI Challenge Problem [AAAI'10]
— Theory: repeated games, bandits [AlIJ’13
— Experiments: pursuit, flocking (Genter & Stone, '12]
— RoboCup experiments [Genter et al., '15

— Community: MIPC Workshops, JAAMAS issue
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Efficient Robot Skill Learning: GSL and IfO

To what degree can autonomous
intelligent agents learn in the presence of
teammates and/or adversaries in real-time,
dynamic domains?

Demonstrator Imitator

T1 @ : @ ; vl0
START . n ~ ‘ 2
Bebavioral Closng from Observation (BCO) D I' '; 4 L) 1
l ﬁr‘l .; ,v»éc
Initialize g Run {(sf,5741)} J Append to " .’ . o Q r . ’ ® 2
a, policy 75" || ) policy . o 77,A
I_A‘ﬁ . ) 2 Ty {a¢} L Atinal B Llll lnnl
) [T—__'— =
Pollcy 9 f(s,.%) ] T } . . Q ’ a
% e | :
I | o o« Whp -
Simulated B | State-only | 7 7@ Odamo| 11005 7 ‘ _\
Environment | L- o | demonstrations i 5 + & . s
d Aderwo )

@ Motivation: RoboCup
@ Sim2Real: Grounded Simulation Learning
@ Imitation Learning from Observation: BCO and GAIfO
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e Human interaction

— Advice, Demonstration
— Positive/Negative Feedback

Transfer learning for RL

Curriculum Learning

RL for musical playlist recommendatiqn

TEXPLORE for Robot RL
— Sample efficient; real-time
— Continuous state; delayed effects

Deep RL in continuous action spaces

Peter Stone

[Knox & Stone, '09]
[Taylor & Stone, '07]

[Narvekar et al., ’16]

Liebman et al., '15]

ester & Stone, '13]

|[Hausknecht & Stone, "16]
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Efficient Robot Skill Learning: GSL and IfO

To what degree can autonomous
intelligent agents learn in the presence of
teammates and/or adversaries in real-time,
dynamic domains?

Demonstrator Imitator

T1 @ : @ ; vl0
START . n ~ ‘ 2
Bebavioral Closng from Observation (BCO) D I' '; 4 L) 1
l ﬁr‘l .; ,v»éc
Initialize g Run {(sf,5741)} J Append to " .’ . o Q r . ’ ® 2
a, policy 75" || ) policy . o 77,A
I_A‘ﬁ . ) 2 Ty {a¢} L Atinal B Llll lnnl
) [T—__'— =
Pollcy 9 f(s,.%) ] T } . . Q ’ a
% e | :
I | o o« Whp -
Simulated B | State-only | 7 7@ Odamo| 11005 7 ‘ _\
Environment | L- o | demonstrations i 5 + & . s
d Aderwo )

@ Motivation: RoboCup
@ Sim2Real: Grounded Simulation Learning
@ Imitation Learning from Observation: BCO and GAIfO
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e Human interaction

— Advice, Demonstration

— Positive/Negative Feedback

[Knox & Stone, '09]
Transfer learning for RL [Taylor & Stone, '07]

Curriculum Learning [Narvekar et al., '16]

RL for musical playlist recommendation Liebman et al., '15]

TEXPLORE for Robot RL ester & Stone, '13]
— Sample efficient; real-time
— Continuous state; delayed effects
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Efficient Robot Skill Learning: GSL and IfO

To what degree can autonomous
intelligent agents learn in the presence of
teammates and/or adversaries in real-time,
dynamic domains?

Demonstrator Imitator

11 @ Q vl
START . n ~ : 2
Bebavioral Closung from Observation (BCO) 1 :. .J' 4 i) 1
l ﬁr‘l .; ,v»éc
Initialize g Run {(s%,5741}} J Append to " .’ . o Q r . ’ ® 2
a Y\ ] 3 : L L4 S
, policy M o Te s An
—x ) 2 . Y B Ll vironment
Policy e ! lr." e
_".__J X 3 . . Q ’ a
$ e a| Update (-
v 2l _ - N odel M! & l D -
simulated ] LS"_‘iJ State-only | ICY 7o | Sidamol action rm el M, | fs-
Environment | L- o | demonstrations i 5 + .' 3 . s
d Aderwo )

@ Motivation: RoboCup
@ Sim2Real: Grounded Simulation Learning
@ Imitation Learning from Observation: BCO and GAIfO
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Ad Hoc Teams

e Ad hoc team player is an individual
— Unknown teammates (programmed by others)

Challenge: Create a good team player

e Introduced as AAAI Challenge Problem [AAAI'10]
— Theory: repeated games, bandits [AlIJ’13
— Experiments: pursuit, flocking (Genter & Stone, '12]
— RoboCup experiments [Genter et al., '15

— Community: MIPC Workshops, JAAMAS issue

S TP s T I N AP T

r n Bohot Skill 1l earnina
MMUUOL ORI LCalinng

up’

i




