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Abstract 

This new long version of my 1983 paper suggests the goals you might have for your system—

Simple, Timely, Efficient, Adaptable, Dependable, Yummy (STEADY)—and effective techniques 

for achieving them—Approximate, Incremental, Divide & Conquer (AID). It gives a few princi-

ples for system design that are more than just hints, and many examples of how to apply the hints 

and principles. 

1 Introduction 

There are three rules for writing a novel. Unfortunately, no one knows what they are. —Somerset 

MaughamQ48 

You got to be careful if you don’t know where you’re going, because you might not get there. —

Yogi BerraQ8 

If I have seen farther, it is by standing on the shoulders of giants. —Bernard of ChartresQ7 

The quest for precision, in words or concepts or meanings, is a wild goose chase. —Karl PopperQ61 

Shakespeare wrote better poetry for not knowing too much; Milton … knew too much finally for 

the good of his poetry. —WhiteheadQ87 

In 1983 I wrote a paper on “Hints for Computer System Design” for the Symposium on Operating 

System Principles.R45 I reread that paper every two or three years, and for more than 15 years I 

saw no reason to rewrite or extend it; I had written what I knew about personal distributed com-

puting, operating systems, languages, networking, databases, and fault tolerance, and computer 

systems were continuing the work of the 1970s on these things. But since the mid-1990s the Inter-

net, mobile phones, the World Wide Web, search engines, social media, electronic commerce, 

malware, phishing, robots and the Internet of Things have become part of the fabric of everyday 

life, and concurrency and scaling are now dominant themes in systems. So for the last few years 

I’ve been trying to write a new version. 

Then I could fit nearly everything I knew into a reasonable number of pages, but today com-

puting is much more diverse and I know a lot more; this paper is unreasonably long. I couldn’t 

find a single way to organize it, so I’ve taken several different perspectives and put in links (like 

this) to help you find what you need, especially if you read it online. There’s also a set of principles 

(based on the idea of abstraction) that almost always apply, and a collection of oppositions (simple 

vs. rich, declarative vs. imperative, etc.) that suggest different ways to look at things. 

The hints themselves are organized along three axes, corresponding to three time-honored 

questions, with a catchy summary: STEADY with AID by ART. 
    

What? Goals STEADY — Simple, Timely, Efficient, Adaptable, Dependable, Yummy 

How? Techniques with AID —Approximate, Incremental, Divide & Conquer 

When, who? Process by ART —Architecture, Automate, Review, Techniques, Test 
    

These are just hints. They are not 

novel (with a few exceptions),  
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foolproof recipes, guaranteed to work, 

precisely formulated laws of system design or operation,  

consistent, 

always appropriate, or 

approved by all the leading experts. 

Skip over the ones you find wrong, useless or boring.  

The paper begins with the importance of a point of view and a list of the oppositions, which 

can help you decide on priorities and structure for a system. §2 presents the principles: abstraction, 

specs, code and modularity. In §3 each goal gets a section on the techniques that support it, fol-

lowed by one for techniques that didn’t fit under a goal. “Efficient” gets by far the most space here, 

followed by “dependable”; this is because locality and concurrency fall naturally under the first 

and redundancy under the second, and these three are fundamental to today’s systems. Finally 

there’s a short nontechnical section §4 on process, and a discussion of each opposition in §5. 

Throughout, short slogans highlight the most important points without any nuance, and quotations 

give a sometimes cynical commentary on the text. 

Most of what I have to say is about software, since most of the work in building a computer 

system is building the software—the hardware usually comes off the shelf. If your system does 

need new hardware design, many of these ideas still apply. 

There are lots of examples to illustrate specific points; I’ve tried to choose well-known ones, 

but you may have to look them up to see the point. I’ve also told some longer stories, marked with 

». Many things fit in more than one place, so there are many cross-reference links. A term of art is 

in italics the first time it’s used; it’s a good starting point for a web search. 

This is not a review article; the work I cite is the work I know about, not necessarily the earliest 

or the best. I’ve given some references to material that expands on the ideas or examples, but 

usually only when it would be hard to find with a web search.  

There is also a shorter version of the paper here, about half the size of this but still 50% longer 

than the old one. 

1.1 Goals, techniques and process 

1.1.1 Goals—STEADY 

[Data is not information,] Information is not knowledge, Knowledge is not wisdom, Wisdom is not 

truth, Truth is not beauty, Beauty is not love, Love is not music and Music is THE BEST —

Frank ZappaQ91 

By goals I mean general properties that you want your system to have, not the problem it tries to 

solve. You should want your system to be STEADY: Simple, Timely, Efficient, Adaptable, De-

pendable, and Yummy. Since you can’t have all these good thing at the same time, you need to 

decide which goals are most important to you; engineering is about trade-offs. 

Simple should always be the leading goal, and abstraction is the best tool for making things 

simpler, but neither one is a panacea. There’s no substitute for getting it right. Three other goals 

are much more important now than in the 1980s: Timely, Adaptable, and Yummy.  

• Timely (early in time to market) because cheap computer hardware means that both enterprises 

and consumers use computer systems in every aspect of daily life, and you can deploy a system 

as soon as the software is ready. You can order up hardware in the cloud in a few minutes, and 

your customer has a smartphone. If you can’t deliver the system quickly, your competitor can. 

https://www.dropbox.com/sh/4cex542zznbjh7b/AADM59pqAb9YBy4eeT1uw0t8a?dl=0
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• Adaptable because the Internet means that a system can go from having a few dozen users to 

having a few million in a few weeks. Also, user needs can change quickly, and for many ap-

plications it’s much more important to be agile than to be correct. 

• YummyQ64 because many systems are built to serve consumers, who are much less willing 

than organizations to work hard to learn a system, and much more interested in fashions, fea-

tures and fads. Even for professionals, the web, social media and GitHub mean that it’s easy 

for enthusiasm to build up in defiance of formal procurement processes. 
       

Goals Simple Timely Efficient Adaptable Dependable Yummy 

As questions Is it clean? Is it ready? Is it fast? Can it evolve? Does it work? Will it sell? 

As nouns Simplicity Time to market Cost Adaptability Dependability Features 

Alliterative Frugal First Fast Flexible Faithful Fine/Fancy 

1.1.2 Techniques—AInD 

Techniques are the ideas and tools that you use to build a system; knowing about them keeps you 

from reinventing the wheel. The most important ones are about abstraction and specs; those are 

principles, not just hints. Most of the rest fall under three major headings: 

• Approximate rather than exact, perfect or optimal results are usually good enough, and often 

much easier and cheaper to achieve. Loose rather than tight specs are more likely to be satis-

fied, especially when there are failures or changes. Lazy or speculative execution helps to 

match resources with needs. 

• Incremental design has several aspects, many beginning with “i”. The most important is to 

build the system out of independent, isolated parts with interfaces that you can put together in 

different ways. Such parts are easier to get right, evolve and secure, and with indirection and 

virtualization you can reuse them in many different environments. Iterating the design rather 

than deciding everything up front keeps you from getting too far out of touch with customers, 

and extensibility makes it easy for the system to evolve. 

• Divide and conquer is the most important technique, especially abstractions with clean specs 

for organizing your system. This is the only way to maintain control when the system gets too 

big for one person’s head, or when you come back to it later. Other aspects: making your 

system concurrent to exploit your hardware, redundant to handle failures, and recursive to re-

use your work. The incremental techniques are an aspect of divide and conquer. 

For each technique, many examples show how it’s used and emphasize how widely applicable it 

is. A small number of ideas show up again and again, often concealed by the fact that people use 

different words for the same thing. The catalog below is both short and surprisingly complete. 

I describe most of the techniques in the context of a goal, telling you (very incompletely) for 

each one: 

− What it is. 

− Why it’s good. 

− How it can go wrong (when to avoid it; things to watch out for). 

Here are links to important techniques, to inspire you when you have a design problem. 

Simple: abstraction, action, extensible, interface, predictable, relation, spec. 

Efficient: algorithm, batch, cache, concurrent, lazy, local, shard, stream, summarize, translate. 

Adaptable: dynamic, index, indirect, scale, virtualize. 

Dependable: atomic, consensus, eventual, redundant, replicate, retry. 

Incremental: becoming, indirect, interface, recursive, tree. 
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1.1.3 Process—ART 

Process is who does what when, the mechanics of how you build and deploy a system: design, 

coding, testing, deployment, operations. The acronym is ART: Architecture, Automation, Review, 

Techniques, Testing. I know a lot less about this, since I’ve never been a manager, but people 

who’ve done it well have similar stories. 

1.2 Points of view 

A point of view is worth 80 points of IQ —Alan KayQ37 

Well, if you have two ways, one of them is real: what the machine executes. One of them is not. 

Only if one is massively more brief way than the other is it worthwhile. —Ken ThompsonQ77 

A good way of thinking about a system makes things easier, just as the center-of-mass coordinate 

system makes dynamics problems easier. It’s not that one viewpoint is more correct than another, 

but that it’s more convenient for some purpose. Many of the oppositions below reflect this idea. 

Here are some examples of alternative points of view, discussed in more detail later: 

• Being vs. becoming: the system state is the variable values (a map), or it’s the sequence of 

actions that made it (a log).  

• An interface adapter for compatibility is part of a component, adapting it to many environ-

ments, or part of the environment, making it hospitable to many components. 

• Iterative vs. recursive, list vs. tree: you can do the same thing in lots of cases, or you can divide 

a case into sub-cases and keep dividing until it’s really simple. 

• Declarative vs. imperative, solution vs. machine, intensional vs. extensional: a result is defined 

by its properties or the equation it satisfies, or by the steps that achieve it, or by a table that 

lists the result for each input. 

• Interpreter vs. compiler: the same program, but different primitive operations (x86 machine 

instructions, C statements, Java virtual machine instructions, Lisp functions or relational que-

ries) get you different speed, size, or ease of change. 

1.2.1 Notation 

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more 

advanced problems, and in effect increases the mental power of the race. —WhiteheadQ88 

The limits of my language are the limits of my world. —WittgensteinQ90 

There are more useful systems developed in languages deemed awful than in languages praised 

for being beautiful—many more. —Bjarne StroustrupQ72 

Notation is closely related to viewpoint, making something that’s important easier to think about. 

Every system has at least some of its own notation: the datatypes and operations it defines, which 

are a domain-specific language (DSL) without its own syntax. More broadly, a notation can be 

general-purpose: a programming language like C or Python, or a library like the C++ standard 

template library. Or it can be specialized: a DSL like the Unix shell (for sequential string pro-

cessing) or Julia (for numerical computation), or a library like TensorFlow (for machine learning).  

A notation consists of: 

• Vocabulary for naming relevant objects and actions (grep, awk, cat, etc. for the shell). Generic 

terms make it easier for people: “sort” for different sorting methods, “tree” for partially ordered 

or recursive structures. In a spec, the foundation should be mathematics, most often relations. 

• Syntax for stringing them together (in the shell, “|” for pipes, “>” for redirect, etc.). In a DSL, 

syntax is a way to make common things in the domain easy to write and read. By contrast, a 
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library for a general-purpose language has to live with the syntax of that language, typically 

method selection and function call, as in this example from Spark in Python: df.select(mul-

tiply(col("x"), col("y"))). 

There are tools that make building a DSL easy, but a successful one will tend to evolve into being 

general-purpose, losing much of its simplicity and elegance.  

In addition to being well matched to the domain, a DSL may be good because it’s easy to 

optimize (as in SQL queries), or because it provides useful properties like type safety or predictable 

execution time even if it is compiled into a lower-level language like C or machine code where 

native programs lack these properties. Sometimes it works to embed a DSL into a general-purpose 

language, as with Linq (Language Integrated Query) in C#. 

A language needs more machinery than a library, but there are advantages: 

− It provides syntactic sugar to make the program shorter and easier to read. 

− It can do more static checking; a library is limited to the host language’s type checking of 

parameters and results. 

− With a view of the whole program and knowledge of the primitives it can optimize better. 

1.3 Oppositions and slogans 

I've looked at life from both sides now. —Joni MitchellQ50 

It often helps to think about design in terms of the opposition between two (or three) extremes. 

Here are some important ones, each with a few slogans that when properly interpreted reveal its 

(sometimes contradictory) essence. They are ordered by the first goal or technique they serve, with 

other goals in [brackets]. At the end of the paper there’s a discussion of each one. 
    

Goal Opposition  Slogan 
    

Princi-

ples 
Spec ↔ code [S] { 

Write a spec. Get it right. Keep it clean. 

Don’t hide power. Leave it to the client. 
    

Simple 
Simple ↔ rich, fine ↔ features,  

  general ↔ specialized [Y] { 
KISS: Keep It Simple, Stupid.  

Do one thing well. Don’t generalize. 

Don’t hide power. Leave it to the client. 

Make it fast. Use brute force.  

 Spec ↔ code  [P] { 
Keep secrets. Free the implementer.  

Good fences make good neighbors.  
Embrace nondeterminism. Abstractions are leaky.  

 Perfect ↔ adequate, exact ↔ tolerant [TD]  Just good enough. Flaky, springy parts. 

 Immutable ↔ append-only ↔ mutable  Make it stay put. 

 Declarative ↔ functional ↔ imperative [E]  Say what you want. Make it atomic. 
    

Timely Precise ↔ approximate software [D]  Get it right. Make it cool. Shipping is a feature. 
 Perfect ↔ adequate, exact ↔ tolerant [SD]  Just good enough. Flaky, springy parts. 

    

Efficient   { 
ABCs. Latency vs. bandwidth. Use theory. 

S3: shard, stream or struggle. Make it atomic. 

 Dynamic ↔ static  [A] { 
Stay loose. Pin it down. 

Shed load. Split resources. 

 Indirect ↔ inline  [I]  Take a detour, see the world. 

 Time ↔ space  Cache answers. Keep it close. 

 Lazy ↔ eager ↔ speculative  Put it off. Take a flyer. 
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 Centralized ↔ distributed, share ↔ copy [D]  Do it again. Do it twice. Find consensus.  
 Declarative ↔ functional ↔ imperative [S]  Say what you want. 

    

Adapt-

able  

Fixed ↔ evolving,  [I] 

  monolithic ↔ extensible  { 
The only constant is change. 

Make it extensible. Flaky, springy parts. 

 Evolution ↔ revolution  Stay calm. Ride the curve. Seize the moment.  

 Policy ↔ mechanism  It’s OK to change your mind. 
 Dynamic ↔ static [E]  Stay loose. Pin it down. Shed load. Split resources. 

    

Depend- Consistent ↔ available ↔ partitionable  Safety first. Always ready. Good enough. 

able Generate ↔ check  Trust but verify. 

 Persistent ↔ volatile  Don’t forget. Start clean. 
 Perfect ↔ adequate, exact ↔ tolerant [S]  Fail fast, fix fast. End-to-end. 

 Precise ↔ approximate software [T]  Get it right. Make it cool. 

 Centralized ↔ distributed, share ↔ copy [E]  Do it again. Do it twice. Find consensus. 
    

Yummy 

Simple ↔ rich, fine ↔ features [S]  KISS: Keep It Simple, Stupid. 
    

Incre- Being ↔ becoming   How did we get here? Don’t copy, share. 

mental Iterative ↔ recursive, array ↔ tree   Treat the part like the whole. 

 Recompute ↔ adjust   Take small steps. 
 Indirect ↔ inline [E]  Take a detour, see the world. 

 Fixed ↔ evolving, monolithic ↔ extensible [A]  Make it extensible. Flaky, springy parts. 
    

Process   Build on a platform. Keep interfaces stable. 
    

2 Principles 

The ideas in this section are not just hints, they are the basic mental tools for system design. 

2.1 Abstraction—Write a spec 

The purpose of abstraction is not to be vague, but to create a new semantic level in which one can 

be absolutely precise. —Edsger DijkstraQ21 

Without a specification, a system cannot be wrong, it can only be surprising. —Gary McGrawQ49 

If you’re not writing a program, don’t use a programming language. —Leslie LamportQ44 

The hardest part … is arriving at a complete and consistent specification, and much of the [work 

is] the debugging of the specification. —Fred BrooksQ9 

[Architecture is] the structure of a computer that a machine language programmer must under-

stand to write a correct (timing independent) program for that machine. —Amdahl, Blaauw, 

and BrooksQ2 

Abstraction is the most important idea in computing. It’s the way to make things simple enough 

that your limited brain can get the machine to do what you want, even though the details of what 

it does are too complicated for you to track: many, many steps and many, many bits of data. The 

idea is to have a specification for the computer system that tells you  

− what: everything you need to know to use the system,  

− but not how: anything about how it works internally, which this paper calls the code (since 

“implementation” is too long). 

The spec describes the abstract state of the system (the values of its variables) using basic 

notions from mathematics, usually relations and their special cases: sets, sequences, tuples, 
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functions, and graphs. For example, a file system spec describes a file as a pair: a size plus an array 

of that many bytes (the array is a function from [0 . . 𝑠𝑖𝑧𝑒 − 1] to bytes). Internally the code has 

data blocks, index blocks, buffer caches, storage allocators, crash recovery, etc., but none of this 

appears in the spec. The spec hides the complexity of the code from the client. Almost always the 

spec is much simpler, so the client’s life is much easier. 

The spec also describes the actions that read and change the state; a file has read, write, and 

set-length actions. An action 𝑎 is just a set of possible transitions or steps from a pre-state 𝑠 to a 

post-state 𝑠′, so it too can be described by a relation, a predicate 𝑎(𝑠, 𝑠′) on states that is true 

exactly when a step from 𝑠 to 𝑠′ is one of the action’s steps. There are many notations (usually 

called languages) for writing down these relations easily and clearly, but first-order logic underlies 

all of them. Example: x:=y is a way of writing the predicate 𝑥′ = 𝑦 ∧ (∀ 𝑣 𝐞𝐱𝐜𝐞𝐩𝐭 𝑥 | 𝑣′ = 𝑣); 

the value of x changes and all the other variables stay the same. There might be more than one 

possible next state if an action is nondeterministic, or none if it’s blocked. The behavior of the 

system is just the set of possible sequences of steps. 

A statement in an imperative program is an action, so its meaning is a relation: 

• For a; b it’s the composition 𝑎 ∘ 𝑏. In a deterministic sequential program 𝑎 and 𝑏 are total 

functions on the state, there’s exactly one next state 𝑎(𝑠) after 𝑎, and this is just function com-

position, one statement after another: 𝑠′ = 𝑏(𝑎(𝑠)). More generally, 𝑎 ∘ 𝑏 relates 𝑠 to 𝑠′ if 
there’s some intermediate state 𝑠𝑖 that 𝑎 can produce from 𝑠 and that 𝑏 can turn into 𝑠′: 
𝜆𝑠, 𝑠′ 𝐢𝐧 (∃𝑠𝑖 𝐬𝐮𝐜𝐡𝐭𝐡𝐚𝐭 𝑎(𝑠, 𝑠𝑖) 𝐚𝐧𝐝 𝑏(𝑠𝑖, 𝑠′)).  

• For if x then a else b it’s 𝑥 𝐚𝐧𝐝 𝑎 𝐨𝐫 ¬𝑥 𝐚𝐧𝐝 𝑏. 

• For f(a) it’s (𝑥 = 𝑎) 𝐚𝐧𝐝 𝑓 if 𝑥 is 𝑓’s formal parameter. 

• For var x do a it’s the somewhat surprising ∃𝑥 𝐬𝐮𝐜𝐡𝐭𝐡𝐚𝐭 𝑎. 

and so forth. A concurrent program also has some complications about the program counter.  

It’s customary to call this kind of spec the “meaning” of the system, or (especially for pro-

gramming languages) the “semantics”, since it depends only on mathematics. The actions are as 

important to the spec as the state, though sometimes the choice of state makes the actions obvious. 

They may be so familiar (adding and multiplying numbers, for example) that you don’t notice this, 

but usually that’s a sign of poor design: the actions should be more specific to the abstraction. 

A spec can be very partial, in which case it’s often called a property; for example, it might just 

specify “no segfaults” by saying that any step that isn’t a segfault is okay.  As well as being partial, 

a spec can be nondeterministic: any of a set of results is acceptable; for example, a timing spec 

such as “Less than 200 ms”. And often details should be left open. Eventual consistency just says 

that an update will appear in the state by the end of the next sync (if there is one); it doesn’t 

otherwise specify when an update will be visible. 

The code should satisfy (meet) the spec. That means that every visible behavior of the code is 

also a behavior of the spec. The “visible” is important; typically the code has internal state that’s 

invisible, and often the spec does too. “Hyperproperties” that constrain sets of possible behaviors 

such as non-interference (the result doesn’t depend on the value of a secret) are out of scope. 

Finding the right abstractions is the most important part of designing a system. A language 

gives you some built-in abstractions: strings, arrays, dictionaries, functions. These are good, but 

they are less important than the abstractions in the platform you are building on, such as files, 

networking, relational data, vectors and matrices, etc. And those in turn are less important than the 

abstractions that are specific to the application. 

Which comes first, the spec or the code? In theory the spec should come first, since it reflects 

what you want done; this is called top-down design, and the code is a refinement of the spec. In 
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practice they evolve together, because you can’t tell what the spec should be until you see how it 

affects the code and the system’s customers. The first ideas for a spec are usually much too closely 

tied to the code, and usually provide both more and less than the customers need. Thus the process 

for getting the spec is distinct from the way to think about the system once you have it. 

2.1.1 Safety and liveness 

Any spec that just says what visible behaviors are OK is the conjunction of two parts:  

− A safety spec, which says that nothing bad ever happens. If the code violates a safety spec 

the bad thing happens in a finite number of steps. Code that does nothing satisfies every 

safety spec. 

− A liveness spec, which says that something good eventually happens, usually that it’s fair: 

every action allowed by safety eventually happens. No finite behavior can violate liveness, 

because there’s always more time for the good thing to happen.  

For a non-interactive sequential program, safety and liveness are called partial correctness and 

termination. Usually safety is what’s important, because “eventually” is not very useful; you care 

about getting a result within two seconds, and that’s a safety property (violated after two seconds). 

But a liveness proof often works by counting steps, loop iterations, function calls or whatever, and 

so contains a proof of a time bound.  

2.1.2 Operations 

The description so far is written entirely in terms of state changes. Usually it’s easier to describe 

visible behavior as sequences of operations the client can invoke and results that the system re-

turns. For example, the spec for a first-in first-out buffer has put(x) and get() returns y opera-

tions (the parameter and result values are part of the operation), and its internal state is a sequence 

of items that have been put and not yet retrieved by get. The hardware doesn’t know much about 

operations, but the programming language does. What reconciles these two views is the idea of a 

calling sequence, a sequence of state changes that correspond to invoking an operation and getting 

a result. There are many possible calling sequences:  

• Executing a machine instruction; the mechanics are buried in the CPU hardware. 

• Putting some arguments into specific registers, executing a branch-and-link instruction that 

saves the PC in a register, and getting the result from a specific register. 

• Pushing some arguments onto a stack, executing a call instruction that pushes the PC onto the 

stack, and getting the result from the top of the stack. 

• Marshaling arguments into a packet, sending it to an RPC server, and waiting for a result 

packet. 

Usually an operating system standardizes on one of these PC-saving sequences, so you can forget 

about it and describe the visible behavior in terms of operations. 

2.2 Writing a spec—KISS: Keep It Simple, Stupid. 

Reality is that which, when you stop believing in it, doesn’t go away. —Philip K. DickQ19 

What is written without effort is in general read without pleasure. —Samuel JohnsonQ69 

The problem … is not precise language. The problem is clear language. —Richard FeynmanQ26 

It is impossible to speak in such a way that you cannot be misunderstood: there will always be 

some who misunderstand you. —Karl PopperQ61 

How should you go about writing a spec? There are two steps: 

(1) Write down the state of the spec (the abstract state).  



 

9 

 

You have to know the state to even get started, and finding the simplest and clearest abstract state 

is always worth the effort. It’s hard, because you have to shake loose from the details of the code 

you have in mind and think about what your clients really need. The mental tools you need for this 

are the elementary discrete math of relations and a good understanding of the clients. 

Often people say that the abstract state is not real; only the RAM bytes, the disk blocks and the 

machine instructions are real. I can’t understand this; a physicist will say that only the quantum 

mechanics of electrons in silicon is real. What they probably mean is that the spec doesn’t actually 

describe the behavior of the system. This can happen in several ways: 

• It can be wrong: the code does things the spec doesn’t allow. This is a bug in either the spec or 

the code that should be fixed. 

• It can omit important details: how accurate a sine routine is or what happens if there’s a failure. 

• It can omit unimportant details by being leaky. This is a matter of judgment. 

For the file system example, the spec state has files 𝐹, directories 𝐷, nodes 𝑁 and a 𝐷 node 

𝑟𝑜𝑜𝑡. The state is a map 𝑠 = 𝑁 → (𝐹 𝐨𝐫 𝐷) that gives the current contents of the nodes. A file is 

a pair 𝐹 = (𝑠𝑧: Nat, 𝑑𝑎𝑡𝑎: 𝐚𝐫𝐫𝐚𝐲 Byte) and a directory is a (partial) function 𝐷 = 𝑁𝑎𝑚𝑒 → 𝑁. 

The 𝐷’s must organize the nodes into a graph where the 𝐹’s are leaf nodes and the 𝐷’s form a tree 

rooted in 𝑟𝑜𝑜𝑡; an invariant on the state says this. 

(2) Write down the spec actions: how each action depends on the state and changes the state. 

Now you have everything the client needs to know. If you haven’t done this much, you probably 

can’t do a decent job of documenting for the client.  

For example, three of the file system actions (somewhat simplified) are: 

𝑟𝑒𝑎𝑑(𝑛, 𝑖) = 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠(𝑛). 𝑑𝑎𝑡𝑎𝑖.  

𝑤𝑟𝑖𝑡𝑒(𝑛, 𝑖, 𝑏) = 𝐢𝐟 𝑠(𝑛) ∈ 𝐹 𝐚𝐧𝐝 𝑖 < 𝑠(𝑛). 𝑠𝑧 𝐭𝐡𝐞𝐧 𝑠(𝑛). 𝑑𝑎𝑡𝑎𝑖 ≔ 𝑏. 

𝑜𝑝𝑒𝑛(𝑝𝑛: 𝐚𝐫𝐫𝐚𝐲 𝑁𝑎𝑚𝑒) =  

𝐥𝐞𝐭  𝑠𝑧 = 𝑝𝑛. 𝑠𝑖𝑧𝑒 − 1,  
 𝑝: 𝐚𝐫𝐫𝐚𝐲 𝑁 𝐬𝐮𝐜𝐡 𝐭𝐡𝐚𝐭 𝑝0 = 𝑟𝑜𝑜𝑡 𝐚𝐧𝐝 (∀𝑖 ∈ [1 . . 𝑠𝑧] | 𝑠(𝑝𝑖−1)(𝑝𝑛𝑖) = 𝑝𝑖)  

𝐢𝐧 𝐫𝐞𝐭𝐮𝐫𝐧 𝑝𝑠𝑧. 

Writing down the actions precisely is a lot more work, as the example suggests, and you probably 

need a good notation (language) to do it clearly and concisely. The 2009 lecture notes for my MIT 

course 6.826, Principles of Computer Systems, have many realistic examples worked out in detail, 

unfortunately using a made-up language.R49 

Good specs are hard. Each spec is a small programming language with its own types and built-

in operations, and language design is hard. Also, the spec mustn’t promise more than the code can 

deliver—not the best possible code, but the code you can actually write. As Dennis Ritchie wrote 

many years ago: “In spite of these limitations, the stream I/O system works well. Its aim was to 

improve design rather than to add features, in the belief that with proper design, the features come 

cheaply. This approach is arduous, but continues to succeed.”R66 

There is nothing special about concurrency, except that it makes the code (and perhaps the 

spec) nondeterministic: the current state doesn’t determine the next step, because any thread that 

isn’t blocked could provide it. Likewise there is nothing special about failures. A crash or the 

misbehavior of a component is just another action. Crashes cause trouble because they may destroy 

state that you would prefer to keep, and because they add concurrency that you don’t have much 

control over. But these are facts of life that you have to deal with, not flaws in the method. 

If there is concurrency, the file system operations often are not atomic actions that make a 

single state change; indeed, in Windows and Unix none of them is atomic. Instead there is a start 
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action that collects the arguments and an end action that returns the result, and other actions that 

affect the result can occur in between. Such non-atomic operations are more difficult to reason 

about, but their code can be much cheaper to run. 

The spec describes all the possible visible behaviors of the system in terms of the abstract state 

(which includes the arguments and results of operations that the client invokes). Sometimes people 

talk about a “functional spec”, a vague notion based on the wrong idea that the system has no 

internal state or actions, so that there’s nothing to say about its behavior beyond the results that its 

actions return. But reliability, failures, resource consumption, latency and system configuration 

can all be visible behaviors that a spec can describe. 

Is the spec correct? In other words, is it actually what you want the system to do? There’s no 

way to prove that it is; what standard would you judge it against? Sometimes you can show that 

desired properties follow from the spec, such as a bound on resource consumption, but the best bet 

is to keep it simple. A 20 page spec won’t be correct. Big specs need abstraction too; a part that’s 

repeated, perhaps with some parameters changed, is like a routine in a program. Give it a mean-

ingful name and write the body just once. 

2.2.1 Leaky specs and bad specs 

Specs are usually incomplete or leaky; they don’t describe all the behavior of the system that’s 

visible to the client. Most notably, specs often don’t say much about the resources they consume, 

especially running time. This may be okay, depending on what the client needs, but for a system 

that interacts with the physical world (which includes users) predictable response time is im-

portant, especially for interactions that should lead to smooth motion such as scrolling on a touch 

device. Also, it can be disastrous when the code for a frequently-used abstraction changes and an 

application suddenly runs much more slowly. Ideally there will be a worst-case timing spec, but 

often the guarantee is probabilistic and the best you can do is to monitor it and report unexpected 

delays. Don’t ignore the problem; that will end in tears. There are similar issues for other resources 

such as RAM, storage space or network bandwidth. If the code depends on external resources that 

it doesn’t control and that can fail or perform badly, such as networking, the spec must say this. 

For example, network file systems have caused many problems when actions such as stat that 

were assumed to be fast become very slow or never finish at all. 

The whole point of a spec is to suppress irrelevant detail, but leaky specs can also be a problem 

for security, since observable state changes that are not part of the spec such as timing, power 

consumption, cache allocation, acoustic or electromagnetic radiation, etc. can reveal secrets; these 

are called side channels in cryptography, where they have been studied extensively. In general, 

abstractions don’t keep secrets. If you are worried about side channels, don’t share resources. 

Sometimes the spec needs to be leaky, in the sense that it exposes some internal secrets, to give 

clients the access they need to run fast.R20 Increasing the number of assumptions that one part of a 

system makes about another may allow less work to be done, perhaps a lot less. 
»Bug-for-bug. Code is supposed to keep secrets; it shouldn’t expose properties of the system that are not in the 

spec and that you might want to change, because clients may come to depend on them. A sad example of this was a 

fairly popular app for Windows 3 (perhaps it had 10 million users). The app had a routine that did something minor 

to a string, maybe removing all the punctuation. Because of a bug, in one place it called the routine with a bogus string 

pointer that happened to point to the garbage area off the end of the stack. The routine would run, make enough 

changes to the garbage to satisfy it, and return; no one noticed the string that didn’t get processed. When Windows 95 

came along, however, enough things were different that the bogus pointer had a different value, and Windows 95 has 

more memory protection, so now the bogus call caused a segfault, crashing the app. The fix to keep the app working, 

in the days before online updates? A special check for this app and this call in the segfault routine, which did whatever 

was necessary to satisfy the app. This is what it means to be bug-for-bug compatible. 
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Being leaky is not necessarily a bad thing, and in general it’s unavoidable. But there are other 

properties of a spec that are usually bad: 

• Complexity is hard for the client to understand, and hard to code. It often comes from not 

following the state-and-actions recipe, or exposing facts about the code that should be secret. 

• Brittleness makes the spec depend on details of the environment that are likely to change, or 

on details of how it is called that are easy to get wrong. 

• Errors or failures in the code that the spec gives no way to report mean that the code won’t 

satisfy the spec. A common example is a synchronous API that makes the code look local, fast 

and reliable even though it’s really remote, slow and flaky. 

• Similarly, contention or overload may keep the code from meeting the spec if there’s no way 

to report these problems or set priorities. 

• De facto specs, in either function or performance, happen when the code has properties that 

clients come to depend on even though they are not in the spec. Unless you can change the 

clients, you are now stuck. Sometimes virtualization can fix these problems. 
»TPM 1.1. In the late 1990s Paul England and I at Microsoft invented the mechanisms that ended up in the Trusted 

Platform Module (TPM). By 2002 the TPM had been standardized, and a few years later I wanted to know some 

details about how it worked. So I downloaded the specR80 and started to read it, but I got stuck right away. Even 

though I actually invented these mechanisms, I couldn’t understand the language of the standard. 

2.3 Writing the code: Correctness—Get it right 

Smart software companies know that reliable software is not cost effective. … It’s much cheaper 

to release buggy software and fix the 5% to 10% of bugs … people complain about. —Bruce 

SchneierQ67 

For simple mechanisms, it is often easier to describe how they work than what they do, while for 

more complicated mechanisms, it is usually the other way around. —John von NeumannQ83 

Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code 

as cleverly as possible, you are … not smart enough to debug it. —Brian KernighanQ41 

Program testing can … show the presence of bugs, but never … their absence. —Edsger Dijks-

traQ22 

Beware of bugs in the above code; I have only proved it correct, not tried it. —Donald KnuthQ42 

Most of this paper is about how to write the code. But is the code correct? In other words, does it 

satisfy the spec? (You don’t have a spec? Then the question makes no sense.) In theory this ques-

tion has a yes-or-no answer. If  

− the spec is a predicate that specifies every allowed action (step) of the system,  

− the code precisely specifies every action that the system takes, and  

− you know which parts of the state are visible to the client,  

then correctness is a theorem: “Every visible code behavior is a spec behavior,” either true or false.  

If the theorem is true, a surprising fact is that it has a simulation proof: there is an abstraction 

function 𝑓 from the code state to the spec state such that every code action 𝑐 → 𝑐′ from a reachable 

state has a matching spec action 𝑓(𝑐) → 𝑓(𝑐′) with the same effect on the visible state (it’s the 

identity if the action doesn’t change any visible state). 
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This diagram is the inductive step in the proof that every visible code behavior is a spec be-

havior. You might need to add history variables to the code to write the abstraction function (or 

alternatively, define an abstraction relation). These are variables that keep track of spec state that 

the code doesn’t need; they aren’t allowed to affect the original code state. For example, the spec 

for a simple statistics system might allow you to add data points one at a time, and then obtain the 

mean of the whole set. The code computes the mean incrementally and doesn’t store the set, so 

you need to add it as a history variable. In principle you might also need to add prophecy varia-

bles,R1 but you’re unlikely to run into this. 

Following this script, once you have the spec (steps (1) and (2) above) and the code state and 

actions, there are two more steps to connect them: 

(3) Find an abstraction function from code to spec state. You’ll need some of the code state, but a 

lot of it is there for performance and won’t show up in the abstraction function. Also find the 

invariants on the code state, that is, define the states that the code can reach; the proof only 

needs to deal with actions from reachable states. For example, if the code has a sorted array 

there will be an invariant that says so, and you need it to show that the code actions that use 

binary search to look up a key in the array actually work.  

(4) Finally, do the actual simulation proof that every code action preserves the visible behavior 

and the invariants. 

Step (4) is the only one that requires reasoning about every action in the code from every reach-

able code state, so it’s by far the most work. Step (3) requires understanding why the code works, 

and it usually uncovers lots of bugs. Unfortunately, the only way to know that you’ve done it right 

is to do step (4), which is usually not worthwhile. But writing a spec is always worthwhile. With 

modern proof systems it’s possible to do a machine-checked simulation proof for systems with 

thousands of lines of code, and to redo the proof fairly easily after changing the code.R36 But it’s a 

lot of work, and this work only pays off when correctness is very important. 

An alternative is model checking, which explores a small subset of the code’s state space sys-

tematically, looking for behavior that violates the spec. This doesn’t give any proof of correctness 

(unless there are so few behaviors that the checker can try all of them), but it finds a lot of bugs. 

In fact, many people’s experience is that it finds most of the bugs.R60,R27 And it’s much less work 

than a simulation proof, since the checking itself is automatic and only costs CPU time. Often you 

have to modify the code, though, to coax the model checker into exploring the right parts of the 

state space. 

You might also worry about whether the spec is correct. 

2.3.1 Types 

Types are a way to express some facts about your program that the machine can understand and 

check, in particular some stylized preconditions and postconditions. The idea is that  

− a value 𝑣 of type 𝑇 has an extra type field whose value is 𝑇,  

f (c) f (c')

c c'

ff

spec

code

pre-state post-state
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− an argument must have the expected type (the precondition): if a routine 𝑅 expects a type 

𝑇′, 𝑅(𝑣) is an error unless 𝑇 = 𝑇′ (or more generally, 𝑇 is a subtype of 𝑇′), 
− a routine’s result has the expected type (the postcondition).  

With dynamic types the type field is present at runtime; most often it’s called a class. In a static 

system it’s a “ghost” field not present at runtime, because every expression 𝑒 has a type, and the 

compiler guarantees that if 𝑒 has type 𝑇, then 𝑒. type = 𝑇. In other words, the spec (the type dec-

larations) says that the value of 𝑒 has type 𝑇, and the compiler proves it. 

Why are static types good? For the same reason that static checking in general is good: the 

compiler can prove theorems about your program. Most of the theorems are not very interesting, 

since they just say that arguments have the right types; sometimes the type system can figure out 

(infer) the types as well, as in Haskell or TypeScript. But the first draft of a program almost always 

has lots of errors, and most errors are pretty obvious. So type checking finds lots of bugs when it 

can’t prove its trivial theorems.R64  

The type carries with it a table of methods, functions that operate on data of that type. Statically 

the compiler knows the type and looks up the method; dynamically the lookup is at runtime. All 

languages use one of these schemes, and they do it statically at least for built-in methods like 

assignment or adding numbers. 

2.3.2 Languages 

What programming language should you use? There is no universal answer to this question, but 

here are some things to think about: 

• How hard is it to write your program so that the language guarantees that it has a bullet-proof 

abstract state, in which a variable always has the expected type and only changes when it’s 

explicitly written? Usually this means strong typing and garbage collection. JavaScript is bul-

letproof in this sense, C++ is not. A broken abstraction makes debugging much more difficult. 

• Is the language well matched to your problem domain? Is it easy to say the things that you say 

frequently? Is it possible to say all the things that you need to say? 

• How much static checking does the compiler do? A bug found statically is easier to handle. 

• How hard is it to make your program efficient enough, or to measure how it uses resources? 

2.4 Modules and interfaces—Keep it clean 

The only known way to build a large system is to reinforce abstraction with divide and conquer: 

break the system down into independent abstractions called modules. The running code of a mod-

ule is often called a service. The spec for each module does two things:  

− it simplifies the client’s life by hiding the complexity of the code (see above), and 

− it decouples the client from the code, so that the two can evolve independently.  

Thus many people can work on the system productively in parallel without needing to talk to each 

other. A really successful spec is like an hourglass: the spec is the narrow neck, with many clients 

above and many codes below, and it can live for decades. Examples: CPU ISAs (instruction set 

architectures such as x86 and ARM), file systems (Posix), databases (SQL), programming lan-

guages (C, C++, JavaScript). Examples from networking, where interfaces are especially im-

portant because there’s no authority to coordinate simultaneous changes in a module and its clients: 

ethernet, reliable messages (TCP), names for Internet services (DNS), email addresses, end-to-end 

security (TLS), web pages (HTTP and HTML). 

A popular view of decoupling is that the spec is a contract between the client and the service: 
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• The client agrees to depend only on the behavior described by the spec; in return the client 

only has to know what’s in the spec, and can count on the code to actually behave as the spec 

says it should. 

• The service agrees that the module will obey the spec; in return it can do anything it likes 

internally, and it doesn’t have to deliver anything not laid down in the spec. 

Many people shun “spec” in favor of “contract”, perhaps because they think specs are too formal. 

It’s common to call the spec of a module its interface, and I’ll do this too. Unfortunately, in 

common usage an interface is a very incomplete spec that a compiler or loader can process, giving 

just the data types and the names and (if you’re lucky) the parameters of the operations, rather than 

what the actions do with the state. Even a good description of the state is often missing. 

Module interfaces serve much the same purpose as interfaces between business entities: to 

reduce transaction costs by simplifying and standardizing communication. But as with firms, you 

sometimes have to look inside because you can’t understand the spec, it’s incomplete, or you just 

don’t believe that the code will actually satisfy it. 

2.4.1 Classes and objects 

A variation on modules attaches the spec and code to a data item, usually called an object. You 

choose a set of routines called methods that take the same type of data as their first argument, and 

package their specs into a single spec, here called a classpec (it’s called a type class in Haskell, a 

protocol in Smalltalk, an interface in Java, a concept or abstract base class in C++ and Python). 

The code for the classpec is a class, a dictionary that maps each method name to its code. A class 

with enough methods can satisfy more than one spec. An object of the right type that has the class 

attached is an instance of the class (and of the classpec). With static typing you can attach the class 

to the type instead of the object. 

For example, the classpec Ord T might have methods eq and lt that take two values of type T, 

return a Bool, and satisfy the axioms for a partial order. If x is an instance of Ord T, then x.eq(y) 

calls the eq method (and perhaps so does the prettier x==y); to run it, look up eq in x’s class to get 

the method’s code and call it with (x,y) as its arguments. If the compiler knows the class it can 

do the lookup. This is not magic, and these ideas can work even with no language support. In C, 

for example, the method lookup is explicit: an object x is a struct with a class field that points to 

the dictionary, which is another struct with an eq field that points to the method code: 

x->class->eq(x,y).  

Adding methods to a class makes a subclass, which inherits the superclass methods (and like-

wise for a classpec); thus Ord T is a subclass of an Eq T class that has only the eq method. An 

instance of Ord T is also an instance of Eq T. The subclass provides code for the added methods, 

and for the superclass methods as well if it overrides them. The subclass should satisfy the classpec 

of the superclass, which is all that its clients can count on. Then there’ll be no surprises when a 

subclass object is used in code that expects the superclass. An easy way to ensure this is to not 

override the superclass methods, and to give the added methods no access to the private data of 

the superclass. The final modifier in Java enforces this, but inheritance in general does not. It’s 

very easy to break the superclass abstraction, because usually the spec is very incomplete, actually 

proving correctness is beyond the state of the art, and at most you get a guarantee that the method 

names and types agree. 

There are two distinct ideas here: hiding (abstraction) and overloading (using the same name 

for more than one thing). 
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• The class is doing the usual job of abstraction, describing the object’s behavior and hiding its 

code from clients. 

• The class is providing overloading for its methods, making it easy to invoke them using names 

local to the class, but the same as the names of methods in other classes with the same spec. 

These two things work together when the different overloaded methods do indeed satisfy the same 

spec, but can be a rich source of errors when they don’t, since there’s no mechanical way to tell. 

This may be okay when the same team owns both superclass and subclass, but it’s very dangerous 

if the superclass has many independent clients, since there’s no single party ensuring that the sub-

class satisfies its spec. Beware of inheritance. 

Many languages embed classes in various confusing ways. It helps to organize them into two 

main categories.  

• Type-based: a type hosts the class, as in Haskell or for built-in methods like “+” in most lan-

guages. For example, Integer is a host for Ord given suitable code: integerEq for == and 

integerLT for <. A type can host several classes if it has code for all their methods. Because 

the method code is part of a type, the compiler knows it unless the type is a parameter; in that 

case the class dictionary is a runtime parameter. 

• Object-based: the object hosts the class, as in Smalltalk or Java. Of course to know what 

methods it makes sense to call, the programmer needs to know what classpecs an expression’s 

class implements. In Smalltalk it’s up to the programmer to keep track of this; in Java the 

expression’s type tells you statically, but the object’s class might be a subclass of the type so 

the compiler doesn’t know the method’s actual code (unless it’s final). 

2.4.2 Layers and platforms 

A typical system has lots of modules, and when a module’s spec changes 

you need to know who depends on it. To make this easier, put related 

modules into a layer, a single unit that a team or vendor can ship and a 

client can understand. The layer only exposes chosen interfaces, and a 

lower layer is not allowed to call a routine in a higher layer. So a layer is a big module, normally 

a client of its host, a single layer below it, with one or more layers as its clients above it. Thus the 

term layer makes some sense, although the turtle example below has some exceptions. 

Usually you build a system on a platform, a big layer that serves a wider range of clients and 

comes from a different organization. Common platforms are a browser (the interface is a document 

object model accessed through JavaScript) or a database system (the interface is SQL), built on an 

operating system platform (Windows or Linux; the interface is kernel and library calls) built on a 

hardware platform (Intel x86 or ARM; the interface is the ISA). Usually the ISA is the lowest layer 

in such a picture, but it’s turtles all the way down: the hardware is built on gates and memory cells, 

which are built on transistors, which are built on electrons obeying the laws of quantum mechanics. 

Here is an example with all the turtles: 
 

Host

YOU

Clients

PeersPeers
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 application Gmail  

 web framework Django 

 database     browser BigTable     Chrome 

 operating system Windows 10 

 virtual machine VMware 

 ISA X86 

 CPU hardware AMD Ryzen 7 2700X 

 gates     memory TSMC 7 nm      Micron MT40A16G4 

 transistors 7 nm finFET     LPDDR4X-4266 

  electrons, quantum mechanics 

 
»Celebrity beeps. Microsoft Windows makes sounds, generically called beeps, to notify the user about various 

conditions. Some of these conditions happen at low levels of the system. At one point they introduced layers to control 

dependencies, about 50 of them. Then someone had the idea of celebrity beeps, by analogy with celebrity ringtones. 

But of course a celebrity beep is a valuable property that needs digital rights management, which is done at level 45. 

This meant that code to beep at level 10 was calling up to level 45. When the checkin tool rejected this, the developers 

were baffled—they couldn’t understand what they were doing wrong. 

2.4.3 Components 

Reusing pieces of code is like picking off sentences from other people’s stories and trying to make 

a magazine article. —Bob FrankstonQ28 

It’s harder to read code than to write it. —Joel SpolskyQ70 

A module that is engineered to be reused in several systems is called a component. Obviously it’s 

better to find a component that does what you need than to build it yourself (don’t reinvent the 

wheel), but there are some pitfalls: 

− You need to understand its spec, including its performance. 

− You need to be confident that its code actually satisfies the spec and will be maintained.  

− If it doesn’t quite do everything that you want, you have to fill in the gaps.  

− Your environment must satisfy the assumptions the component makes: how it allocates 

resources, how it handles initialization, exceptions and failures, how it’s configured and 

customized, and the interfaces it depends on. 

Building a reusable component costs several times as much as building a module that does a 

good job in one system, and usually there’s no business model that can pay this cost. So an adver-

tised component probably won’t meet your needs for a reliable, maintainable system, though it 

could still be fine if dependability is not critical (for example, for approximate software).  

There are two ways to keep from falling into one of these pitfalls: 

• Copy and paste the module’s code into your system and make whatever changes you find nec-

essary. This is usually the right thing to do for a small component, because it avoids the prob-

lems listed above. The drawback is that it’s hard to keep up with bug fixes or improvements. 

• Stick to the very large components usually called platforms. These have a viable business 

model (because it’s impractical to write your own database or browser), there will only be a 

few of them to learn about, they encapsulate a lot of hard engineering work, and they stay 

around for a long time.R47 A good library can also be a source of safe components that are 

smaller than a whole platform. 
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2.4.4 Open systems—Don’t hide power. Leave it to the client. 

The point of an abstraction is to hide how the code is doing its work, but it shouldn’t prevent a 

client from using all the power of its host. An abstraction can preempt decisions that its clients 

could make; for example, its way of buffering I/O might keep a device from running at its full 

bandwidth. If it’s an ordinary module, a client can always hack into it, but that’s not an option if 

it’s an operating system that isolates its clients, or if you want to keep taking bug fixes. The alter-

native is careful design that doesn’t hide power, but gives clients access to all the underlying per-

formance. Scheduler activations are an example; they are less convenient than threads, but give 

the client control over scheduling and context switching. Exokernels carry this idea further, mov-

ing most of the code of an OS platform into a library OS that the client can change if necessary. 

Similarly, the fact that semaphores and monitors give no control over the scheduling of processes 

waiting on monitor locks or condition variables, often cited as a drawback, is actually an ad-

vantage, since it leaves the client free to provide the scheduling it needs. 

Another way to expose an abstraction’s power is to make it programmable, either by callbacks 

to client-supplied functions or by programs written in an application-specific instruction set. There 

are many examples of this: 

• The SQL query language, a functional instruction set. 

• Display lists and more elaborate programs for GPUs. 

• Software-defined networking. 

• Binary patching, first done in the Informer, a tool for instrumenting an OS kernel. It checked 

the proposed machine code patch for safety.R26 Later there were binary modification tools used 

to instrument and optimize binaries when the source was unavailableR75, to instrument network 

code as in the Berkeley Packet Filter, and to do software fault isolation (SFI)R85. You can patch 

the source code in other languages too. 

This kind of programmability is initially only for very specific applications, but often it evolves to 

be more general-purpose until it’s a full-blown computer; then the cycle can start again.R58 

Hiding secrets also doesn’t mean that the code should be secret; the success of open source 

systems like Linux, Apache, gcc, EMACS and llvm shows the value of having lots of people read-

ing the code and contributing. This is especially important for security, since security through 

obscurity doesn’t work well when attacks can come from anywhere and there are powerful analysis 

tools. Many eyes are not a substitute for thorough testing and code verification, though. 

2.4.5 Robustness—Flaky, springy parts. 

Principle of robustness: Be conservative in what you do, be liberal in what you accept from others. 

—Jon PostelQ62 

There’s a tradeoff around the strength of a spec. A stronger spec promises more to the client, and 

is harder to code. A looser (weaker) spec promises less and is easier to code. If you want to build 

a robust system, though, it’s often better to be more conservative as a client and more liberal as a 

service. A conservative client tries to stay well within the bounds on behavior that the spec estab-

lishes, in case the server turns out to be flaky (that is, doesn’t implement the whole spec correctly). 

A liberal service tries to be springy in anticipating the client’s mistakes and catering to them. The 

resulting system is more likely to work in spite of inevitable bugs and misunderstandings. This 

applies in spades to standards, which usually have a lot of unnecessary features. 
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2.4.6 Legacy 

A successful system attracts lots of clients, and when the clients are software this causes problems 

for the next version. Of course the clients’ developers don’t like it when the spec changes, but in 

addition they often don’t pay attention when the spec improves. The reason is that there are lots of 

installations of the system, and a client that depends on a new version won’t work on an old one. 

But people are slow to upgrade their systems because it’s often a hassle (though cloud-based au-

tomatic update systems help) and they fear the new bugs of the new version. So new features in a 

platform pay off a lot more slowly than you might expect.  

2.4.7 When tools are weak 

It’s much easier to build a system on a platform that has the functions, performance, scaling and 

fault tolerance you need, with good tools such as a language specific editor, a static analyzer, 

source code control, a build system, a debugger, a profiler, test and deployment automation, and 

telemetry to collect and analyze operational data at scale. If you don’t have good tools to hand, try 

to acquire them. If that fails, think seriously about building basic ones. This seems expensive, but 

handwork is even more expensive. Don’t be too ambitious, though; you’re probably not being paid 

for tool building. The biggest problem is almost always to make the performance good enough that 

the tool can be used as serious building material.R41 

2.5 Standards 

Q: What do you get when you cross a mobster with an international standard? 

A: Someone who makes you an offer that you can’t understand. —Paul MockapetrisQ52 

Specs that are either widely accepted, or agreed upon by an accepted process, are called standards. 

Sometimes they are very successful: ethernet, the IBM PC, USB, TCP/IP, HTML, C, C++, JavaS-

cript, PostScript, PDF, RSA and Linux are obvious examples. It’s notable that all of these were 

originally designed by one person or a small group, not by an accepted process. In fact, most 

standards that start out in a standards committee end up on the scrapheap, because these commit-

tees are political animals that tend to drive away good engineers and to take the path of least re-

sistance by including everyone’s ideas. Examples: OSI networking,R67 IPsec network security, 

IPv6, XML, UML, ATM networking. Caveat emptor. 

A standard that is created by a government to meet its own needs is especially likely to fail. 

The US Department of Defense has had at least two major computing standards failures, the Ada 

programming language and the Orange Book standard for multilevel security. 

On the other hand, standards that start out in an ad hoc form and succeed usually end up in a 

committee that takes responsibility for the boring task of evolving them in a conservative, back-

ward-compatible way to meet new needs. And it’s not fair to be too hard on failed standards, since 

after all, most new ideas fail. 

The important thing about standards is this: one that’s been around for a while and is known 

to have good implementations gives you a stable base on which to build. But robustness means 

that it’s wise to stick to the simplest and most heavily used parts; it’s quite likely that the rest of it 

is poorly designed or implemented. And if there’s no working code, stay away from it. 
»X.509. Sometimes a badly designed and overly complex committee standard does take hold. A striking example 

is the X.509 standard for digitally signed certificates, the only part of OSI networking that has survived. It’s such a 

mess that whenever I put two X.509 experts in a room and ask them a question about it, I get at least two answers. 

»WEP. Sometimes a standard is messed up for political reasons by some members of the committee, either delib-

erately or because they have been misled. The Wired Equivalent Privacy (WEP) standard for Wi-Fi security is an 
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example. It has flaws that were well known to experts on encryption protocols, but they were either not consulted or 

ignored.R9 

3 Goals and Techniques 

3.1 Simple 

Entities should not be multiplied beyond necessity. —William of OccamQ55 

I’m sorry I wrote you such a long letter; I didn’t have time to write a short one. —Blaise PascalQ58 

Everything should be made as simple as it can be, but not simpler. —Albert EinsteinQ26 

There are some insurmountable opportunities around. —Don MitchellQ51 

Simple things should be simple, complex things should be possible. —Alan KayQ39 

Less is more. —Robert Browning, Andrea del Sarto 

Perfection is reached not when there is no longer anything to add, but when there is no longer 

anything to take away. —Antoine Saint-ExuperyQ65 

Beauty is our business. —Edsger DijkstraQ23 

Beauty is more important in computing than anywhere else in technology because software is so 

complicated. Beauty is the ultimate defense against complexity. —David GelernterQ30 

Simple ↔ rich, general ↔ specialized  [Y] { 
KISS: Keep It Simple, Stupid. Do one thing well.  

Don’t hide power. Use brute force. 

Spec ↔ code  [P] { 
Keep secrets. Good fences make good neighbors.  

Free the implementer. Abstractions are leaky. 

Perfect ↔ adequate, exact ↔ tolerant  [TD]  Just good enough. Worse is better. 

Immutable ↔ append-only ↔ mutable  Stay put. 

Declarative ↔ functional ↔ imperative  [E]  Say what you want. 

3.1.1 Do one thing well 

Figure out how to solve one really tricky sticky problem and then leave the rest of the system 

straightforward and boring. I … call this the “rocket science” pattern. —Terry CrowleyQ15 

Design your system around a small number of key modules with simple specs and predictably good 

performance. If you’re lucky you can get these modules from your platform or from a library. If 

not, you have to build them yourself, but your goal should be the same. Finding this system design 

and building the key modules is hard work, but it’s rewarded throughout the system’s life because 

you can concentrate on the customers’ needs; the rest of the code is easy to change, since it won’t 

need any real cleverness. A successful key module will grow over time, improving performance 

with better algorithms and adding a few features, but building on a solid foundation. Make it fast, 

rather than general or powerful; then the client can program the function it wants. 

A wide range of examples illustrate this idea: 

• The inode structure in a file system represents variable-length byte strings, even very large 

ones. Many variations fit in: variable-length extents (ranges of disk blocks) to keep the index 

small, sharing parts of the byte string for copy-on-write, logs for crash recovery. 

• The Unix version 6 operating system is an amazing example, notably separating file directories 

from inodes, and connecting applications by byte streams through the shell. 

• The basic Internet protocols (TCP and UDP) provide reliable and best-efforts communication 

among billions of nodes. 
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• The simplicity and generality of the BitBlt or RasterOp interface made it the standard for raster 

display applications.  

• The original versions of HTTP and HTML provided basic facilities for making fairly pretty 

web pages and linking them. The current versions, of course, have overflowed these bounds. 

• The Domain Name System is an eventually consistent hierarchical name space that’s the foun-

dation of Internet naming, for the web, email, and many other things. It maps a path name such 

as csail.mit.edu into a set of small “records”, each with a type and (small) value. 

• Google’s Chubby is a highly fault-tolerant, consistent lock service and low-volume store that’s 

the root of many large distributed data structures. It scales to hundreds of thousands of clients. 

• Relational databases structure very large amounts of data as tables with named columns (called 

attributes). Query (called selection) returns rows satisfying a predicate and composition (called 

join) combines two tables, yielding rows that are equal on the columns with the same name. A 

production database system is a poor example of doing one thing well, though, because of the 

many extensions to this simple interface. 

• Domain Specific Languages (DSLs) such as Ruby are a generic example of this idea. Domain 

Specific Architectures extend it to hardware such as GPUs and encryption engines. 

Often a module that succeeds in doing one thing well becomes more elaborate and does several 

things. This is okay, as long as it continues to do its original job well. 
»Word Line Services. An example is the Line Services component of Microsoft Word, which lays out lines of 

text in a way that looks good and respects the typographical conventions of hundreds of languages, including different 

fonts and sizes, ligatures, right-to-left writing, computed fields, mathematical typesetting, and many other complica-

tions. It also has to be fast enough to lay out a whole page in a fraction of a second. It was retrofitted into Word by 

Eliyezer Kohen and his team, an amazing achievement.R70 

»DEC Alpha vs. Pentium Pro. The experience of Digital Equipment Corporation’s Alpha microprocessors shows 

that keeping things simple doesn’t always work. To have any chance of success, an incompatible CPU had to have at 

least twice the performance of the competing Intel x86 chip. The Alpha designers were confident that they could 

achieve this, since the Alpha had a much simpler architecture, designed from scratch for high performance and to meet 

modern needs rather than incrementally over 20 years. But they failed, even though both the design and implementa-

tion were good. Brilliant engineering and a very large design effort gave Intel’s Pentium Pro much better performance 

than anyone had imagined was possible.R17 

»Windows Vista. The successor to Microsoft’s very successful Windows XP system was Windows Vista, six 

years in development. Vista was planned to have four major innovations: 

• A new file system called WinFS with many features from databases, aspiring to give applications uniform access 

to structured and semi-structured data as well as to old-fashioned byte stream files. 

• A new graphics system called Avalon (later released as Windows Presentation Foundation), an incompatible 

replacement for the entire Windows graphics stack, up to and including the browser’s rendering system.  

• A new networking system called Indigo (later released as Windows Communication Foundation) designed to 

support distributed computing where services have remote clients. 

• Extensive use of “managed code” written in Microsoft’s C# language for much better security, and using garbage 

collection for memory management. 

All four failed and had to be removed from Vista. The first three were “universal” goals: to create powerful 

storage, display canvas and distributed computing infrastructure good enough to underlie all applications. They failed 

because they did not deliver enough value, added a lot of generality and complexity, were incompatible with the large 

base of existing applications, and were unpredictably slow. Lesson: beware of universal goals. 

Managed code failed in Vista for a more interesting reason, after quite a lot of code had been written. C# was 

designed as a replacement for both C++ and Visual Basic; since the latter had a much larger user base, those users’ 

needs had priority in the implementation. They were coders of often complex but relatively light-duty applications, 

and they didn’t worry much about exception handling, resource exhaustion or multiple versions, all very important to 

Windows systems programmers. By the time this mismatch became so obvious that even the responsible managers 

could no longer ignore it, it was too late to fix the C# implementation, and the managed code in Vista had to be 

rewritten in C++.R21 
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3.1.2 Brute force 

Computers are fast, and specialized hardware is even faster—take advantage of it. Exhaustive 

search (perhaps only up to some “depth”) is a simple brute force technique. It’s 𝑂(𝑛), and often 𝑛 

is not too big, so always consider it first. Examples: grep over a file, model checking, program 

synthesis if a program that solves the problem is not too big, many optimization problems, and a 

host of attacks on security measures such as password guessing, defeating address space layout 

randomization (ASLR), and searching for encryption keys. It’s also the only way to query a data-

base if you don’t have an index. It works best when you have locality. 

Broadcast is a second example of brute force. It is to routing as exhaustive search is to indexing, 

and it scales badly. In networking, though, you often need a broadcast to get started, for example 

when an ethernet node needs to find an Internet router. A third example is polling to find pending 

work, in contrast to notification. 

3.1.3 Reduction 

Reduction is a fundamental technique in theoretical computer science: solving a problem using an 

already solved problem. It’s also used in systems, in two different ways. The good way is reduction 

to a much simpler problem that is much easier to solve correctly and efficiently. For example: 

• Redo logging reduces the problem of making an arbitrary update atomic in spite of crashes to 

the problem of appending update records to a log atomically, and then to the problem of writing 

a commit record atomically after all the updates have been logged. To do the last, even when 

writes to the log may be done out of order, write a hash of all the updates into the commit 

record, and treat the record as a commit only if the updates in the log have the right hash. 

• Similarly, making an arbitrary update atomic in spite of concurrency reduces to holding locks 

on data that the update touches, which in turn reduces to acquiring a lock with an atomic test-

and-set or compare-and-swap instruction. 

• Keeping stored or transmitted data secret reduces, using encryption, to keeping the keys secret. 

• Certificates digitally signed by a mutually trusted authority reduce the problem of learning 

another party’s key to the problem of learning just the authority’s key. 

The second kind of reduction is more dangerous: reducing a problem to an already solved 

problem that is not much simpler, and may indeed be more complex. For example, to make a 

speech recognizer for the words “yes”, “no” and “cancel”, call a general recognizer for English 

words. This code is larger and slower than a custom recognizer for those three words, but much 

easier to write. Many powerful modules already exist, and using a fraction of their power to solve 

your problem is often good engineering. But it is wasteful of computing resources; this is not 

always bad, but it’s easy to lose track of how much is being wasted. 

3.2 Timely 

Precise vs. approximate software  [D] Shipping is a feature. 

Perfect ↔ adequate, exact ↔ tolerant  [SD] Just good enough. Flaky, springy parts. 
 

Building a timely system (one that ships soon enough to meet your time-to-market needs) means 

making painful choices to give up features and dependability. If it’s extensible you can add features 

later; adding dependability is harder. It’s easier to make approximate software timely. 
»The web. Perhaps the biggest reason the web is successful is that it doesn’t have to work. The model is that the 

user will try it again, switch to an alternative service, or come back tomorrow. It’s quite rare to find a web service that 

is precise. For example, there’s no spec for a search engine, since you can’t write code for “deliver links to the 10 web 

pages that best match the customer’s intent”, and indeed engines are ruthless about ignoring parts of the Internet in 

order to deliver results faster. 
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»Agile software. A more surprising example comes from a major retail web site, where the software is developed 

as hundreds of modules, each one hosted on the retailer’s internal servers. Each module is developed by a small team 

that has complete control over the specs and code: they define the interface, write the code, deploy it on the servers, 

fix bugs and make changes as they see fit. Any module can call any other module over the internal network. There is 

no integration testing or release control. Not surprisingly, it’s common that a module fails to deliver expected or timely 

results; this means that its caller must be programmed defensively. Retail customers may notice that some of the web 

pages they see are incomplete or wrong, but this doesn’t matter much as long as it doesn’t happen too often. It’s more 

important to be able to change the software and add features quickly—the only page that really must be correct is the 

one with the “Place Your Order” button. Of course, credit card processing uses precise software. 

»Web design. In 2010 I went to an O’Reilly “un-conference” where one of the events was a workshop chaired by 

Tim Berners-Lee on what could have been done differently in the initial design of the web. About a dozen ideas were 

proposed, but I thought that in every case Tim was right to reject the idea. Why? Each idea would have made it more 

difficult to deploy the web widely, without enough compensating benefit. The only idea I know that doesn’t have this 

problem is that every page and every link should include a large random number. If search engines indexed this 

number, broken links would be a thing of the past. But web-wide search engines didn’t seem practical in 1990.R62 

3.3 Efficient 

An efficient program is an exercise in logical brinksmanship. —Edsger DijkstraQ24 

The greatest performance improvement of all is when a system goes from not-working to working 

—John OusterhoutQ56 

The cheapest, fastest, and most reliable components of a computer system are those that aren’t 

there. —Gordon BellQ6 

Two fundamental rules for program optimization: Rule 1: Don’t do it. Rule 2: (for experts) Don’t 

do it yet. —Michael JacksonQ34 

An engineer is a man who can do for a dime what any fool can do for a dollar. —Anonymous 

There is nothing so useless as doing efficiently that which should not be done at all. —Peter 

DruckerQ25 

 

Dynamic ↔ static  [A] Stay loose. Pin it down. Split resources. Shed load. 

Indirect ↔ inline  [I] Take a detour, see the world. 

Time ↔ space Cache answers. Keep it close. 

Lazy ↔ eager ↔ speculative Put it off. Take a flyer. 

Centralized ↔ distributed, share ↔ copy [D] Do it again. Do it twice. Find consensus.  

Declarative ↔ functional ↔ imperative  [S] Say what you want. 
 

Efficiency is about doing things fast and cheaply. Most of what I have to say about it is in the 

ABCs below: Algorithms, Approximate, Batch, Cache, Concurrent, Commute, Shard/Stream. But 

first some generalities. 

3.3.1 Before the ABCs 

It used to be that machines were small and slow, and it was a struggle to get your problem to fit. 

Today machines are big and fast, and for many problems efficiency is not an issue; it’s much more 

important to be timely, dependable and yummy. And well-optimized algorithms for numerical 

computing, machine learning, databases, etc. often take care of efficiency. But there are still plenty 

of big problems: genomics, molecular dynamics, web search, social media graphs. And there are 

devices with limited energy that can’t afford to execute too many instructions, and new real-time 

problems where the computer needs to keep up with the human or with the physical world, re-

sponding in just a few milliseconds. 

It’s tricky to write an efficient program, so don’t do it unless you really need the performance. 

If a shell script is fast enough to solve your problem, by all means use a shell script.R7 If you do 
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optimize, remember the rule: first design, then code and debug, then measure, finally (if ever) 

optimize. In other words, make the code correct first and then make it fast. 

The resources you are trying to use efficiently are computing, storage, and communication. 

The dimensions are time and space: how long something takes (or how long a resource is tied up), 

and how many resources. For time the parameters are bandwidth (or throughput) and latency (or 

response time). Latency is the time to do the work (including communication) plus the time spent 

waiting for resources because of contention (queuing). To evaluate a design idea, start by working 

out roughly how much latency, bandwidth and memory capacity it consumes to deliver the perfor-

mance you need. Then ask whether with optimistic assumptions, that much could be available. If 

not, that idea is no good; if so, the next step is a more detailed analysis of the possible bottlenecks. 

If you can divide the work into independent parts, you can use concurrency to trade more 

resources (more bandwidth) for less latency. With enough independence the only limit to this is 

the budget and the number of parts, as cloud services for search, email, etc. demonstrate. Likewise, 

a cache lets you trade locality and bandwidth for latency: if you use a fraction 𝑓 of the data, you 

need 1 𝑓⁄  extra bandwidth. The best case is when you are processing a stream of data and don’t 

need real time response; then you only need bandwidth (plus enough buffering to cover variations 

in latency). 

When performance of a module or application is bad or unpredictable, you have incurred per-

formance debt, a special case of technical debt. This takes several forms: 

− It’s unknown—you haven’t measured it realistically. 

− It’s bad—worse than your intuition says it should be, or than what you need. 

− It’s fragile—it’s okay now, but you don’t have any process to keep it that way. 

If performance is important to your clients, you need to fix all of these things.R19 

Here is a summary of how to build a high-performance system today:R54 

1. Exploit modern hardware. Wait-free data structures and delta updates are friendly to deep 

cache hierarchies and fast flash storage.  

2. Make critical paths short, especially for hotspot data where Amdahl’s Law applies.  

3. Minimize conflicts with multi-version concurrency.  

4. Minimize data movement. Data transfers are very costly; put data in its final resting place 

immediately, and keep it small.  

5. Exploit batching to reduce the per item cost. 

Fast path and bottlenecks 

There are two basic ways to reduce latency: concurrency and fast path—do the common case fast, 

leaving the rare cases to be slow. For caching, the fast path is a cache hit. Amdahl’s Law governs 

the performance of fast path: if the slow path has probability 𝑝 ≪ 1, the fast path takes time 𝑓, and 

the slow path takes time 𝑠 ≫ 𝑓, then the average time is 𝑓 + 𝑝𝑠. The slowdown from the slow path 

is (𝑓 + 𝑝𝑠) 𝑓⁄ = 1 + 𝑝(𝑠 𝑓⁄ ) . Thus a RAM cache with 𝑝 = 1% (99% hits) and 𝑠 𝑓⁄ = 100 (1 ns 

to cache, 100 ns to RAM) is 2 × slower than a hit every time. 

Amdahl invented his law to describe the limit on speedup from concurrency. Here the slow 

path is the part that must be done serially. The speedup from the concurrent fast path is 

𝑠 (𝑓 + 𝑝𝑠)⁄ = 1 (𝑓 𝑠⁄ + 𝑝)⁄ . With 𝑛-way concurrency 𝑓 = 𝑠 𝑛⁄  and the speedup is 1 (1 𝑛⁄ + 𝑝)⁄   

For large 𝑛 this is just 1 𝑝⁄ . If 𝑝 = 1% (only 1% is serial), the maximum speedup is 100 ×, no 

matter how much concurrency there is. Whether you want to think of the result as a speedup or 

slowdown depends on your expectations. 
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Sometimes the fast path is hard to spot because its code is tangled up with various rare cases. 

When this happens you have to find the fast path code (by hand or by profiling) and then restructure 

the code to make it obvious, hence easier to improve. 

You want the fast path to be the normal case, and usually it’s best to handle the worst case 

separately, because the requirements for the two are quite different: 

− The normal case must be fast. 

− The worst case must make some progress. 

− Sometimes radically different strategies are appropriate in the normal and worst cases. 

For example, Microsoft Word uses a piece table to keep track of edits. If there are lots of edits, the 

table gets big and editing slows down. Writing out a new version flattens it; details here. 

A variation on fast path is the distinction between data plane and control plane, common in 

networking but relevant in many other places. The data plane is the fast path, the part of the system 

through which lots of data flows; it’s important to keep the latency and the cost per byte low. The 

control plane configures the data plane; usually neither bandwidth nor latency is critical. Outside 

of networking this is often called system management.  

Almost the opposite of a fast path is a bottleneck, the part of the system that consumes the most 

time (or other resources). Look for the bottleneck first. Usually you don’t need to look any farther; 

it dominates the performance, and optimizing anything else wastes time and adds complexity. 

Once you’ve found it, find a fast path that alleviates it. In other words, design your code to use it 

as little as possible, and measure and control how it’s used. The most fundamental bottleneck is 

the speed of light, but that’s usually not what’s limiting. 

Predictable performance 

That, Sir, is the good of counting. It brings everything to a certainty, which before floated in the 

mind indefinitely. —Samuel JohnsonQ35 

What you measure is what you’ll get. —Dan ArielyQ3 

Your guess about where the time is going is probably wrong. Measure before you optimize. If you 

depend on something unpredictable, measure it in the running system and either adapt to it, or at 

least report unexpected values so that developers or operations staff can tell what’s going on. 

It’s often not enough for a spec to describe the state that the program can name. Resources 

must be part of the state, including real time, and an action must say what resources it consumes, 

especially how long it takes. Ideally this won’t depend on the environment or on parameters of the 

action, but often it does and you need to know how in order to use the action effectively. A module 

can control many aspects of its performance: internal data structures and algorithms, optimization, 

code quality, compression, etc. But the environment controls other aspects: latency and bandwidth 

to different levels of storage, between address spaces and between machines. This can change as 

the clients’ demands or the underlying platform change, and a robust application must either adapt 

or report that it can’t.R22 Sometimes there are different ranges in which the dependence is different 

because the code runs into different bottlenecks (compute, storage, network). This can change with 

time as well. For example, encryption used to be considered slow, but today you can do an AES 

encryption of a cache line in 50 cycles while a miss takes 200.  

Don’t try to be precise; it’s enough to know how to avoid disaster, as in paging, where you just 

need to keep the working set small enough. 

A refinement of this idea is tail latency, knowing not just the mean or median cost but also the 

maximum cost for 99% of the tasks, or 99.9%. To control tail latency you need quotas or admission 

control, or the freedom to shed load, the way the Internet drops packets. 
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»Shedding load. Bob Morris, with whom I shared an office in Berkeley in 1967 when he was on sabbatical from 

Bell Labs, used to say that a time-sharing system terminal needs a big red button that you push if you are dissatisfied 

with the service. The system responds by either improving the service or throwing you off. The idea is that you’ll only 

push it when you think you’d be better off doing something else. An overloaded system should make this decision 

itself: deliver either decent service or no service. 

It’s hard to deliver predictable latency when your host is unpredictable. With an interface that 

does a lot of optimization such as SQL queries, code that doesn’t get optimized often looks a lot 

like code that does. A remote procedure call (RPC) is especially dangerous, because it looks just 

like a local call. Other examples are the Internet, paging, and fancy graphics. These are examples 

of artificial consistency that isn’t real. Network access in general is very unpredictable (except in 

a data center, where the environment is usually tightly managed) and you can’t control it very well, 

so it’s best to work only on local data (which might be stale) when responding to a user input, 

unless it’s very obvious to the user that the network is involved, for example in a web search. This 

means that the UI should communicate asynchronously with anything that might be slow, using 

some form of eventual consistency to process the response when it finally comes. 

Locality—Keep it close 

Because communication is expensive and memory hierarchies are deep, keep the data close to the 

computation. The L1 cache is the closest it can get, but in general you just want it close enough 

that moving it to the computation is cheap enough. The most important two strategies are: 

• Keep the parts that run concurrently as independent as possible, to minimize communication  

• Make the data smaller, so that more of it is local and there’s less to communicate. Try to get 

by with a summary of the full dataset. 

Contention 

If there aren’t enough resources to process the instantaneous load there will be contention, which 

shows up as queuing for access to a resource and increases the latency. It’s hard to understand 

queuing in general, but the simplest case is easy and important: if a resource is busy (utilized) for 

𝑢 seconds per second on average and tasks arrive randomly, then a task that uses it for a second 

will take 1 ⁄ (1 − 𝑢) seconds. For example, at 𝑢 = 90% it takes 10 seconds—ouch! To avoid this, 

use batch sampling. If a job has 𝑚 independent tasks, all of which need to complete, the slowest 

task is what you care about. Queue the whole job at 𝑑 > 1 resources per task (𝑑𝑚 resources in 

total); 𝑑 = 2 is usually good. A resource asks the job for a task when it becomes free. This yields 

near-optimal performance, and there is no centralized scheduling bottleneck.R63 

If there are actions with highly variable latency, such as reading something over a network, 

you have to plunge ahead rather than waiting for a response. Usually the response affects the state, 

so you need a way to postpone that effect. The simple approach is to get predictable performance 

by running with local data only, and sync to changes in that data. This requires being very clear 

about the semantics of unordered sets of operations, a form of eventual consistency. Web pages 

do this all the time, and word processors do it often for slow operations like hyphenation. You 

must also pay attention to scheduling and contention, issues that sequential programs handle auto-

matically. 

Translation 

Compiling often makes a system faster, moving from code that’s better for people (easier to write, 

understand, and change) to code that’s better for the machine (closer to machine instructions, 

friendlier to the cache, easier to optimize) or more widely implemented (compiling to JavaScript 

or C; anything can be a target). For a dynamic source language such as JavaScript, just-in-time 
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(JIT) translation and trace scheduling usually yield good code for the common cases, falling back 

to an interpreter or to recompiling when new cases come up. 

Anything can be a source as well. Translating from one machine language to another is com-

mon for backward compatibility. This can be very dynamic; Intel CPUs translate from the clunky 

x86 instruction set to internal RISC instructions on the fly as they fetch the instructions.R28 

Often you can “translate” to something simpler, the way a PostScript document is translated to 

PDF by simply running the PostScript program after redefining each imaging action to record 

itself, or a large piece of graphics geometry is stripped down to just the lines and triangles that are 

visible now on the physical screen. 

3.3.2 Algorithms  

[In many areas] performance gains due to improvements in algorithms have vastly exceeded even 

the dramatic performance gains due to increased processor speed. —PCASTQ59 

Fancy algorithms are slow when N is small, and N is usually small. —Rob PikeQ60 

Once you succeed in writing the programs for these complicated algorithms, they usually run ex-

tremely fast. The computer doesn’t need to understand the algorithm; its task is only to run 

the programs. —Robert TarjanQ75 

When in doubt, use brute force. —Ken ThompsonQ78 

There’s been a lot of work both on devising algorithms for important problems and on analyzing 

their performance. Typically the analysis bounds the running time 𝑡(𝑛) asymptotically as the prob-

lem size 𝑛 grows: 𝑡(𝑛) = 𝑂(𝑛) means that there’s a constant 𝑘 such that 𝑡(𝑛) ≤ 𝑘𝑛 as 𝑛 → ∞, 

𝑡(𝑛) = 𝑂(𝑛 log 𝑛) means that 𝑡 ≤ 𝑘𝑛 log 𝑛, and so forth. Anything worse than 𝑂(𝑛 log 𝑛) is bad 

unless 𝑛 is sure to be small, but this is not the whole story. 

− There can be a large fixed overhead (which is bad when 𝑛 is small), and 𝑘 can also be large. 

− You might care about the average rather than the worst case. 

− Your problem might be much easier than the hardest problem, or even than a randomly 

chosen problem.R68 For instance, the simplex method for linear programming is exponen-

tial in the worst case, but it’s always fast in practice.  

It’s usually best to stick to simple algorithms: a hash table for looking up a key, a B-tree for 

finding all the keys in a range, a DHT for strong fault tolerance. Books on algorithms tell you a lot 

more than you need to know. If you have to solve a harder problem from a well-studied domain 

such as numerical analysis or graph theory, look for a widely-used library.  

If 𝑛 is really large (say the Facebook friends graph), look for a randomized sublinear algorithm 

with time < 𝑂(𝑛); for example, the median of a large set of size 𝑛 is close to the median of a 

random subset of size log 𝑛. Randomization can keep other algorithms both simple and efficient, 

for example testing whether a number is prime, or reaching consensus with asynchronous commu-

nication. It helps with network scheduling too, as in Valiant Load Balancing, where routing each 

packet through a randomly chosen intermediate node doubles the bandwidth, but avoids hotspots 

with high probability.R81 

3.3.3 Approximate—Flaky, springy parts 

It is better to have an approximate answer to the right question than an exact answer to the wrong 

one. —John TukeyQ80 

Very often you don’t need an exact answer; a good enough approximation is fine. This might be 

“within 5% of the true answer” or “the chance that the answer is wrong is less than 1%.” If the 
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“chance” in the latter is truly random, you can make it .01% by doing it twice. Sometimes the 

answer is just a guess, which you need to validate by watching the running system. 

You can approximate the analysis rather than the solution; this is called “back of the envelope” 

analysis, and usually it’s all you need. How to do it: find the few bottleneck operations that account 

for most of the cost, estimate the cost and the number of times you do each one, multiply and add. 

For example, for a program that does 1010 memory operations, has a cache hit rate of 95%, and 

runs on a machine with RAM access time of 100 ns, the cache is the bottleneck and it will take 

about 1010 × .05 × 100/109 = 50 sec. To grep a 1 GB string from a remote file server on a 

machine with a 10 Gb/s ethernet connection will take at least 8 × 109 1010⁄ =  .8 sec. In each case 

there are lots of other things going on, but they shouldn’t matter to the performance. 

Another way to approximate a system’s behavior is by its time constants, the time it takes for 

most of the effects of a change to propagate through the system. Examples: the round-trip time in 

a network, the mean time to repair a component, the temporal locality of data usage and the churn 

that occurs when there’s not enough locality, the hysteresis by which the effects of a change stick 

around for a while after the change is reversed. 

It often pays to compress data so that it’s cheaper to store or transmit. LZW is a widely used 

general-purpose scheme that typically reduces the number of bits by 2 − 5 ×. It’s probably fast 

enough for your purposes, since it only takes about four machine instructions per byte. LZW is not 

an approximation, since it is lossless, returning the original data. 

The most powerful compression produces a summary that is much smaller than the input data. 

Unlike lossless compression, this cannot recover the original data. 

• A sketch captures the most important things about the input. Examples: a low resolution ver-

sion of an image; a vector of hashes such that two similar documents have nearby vectorsR13; a 

Bloom filter. 

• A Bloom filter is a bit vector that summarizes a set of inputs for testing membership. If a new 

input is in the set the filter will say so; if it’s not, the filter will wrongly say that it is with some 

false positive probability 𝑓. With 10 filter bits per set element 𝑓 < .01, with 20 filter bits 𝑓 <
10−4.R56 

• Sampling a data set summarizes it with a much smaller set whose properties are good approx-

imations to properties of the original. Often log 𝑛 samples from a set of size 𝑛 is enough. 

• Principal component analysis (PCA; it has many other names) takes a set of 𝑛 observations of 

𝑝 properties and finds the linear combinations of the properties that account for as much of the 

variation as possible; that is, it summarizes all the properties by their most important features. 

Often hundreds or thousands of properties boil down to two or three. 

• Fitting a line to a set of data points summarizes the data by a linear model, minimizing the 

mean squared error. Of course it generalizes to quadratic, exponential and other models and to 

other definitions of error. 

• Similarly, clustering summarizes the data by a small number of points. 

• A classifier tells you some property of the input, for example, whether it’s a picture of a kitten. 

• A Merkle tree summarizes the subtree rooted in a node by a hash of the node’s children. If the 

tree is balanced, it takes only log 𝑛 operations to check that a node is in the root’s hash. 

• Abstract interpretation summarizes the dynamic behavior of a program by making it static, 

replacing each variable with a simpler abstract one whose value is a constant at each point in 

the program. It needs abstract versions of each data type’s primitive operations, and a merge 

operation that combines the abstract values on two execution paths that join together. Other 

kinds of data flow analysis make the program static in similar ways. 



 

28 

 

• An application that provides views of a large data set needs a systematic way to boil the data 

down to something that will fit on the screen. If it’s interactive, it needs a local “projection” of 

the data that is not too big, but lets the user select and navigate. This is usually a fundamental 

part of the design. A simple example is a word processor that shows the current page and a 

table of headings. 

Approximate behavior 

Another kind of approximation works on a program’s behavior rather than its data. 

• A hint is a value that might be what you want, but you need to check that it’s valid. 

• Many numerical computations iterate until some tolerance is reached. Examples: relaxing a 

field (an array of values on a grid), truncating a series, searching for a minimum, training a 

neural network. The danger is that the iteration will take much longer than you thought. Mul-

tigrid systems do this and vary the tolerance and perhaps the algorithm at different grid reso-

lutions. 

• Cryptographic protocols have a security parameter 𝜆, which is the probability that an adversary 

can break the security by exhaustive search. A popular value is 𝜆 = 2128: if a trial takes 1 ns 

and you run on a million machines, then a break takes 5 × 1015 years.  

• Exponential backoff is a distributed algorithm in which each node responds to an overload 

signal by decreasing its offered load exponentially. Examples: ethernet, Internet TCP, Wi-Fi, 

spin locks that wait before retrying. The right way to increase the offered load depends on 

details; for TCP it’s additive (with some complications), so the simple rule is additive increase, 

multiplicative decrease (AIMD).R15 

• A randomized algorithm gives an answer with probability 𝑝 of being wrong. If you don’t have 

a check and 𝑝 isn’t small enough, repeat 𝑛 times and the chance of being wrong is 𝑝𝑛, as small 

as you like. 

• Networks usually don’t guarantee to deliver a packet, but simply provide “best-efforts” and 

may discard a packet if delivering it gets too hard. End-to-end protocols provide stronger guar-

antees at the price of bad worst-case behavior. 

• Eventual consistency lets applications operate on stale data. 

• Other uses of stale data are common. For example, the user interface of a browser often oper-

ates only on local data, to avoid getting hung up if the network is flaky. Word processors usu-

ally do hyphenation, figure placement and proofing in background, only updating the display 

when they are done. 

• Most computing systems don’t try to optimize their use of the underlying resources, because 

optimization is too hard when the load is unpredictable and bursty, as it usually is. Instead they 

simply try to avoid disaster: deadlock or total resource exhaustion. 

• Natural user interfaces accept input from people in the form of speech, gestures, natural lan-

guage etc. Machines have gotten pretty good at recognizing this kind of input, but they’re 

certainly not perfect. To some extent the machine is guessing what the user wants, and it’s 

important to make it 

clear what the machine’s guess was,  

easy to undo any undesired effects, and  

possible for the user to do something besides just repeating the failed input. 

• More dramatically, an “interim” system is an approximation to a desired “final” system (that 

often is never completed). Examples are Network Address Translation instead of IPv6 and SSL 

instead of IPsec. 



 

29 

 

• Agile software development approximates the system spec to get something running quickly 

for users to try out. Their reactions guide the evolution of the spec. 

Hints 

A hint (in the technical sense) is information that bypasses an expensive computation if it’s correct; 

it’s cheap to check that it’s correct, and there’s a (perhaps more expensive) backup path that will 

work if it’s wrong. Soft state is another name for a hint, somewhat more general because it’s OK, 

if inefficient, to act on the soft state even if it’s wrong, so there’s no need for a check. This is 

common in network routing, where end-to-end fault tolerance and rerouting make the unreliability 

acceptable, and eventually the soft state times out.  

There are many examples of hints scattered through the paper, but here are some general pat-

terns: 

• An approximate index points to an item in a large data set that contains a search term, or more 

generally that satisfies a query. To check the hint, follow the pointer and check that the item 

does satisfy the query. The backup is consulting a more expensive index, or an exhaustive 

search. Unfortunately, the check doesn’t work if there might be more than one item and you 

want all of them. Web and desktop search work this way, without reliable notifications of 

changes, so they are very loosely coupled to the data. 

• A predictor uses past history to guess something. A CPU predicts whether a conditional branch 

will be taken; the check is to wait for the condition, the backup is to undo any state changes 

that have happened since the wrong prediction.R28 A method predictor guesses that the 

method’s code is the same as last time. 

• Routing hints tell you how to forward a packet or message. These are usually soft state. The 

backup is rerouting. 

Strengthening 

If you need some property 𝑝 to be true but it’s hard to guarantee 𝑝 exactly, look for a stronger 

property 𝑞 (that is, 𝑞 ⇒ 𝑝) that’s easier to guarantee. For example: 

• If a bit table marks free pages, it’s enough to have “bit 𝑖 = 1 ⇒ page 𝑖 is free;” freeing the page 

before setting the bit guarantees this. If a crash intervenes, there may be a few free pages that 

don’t have the bit set. 

• If actions 𝑎 and 𝑏 don’t commute, their locks conflict, but the locks might conflict even if the 

actions do commute. 

• If a thread wants to wait until some predicate 𝑝 has become true, and the code signals condition 

variable 𝑐 whenever it makes 𝑝 true, then it’s sufficient to wait on 𝑐. There’s no guarantee that 

𝑝 is still true when the thread runs, so the waiter has to check this. 

• In redo recovery,  the log has the property that repeatedly redoing prefixes of it (which happens 

if there are crashes during recovery), followed by redoing the whole log, is equivalent to redo-

ing the whole log once.  

• In security, if principal 𝐴 speaks for principal 𝐵, that means you trust 𝐴 at least as much as 𝐵. 

Related ideas are to strengthen a loop invariant to get a strong enough precondition for the loop 

body, or to weaken a spec in order to make the code’s job easier. Thus the Internet makes only 

best-efforts to deliver a packet rather than guaranteeing delivery; the receiver must acknowledge 

and the sender must retry to get a guarantee. This is an example of the end-to-end principle. On 

the other hand, strengthening a spec (reducing the number of steps without reducing the liveness) 

promises the client more and may make the code’s job harder; of course the code itself is a strength-

ening of the spec. Note that adding operations the client can invoke is not strengthening, but 
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extending the spec (for objects, this is subclassing),  and you have to be careful that the new actions 

don’t violate properties the client is depending on (break backward compatibility). 

Relaxation 

The idea of relaxation is to take a lot of steps concurrently that get the system closer to where you 

wanted to be, with very little centralized scheduling. Disruptions such as node failures may make 

things worse temporarily, but the relaxation will still make progress. It may end in a finite number 

of steps, or it may just get closer and closer to an exact solution, in which case you need a benefit 

function and a tolerance to match against the cost of continuing. It’s important to understand the 

set of initial states from which relaxation will succeed (ideally every state). Examples: 

• Taking averages of the values at neighboring points solves the Laplace equation numerically 

on a grid. 

• Eventual consistency relaxes the system toward a state in which all the updates are known 

everywhere. Gossip protocols are one way to code this. 

• A distributed hash table (DHT) relaxes toward a state in which each entry is replicated the right 

number of times and the load is evenly balanced, even when nodes arrive or leave. 

• A switched ethernet relaxes toward a state in which each switch knows how to forward to every 

active MAC address on the network. 

3.3.4 Batch—Take big gulps 

Whenever the overhead for processing 𝑏 items is much less than 𝑏 times the overhead for a single 

item, batching items together will improve performance. If the batch cost is 𝑠, the cost per batched 

item is 𝑓 and the batch size is 𝑏, the total cost is 𝑠 + 𝑓𝑏 and the cost per item is 𝑓 + 𝑠 𝑏⁄ . This is 

just the fast path formula 𝑓 + 𝑝𝑠, with 𝑏 ≈ 1 𝑝⁄ ; bigger batches are like a smaller chance of taking 

the slow path. Batching increases bandwidth, but it also increases latency for the earlier elements 

in the batch. For example, when you pack a number of bytes into a packet, the first one arrives 

later by the time it takes to accumulate the rest of the bytes. Of course, if at least a packet’s worth 

of bytes arrive at once the added latency will be 0. 

The opposite of batching is fragmenting, artificially breaking up a big chunk of work into 

smaller pieces. This is good for load-balancing, especially when either the load or the service time 

is bursty. An important example is assigning work to a number of servers that run concurrently. 

There should be a lot more fragments than servers, so that stragglers don’t do too much harm. 

Fragmenting bounds the increase in latency, and it also keeps small jobs from getting stuck behind 

big ones. Of course the fragments can’t be too small or the per-fragment overhead will kill you. 

Fragments in a network are called packets; another reason to limit their size is to limit the size of 

the buffers needed to receive them. 

Here are some examples of batching: 

• A cache with a line size bigger than the size of the data requested by a load instruction. This 

works well when there is enough locality that later instructions will consume much of the rest 

of the line. Otherwise it wastes memory bandwidth and transistors in the cache. 

• Blockwise linear algebra, a special case of optimizing the cache that distorts the order of pro-

cessing the elements of a matrix so that all the data that gets fetched into the cache is used 

before it gets evicted. 

• Minibatches for deep learning; each minibatch trains a set of weights that fits in the cache. 

• Piggybacking acknowledgments or network metrics on packets going the other way.  

• Group commit, packing the commit records for many transactions into one log record. 
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• Indexing, which pays a big cost upfront to build the index so that later queries will be fast. 

• Coarse-granularity locks, which protect a whole subtree with a single lock. Usually there’s a 

way to substitute several finer-granularity locks if necessary to avoid contention. 

• Mining rather than probing, collecting lots of data and using it to answer lots of queries, rather 

than just getting the data needed to answer one query. Internet search engines are the most 

dramatic example. 

• Merkle trees, gathering the hashes for many records into a single hash that authenticates all of 

them. 

• Epochs, batching deletions or other changes to reduce syncing, as in read-copy-updateR55, gen-

erational garbage collectors, and the Hekaton in-memory database. 

Often one reason for batching is to gather up work and defer it until the machine is idle; exam-

ples are defragmentation and garbage collection. This can work well, but fails when the load is 

continuous, when the machine is usually off if it’s idle, or when battery power consumption is 

important. In these cases steady-state performance is the goal, and maintenance costs need to be 

steadily amortized, avoiding a balloon payment. 

3.3.5 Cache 

The idea of caching is to save the result of a function evaluation 𝑓(𝑥), indexed by the function 𝑓 

and its arguments 𝑥. The result is an overlay of the partial function defined by the cache on the 

base function 𝑓. The best-known application is when 𝑓(𝑥) is “the contents of RAM location 𝑥”; 

CPUs implement this in hardware, using a fast on-chip memory that is much smaller than the 

RAM. File and database systems do the same in software, keeping disk pages in RAM. A cache 

for a storage system is lazy partial replication, done for performance rather than fault tolerance. 

As important are the software indexes of databases and search engines, where 𝑓(𝑥) is “the 

table rows or documents matching 𝑥”: 𝑥 = (𝑐𝑜𝑙, 𝑦) matches {𝑟𝑜𝑤 | table(𝑟𝑜𝑤, 𝑐𝑜𝑙) = 𝑦} and 𝑥 =
string 𝑠 matches documents containing 𝑠. Without an index you have to scan the entire database 

to evaluate these functions. For a table, if range queries are important a sorted index can find 

(𝑐𝑜𝑙, 𝑦, 𝑧), matching {𝑟𝑜𝑤 | 𝑦 ≤ table(𝑟𝑜𝑤, 𝑐𝑜𝑙) ≤ 𝑧}. 

What results do you cache? Historical caching saves a result that was obtained because the 

program needed it. Predictive caching guesses that a result will be needed and precomputes it; in 

a RAM cache it’s called prefetching, and in a database system it’s called a materialized view. Both 

are forms of speculation, betting that a computed result will be used again, and that a result that 

hasn’t been used yet will be used in the future. Usually the second bet is riskier, unless the re-

sources it uses are free.  

If 𝑓 is not pure (𝑓(𝑥) depends on the state as well as on 𝑥), then when state changes cause 

𝑓(𝑥) to change you must either tolerate stale cache values, or invalidate or update a cache entry. 

This requires that the source of the change either 

− sends a notification to any cache entries that depend on it, or  

− broadcasts every state change, and the cache watches the broadcasts. 

For a RAM cache a change is a store to an address in the cache, and the two techniques are called 

directory and snooping. A directory entry is much like a lock on the address, except that the entry 

doesn’t release a read lock explicitly, but holds it until there’s a conflicting write and then releases 

it automatically. If using a cache entry involves going through a page table entry that you control, 

you can invalidate it by setting the entry to trap. 

A database index is designed in and updated immediately when the data changes.  A file or 

document index is usually an addon that is updated eventually. Rescanning all the data is like 



 

32 

 

broadcast; it always works and it needs no help from the data. A web search engine must work this 

way, perhaps favoring the parts that change more often. Notifications in a change log, even a coarse 

one that just notes the region of a change, can make index updates much faster. 

Whether it’s better to invalidate or update is another speculation. An interesting example is a 

word processor like Bravo that caches information of the form, “If you start a display line at char-

acter 𝑐𝑝 of the document, its layout depends on characters [𝑐𝑝 − 1, 𝑐𝑝 + Δ], it contains 𝑙 charac-

ters, and it has this display image”. Any change in the range [𝑐𝑝 − 1, 𝑐𝑝 + Δ] invalidates this entry; 

it may also become useless, though not invalid, if there’s no longer a line being displayed that 

starts at character 𝑐𝑝. 

Here are some other examples of caching a function: 

• Network routing tables that use the destination address to tell you where to send a packet. 

These are soft state, updated lazily by a routing protocol such as BGP, OSPF, or ethernet 

switching. 

• Shadow page tables in virtual machines, which cache values of the mapping 

(𝑔𝑢𝑒𝑠𝑡 𝑉𝑀, 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠) → ℎ𝑜𝑠𝑡 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, the composition of 𝑔𝑢𝑒𝑠𝑡 𝑉𝐴 →
𝑔𝑢𝑒𝑠𝑡 𝑃𝐴 and 𝑔𝑢𝑒𝑠𝑡 𝑃𝐴 → ℎ𝑜𝑠𝑡 𝑃𝐴. If the value of either function changes the entry is inva-

lid; this is tricky because the two functions are owned by different systems.R3 This also works 

for other hardware resources such as interrupt tables.R5 

• Materialized views in a database, which cache the table that’s the result of a query in the hope 

that it will be reused many times. 

3.3.6 Concurrency—S3: shard, stream or struggle. Make it atomic. 

Now that single-stream general-purpose processors are not getting fasterR51, there are only three 

ways to speed up a computation: better algorithms, specialized hardware and concurrency. Only 

the latter is reasonably general-purpose, but it has two major problems:  

• It’s hard to reason about concurrent computations that make arbitrary state changes, because 

the concurrent steps can be interleaved in so many ways. Hence the S3 slogan.  

• To run fast, data must be either immutable or local, because when a remote variable changes, 

getting its current value is costly. Fast computations need P&L: parallelism and locality. 

The other reason for concurrency is that part of the computation is slow. Disk accesses, net-

work services, external physical devices, and user interaction take billions of processor cycles. 

This kind of concurrency doesn’t have the second problem, but it still has the first. When the slow 

part is done it has to get the attention of the fast part, usually by some form of notification: interrupt 

a running thread, wake up a waiting thread, post to a queue that some thread will eventually look 

at, or run a dispatcher thread that creates a new thread. 

Sharding (also called striping or partitioning) is really easy concurrency that breaks the state 

into 𝑛 pieces that change independently. A single thread touches only one shard, so the steps of 

threads that touch different shards don’t depend on the interleaving. A key determines which shard 

to use. Sharding is essential for scale-out, making an application able to handle an arbitrarily heavy 

load by running on arbitrarily many machines. 

The simplest example is disk striping: a few bits of the address are the key that chooses the 

disk to store a given block, and all the disks read or write in parallel. Fancier is a sharded key-

value store with ordered keys; 𝑛 − 1 pivot values divide the keys into 𝑛 roughly equal chunks. To 

look up a key, use the pivot table to find its shard. Everything is concurrent, except for rebalancing 

the shards, which is trickier. 
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You can make the sharding flat, usually by hashing the key to find the shard as in DHTsR76, or 

hierarchical if there are natural groupings or subsets of keys, as with path names for files, DNS 

names, and Internet addresses. Hierarchy is good for change notifications, since it makes it easy 

to notify all the “containing” shards that might need to know, but not so good for load-balancing, 

since there may be hot spots that get much more than their share of traffic. The fix is to make the 

path names into ordered keys by treating them as strings, disregarding their structure.  

Often there’s a combining function for results from several shards. A simple example is sam-

pling, which just takes the union of a small subset from each shard; the union is serial, but it’s 

typically processing log 𝑛 out of 𝑛 items so this doesn’t matter. Union generalizes to any linear 

(homomorphic) function between two monoids 𝑓: 𝑀 → 𝑁, a function that “preserves” opera-

tions:𝑓(𝑎+𝑀 𝑏) = 𝑓(𝑎)+𝑁 𝑓(𝑏), and 𝑓(0𝑀) = 0𝑁. Each shard can evaluate a linear function sep-

arately and then a tree can combine the results with +𝑁. The familiar Map and Reduce operators 

are linear.R14 

A tricky example is sorting on 𝑛 processors: shard the input arbitrarily, sort each shard, and 

combine by merging the sorted shards. A straightforward merge requires processing all the data in 

one place, and Amdahl’s Law will limit the performance. To avoid this,  

sample the data in parallel,  

from the (small) samples find 𝑛 − 1 pivot values that divide it into 𝑛 roughly equal chunks,  

distribute the data in parallel, the 𝑖th smallest chunk to shard 𝑖, and 

sort the data in parallel in each shard. 

Concatenating the data from the 𝑛 shards in order, rather than merging it, yields a sorted result.R6 

Streaming is the other really easy kind of concurrency: divide the work for a single item into 

𝑘 sequential steps, put one step on each processor, and pass work items along the chain. If it’s 

systolic, that’s even better. This scheme generalizes to dataflow, where the work flows through a 

DAG. The number of distinct processing steps limits concurrency. Use batching to amortize the 

per-item overhead.  

Map-reduce combines these two techniques, alternating a sharded map phase with a combining 

reduce phase that also redistributes the data into shards that are good for the next phase. It can 

reuse the same machines for each phase, or stream the data through a DAG of machines. The 

combining phase of map-reduce illustrates that even when you have a lot of independence, con-

currency requires communication, and that’s often the bottleneck.  

The fastest way to send data through a shared memory system is to “lend” the memory, just 

passing a pointer. If the goal is to model a message send, the data had better be immutable. 

Constructs for concurrency 

There are many ways to get a concurrent program: 

− An explicit fork(r) of a new thread that runs routine r concurrently, returning a promise 

p; await(p) returns the result of r. Languages package this in many different ways. 

− A parbegin b1; …; bn parend that runs the 𝑛 blocks concurrently. 

− A library whose code runs concurrently, such as a database or graphics system. 

− A distributed system. 

Everything in this section applies to all of these, except for locks in a distributed system. 

Beyond shards and streams—struggle 

Do I contradict myself? Very well then I contradict myself. (I am large, I contain multitudes.) —

Walt WhitmanQ89 

I may be inconsistent. But not all the time. —Anonymous 
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If you can’t shard or stream, you will have to struggle. It helps to think in terms of showing 

that a general nondeterministic program is correct, and then letting performance constrain the 

choices: scheduling (including cache flushing, prefetching, timeouts, interleaving, losses), table 

sizes, etc. If the abstract state that your language provides is not bulletproof (type and memory 

safe) you’ll struggle more. 

There are five kinds of concurrency; the first two provide consistency or serializability, which 

means that the concurrent system produces the same result as running the actions in some sequen-

tial order that respects real-time: an action that starts after another action ends will be later in the 

order (don’t confuse this with the consistency of ACID transactions). 

• Really easy: pure sharding or streaming. Either actions are independent, sharing no state ex-

cept when they are combined, or they communicate only by producer-consumer buffers. 

• Easy: make a complex action atomic so that it behaves as though the entire action happened 

sequentially (serially), not interleaved with actions by other threads. To do this, group the ac-

tions into sets that break atomicity if they run concurrently, such as reads and writes of the 

same variable. Have a lock variable to protect each set, with the rules that: 

− Before running a protected action, a thread must acquire its lock.  

− Two locks in different threads conflict if the actions they protect don’t commute (for ex-

ample, two reads commute, but writes of the same variable don’t commute with reads or 

other writes). 

− A thread must wait to acquire a lock if another thread holds a conflicting lock.  

There are some complications. 

• (Nuisance: actions can run concurrently but produce strange results if they do, and some 

higher-level mechanism keeps this from happening. A familiar example is opening and renam-

ing files. If the directories involved are themselves being renamed many strange things can 

happen, since a file system usually does not hold locks to serialize these actions. Applications 

use conventions to avoid depending on directories that might be rearranged while the app is 

running. A spec for nuisance concurrency (which you don’t normally care about, because 

you’re avoiding it) has the same flavor as eventual consistency: it collects all the changes which 

can occur during a non-atomic action, and the spec for the action chooses a subset of these 

changes nondeterministically to make the state that it acts on. The difference is that the client 

is not prepared to tolerate the inconsistency.) 

• Hard: anything else that’s serializable. With hard concurrency you can do a formal proof or 

have a bug. Stay away from it if you possibly can. If you can’t, learn how to use a formal 

system like TLA+.R44 

• Eventual: all updates commute, so you get the same eventual result regardless of the order 

they are applied, but you have to tolerate stale data. This is easy to code: 

− Make updates commute. If they are blind writes, time-stamp them; last writer wins. Col-

lapse the update history into just keeping the timestamp of the last write with each variable, 

and when a write arrives, apply it if its timestamp is later. A deletion must leave a time-

stamped tombstone. 

− Arrange the nodes in some structure that allows you to broadcast updates, such as a ring or 

a graph; keep track of the path an update takes to keep it from traversing a node twice.  

It’s also highly available, since you can always run using only local data. The apps pay the 

piper: they must deal with stale data. The spec for eventual consistency is that a read sees an 

arbitrary subset of all the updates that have been done. Usually there’s a sync operation; it 

guarantees that after it ends every read sees all the updates that precede the start of the sync. 



 

35 

 

There are many examples: name services like DNS (which has no sync), key-value stores like 

Dynamo, and “relaxed consistency” multiprocessor memory, in which sync is called “bar-

rier”.R4 Most file systems buffer writes and don’t guarantee that data is persistent until after an 

fsync, and this is somewhat similar after a failure: there are some updates that no one will ever 

see again. 

More on easy concurrency 

The locking rules ensure that any concurrent action 𝑐 that happens between an action 𝑎 and the 

action 𝑟𝑎 that releases 𝑎’s lock commutes with 𝑎, since an action that doesn’t commute must wait 

to acquire a conflicting lock. So 𝑎; 𝑐; 𝑏; 𝑟𝑎 is the same as 𝑐; 𝑎; 𝑏; 𝑟𝑎, where 𝑏 is the rest of the work 

that 𝑎’s thread is doing, and hence neither 𝑎’s thread nor 𝑐’s thread sees any concurrency until 𝑟𝑎 

releases the lock. The atomic actions in the concurrent threads are serialized. Another way of say-

ing this is that each atomic action is equivalent to a single action that occurs at a single instant 

called its commit point. You can reason about the code of such an atomic action sequentially. To 

reason about a collection of atomic actions, define a lock invariant on the state that holds except 

perhaps inside the code of an atomic action. 
»Cluster locks: A lock is a resource, and like any resource it can become a bottleneck, so it needs to be instru-

mented. DEC built the first computing clusters, in which you could do more computing simply by adding machines. 

But one large cluster didn’t scale, even though no physical resource was a bottleneck. It turned out there was a single 

lock that was 100% busy, but it took top engineers to figure this out because there was no way to measure lock 

utilization. 

There are three tricky things about easy concurrency: ensuring that the lock discipline is fol-

lowed, dealing with deadlock, and doing the right thing after releasing locks. Transaction pro-

cessing systems (TPS) solve all these problems in draconian fashion; a custom app must worry 

about them. 

Discipline: TPS interpose on the app’s reads and writes of the shared state to acquire the nec-

essary locks. A custom app must take responsibility for this; unfortunately locking is hard to debug, 

because the app will still work most of the time even if it touches variables without having locked 

them. Tools like Valgrind can detect most of these errors. 

Deadlock: TPS detect deadlock and abort one of the transactions involved, automatically un-

doing any state changes. A custom app usually doesn’t have automatic abort, but avoids deadlock 

by establishing a total order on the locks and never acquiring a lock that is smaller than one it 

already holds. 

Lock invariant: TPS don’t allow an app to keep any private state after a transaction commits 

and releases its locks; the app has to re-read everything from the shared state. A custom app must 

follow a similar rule: have a lock invariant on the state, establish the invariant before releasing any 

locks, and assume nothing about the shared state except the invariant when you don’t hold a lock. 

Another way of saying this: choose atomic actions wisely. For example, to increment 𝑥 atomically 

it’s not enough to hold a read lock when fetching 𝑥 and a write lock when storing it; the lock must 

cover the entire atomic sequence. 

An important special case of easy concurrency is epochs, a batching technique that maintains 

some invariant on the state except at the step from one epoch to another. An epoch is a special case 

of locking that holds a global lock on certain changes throughout the epoch, so that the changes 

can only occur when the epoch ends and releases the lock. The code follows these rules by con-

vention; there’s no lock variable that’s acquired and released. Most often the change that is locked 

is deleting an object, so that code that gains access to an object during the epoch knows that the 

object won’t disappear unexpectedly. For this to work well it has to be okay to defer the deletions. 
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Sometimes the global lock prevents any changes to certain objects, keeping them immutable dur-

ing the epoch. 

Locks don’t work well in a distributed system because they don’t play nice with partial failures. 

Leases can be a workaround. The only meaningful content in an asynchronous message is facts 

that are stable: once they are true, they are true forever. 

Commuting and atomicity 

When you don’t have disjoint states (sharding) or strict dataflow (streaming), the essential idea 

is that commuting actions can be reordered into larger atomic actions to make it easier to reason 

about the code. Easy concurrency is the simple way to make actions commute: the locks delay any 

actions that don’t commute. In hard concurrency there are more subtle reasons why actions com-

mute, but the necessary proofs typically work by showing that certain actions are movers that 

commute with every other action in the system that can possibly run concurrently.  

A good rule of thumb is the scalable commutativity rule: if the specs of two actions commute, 

then you can write code in which they run concurrently, which is important for keeping all the 

cores busy on modern CPUs. For example, Posix file open returns the smallest unused file de-

scriptor; if it returned an arbitrary unused descriptor, two opens could commute.R16 

Locking is the standard way to make a complex action atomic; the commit point is some time 

between the last lock acquire and the first lock release. There are other ways, but they are used 

mostly in database systems because they need a lot of infrastructure. Two are worth knowing 

about: optimistic concurrency control (OCC) and multi-version concurrency control (MVCC).  

The idea of OCC is to let the code of an atomic action touch variables fearlessly, but keep any 

changes in a write buffer private to the code. When it’s time for the action to commit, check that 

any variables that were read have not been written by someone else. If the check fails, abort: dis-

card the changes and retry the action. If it succeeds, commit and install the changes. This check 

and install itself needs to be made atomic by locking, but it can be very fast and hence can be 

protected with a single global lock. The commit point is when this lock is held. OCC is good when 

conflicts are rare, since you only pay when there is a conflict. It has the drawback that you might 

see inconsistent data, but if you do you will always abort. Locking is better when conflicts are 

common, since waiting is better than abort and retry. 

MVCC remembers the state after every atomic action. An action can use its start time as its 

commit point, since it can always read the state as of that time. However, to write a variable that 

has already been read by a later action it must abort and move its commit point after the read; this 

works well for actions that only write private variables, most often after checking some property 

of the state such as whether the bank’s books balance. Snapshot isolation is a limited form of 

MVCC. Multiple versions are good for version control of programs and documents, where they 

are an essential part of the user model, not just a coding technique. They also mean that each 

version is immutable, so a cache entry tagged with the version it applies to is never invalid.  

Concurrent tasks need to be scheduled. 

Wait-free concurrency 

Multiple versions are also the basis for the general form of wait-free or non-blocking compu-

tation: make a new version and then splice it in with a compare-and-swap instruction, retrying if 

necessary.R42 Wait-free is good because a thread that is very slow while holding a lock can’t force 

others to wait. Retrying allows livelock; the alternative is to let some other thread help with a 

failing update.R72 



 

37 

 

3.4 Adaptable 

Fixed ↔ evolving, monolithic ↔ extensible [I] The only constant is change. Flaky, springy parts. 

Dynamic ↔ static  [E] Stay loose. Pin it down. Shed load. Split resources. 

Policy ↔ mechanism It’s OK to change your mind. 
  

There are many things that your system might need to adapt to: 

− Changes in the clients’ needs: new features or data formats, higher bandwidth, lower la-

tency, better availability. 

− Changes in the host platform: new interfaces or versions, better or worse performance. 

− Changes in regulation or in security threats: privacy or other compliance requirements, 

data sovereignty, broken cryptography, new malware. 

− Changes in scale, from 100 clients to 100 million or from storing text to storing video. 

Such changes may force major rework, but usually a well-designed system can adapt less painfully. 

The keys to adapting to functional changes are modularity and extension points in the design. 

The keys to adapting to scaling are modularity, concurrency, and automation. 

Changes in interfaces cause a compatibility problem: unless the client and the service spec 

change at the same time, there’s a mismatch. One solution is to make the new spec a superset of 

the old one. This has worked well for ethernet, the Internet, many ISAs, some programming lan-

guages, and basic HTML; 40-year-old clients still work. The other solution is a form of indirection:  

an adapter or shim that satisfies the old spec and is a client of the new one. When the new one is 

dramatically different this is called virtualization. You’re in trouble if you can’t find all the places 

that need to be shimmed (too much complexity), or if the performance hit is too big (but translation 

can often keep this under control). Perfect compatibility is hard, but even an imperfect adapter can 

be useful. If two parties connect dynamically each one should name its version of the interface so 

that it’s clear what adapter is needed. 

You can push this kind of adaptation a long way. It’s a truism of computer architecture that the 

only mistake you can’t recover from is making the address space too small, but in fact people have 

found many ways to recover, though all of them are slightly kludgy. The 32-bit IPv4 Internet 

address space is too small. IPv6 expands it cleanly, but the fix mostly used in practice is NAT,  

which works by making the 16-bit port number part of the address. Purists consider this to be 

heresy (which it is) and for years refused to standardize it, but today’s Internet depends on it. Early 

versions of Unix used separate processes connected by pipes, each with its own address space, to 

expand the PDP-11’s 16-bit address space. This forced modularity and shell scripts, making a 

virtue of necessity. 

3.4.1 Scaling 

Expanding on the catchwords above, scaling requires: 

− Modularity for algorithms, so it’s easy to change to one that scales better. 

− Concurrency that scales with the load by sharding: the work for different clients is inde-

pendent (of course it’s okay to share immutable data) and all communication is asynchro-

nous. 

− Automating everything, so that a human never touches just one machine (except to replace 

it if the hardware fails). This means fully automating both fault tolerance and operations. 

The independent shards sometimes have to come back together. There are two aspects to this: 

− Combining the independent outputs or synchronizing the shard states. Fancy versions of 

this are called fusion. 
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− Naming the shards, using big random numbers (which must be indexed) or path names.  

If the shards already exist, use federation to put them into a single name space by making a new 

root with all of them as children.  

− In a file system this is called mounting, and they stay independent.  

− Global authentication is much like mounting: to accept identities that are registered with 

Intel, Microsoft adds to its directory a rule that the key for groves.intel.microsoft.com 

is whatever Intel says is the key for groves.intel.com. 

− In a source code control system the shards are branches and synchronization is merging.  

− Modules that satisfy the same spec can federate even if they use different techniques, as in 

SQL query processing, numerical computing, or mixtures of experts in machine learning. 

If the data’s type determines the methods this is a form of subclassing.  If not, you need to 

look at the data and select which code to use. 

Many things scale according to Zipf’s Law, which says that the 𝑛th most common or biggest 

thing is 1/𝑛 as common or big as the first. It’s unintuitive but true that this is very heavy-tailed: 

∑ 1/𝑘𝑛
1 ≈ ∫ 1 𝑘⁄

𝑛

1
 𝑑𝑘 = ln 𝑛, which is unbounded even though it grows very slowly. So the mean 

is undefined.R2 

3.4.2 Inflection points—Seize the moment. Ride the curve. 

History never repeats itself but it rhymes. —John Robert ColomboQ12 

Why do great new technologies often fail? They are great when compared with the current incar-

nation of the boring old technology, but during the 3 to 5 years that it takes to ship the new thing, 

the old thing improves enough that it’s no longer worthwhile to switch. This typically happens 

with new hardware storage technologies, such as magnetic bubbles, thin film memories, optical 

disks, and perhaps phase change memory and memristors, though for the last two the jury is still 

out. 

The reverse happens when a new idea has some fundamental advantage that couldn’t be fully 

exploited in yesterday’s world, but conditions have changed so that it now pays off.  

• This happened with multiprocessors, which for many years were slower than spending the 

same amount to improve the performance of a single processor. Capable single chip CPUs 

made it much cheaper to build a multiprocessor, and it looked as though a workstation with 

several CPUs would be worthwhile,R78 but the advent of RISC delayed this. Eventually clock 

rate stopped increasing and the bag of tricks for executing more instructions per clock got 

empty, and multicore processors became the norm.  

• Log structured file systems were invented around 1990, had marginal payoffs at best with the 

disks of the time, but are now very attractive because of the physical properties of SSDs and 

of high density disks—random writes are no longer feasible.  

• Packets replaced circuits for communication when the computing needed to do the switching 

got cheap enough, and bandwidth got cheap enough for bursty data traffic to overwhelm voice.  

• Ted Nelson invented the web in the 1960s (he called it hypertext), but it didn’t catch on until 

the 1990s, when the Internet got big enough to make it worthwhile to build web pages. 

Moore’s Law provides exponential change, and there are also inflection points when a curve 

crosses a human constraint. So you can capture a digital image with higher resolution than the 

human eye can perceive, store an entire music collection in your pocket, or stream a video in real 

time so you don’t need lots of local copies. Likewise when an exponential crosses a boundary that 

makes something feasible, first technically and then economically, as with spreadsheets and word 



 

39 

 

processors in the late 1970s, with email in the 1980s, and with machine learning around 2012. If 

you catch one of these moments you can be a hero. 

The most fundamental constraints are three dimensions and the speed of light. This means that 

much of performance is about locality; less code operating on less data closer in space and time. 

Physics says that there will always be memory hierarchies, computation and communication, per-

sistent storage and I/O. The relative bandwidth, capacity and latency change, but there are always 

tradeoffs among them.R23 
»Three waves of computing. The development of electronics during World War II made it technically feasible 

around 1950 to build computers that do simulation, first of physical processes like artillery trajectories and nuclear 

weapons and then of business processes like payroll and inventory. Simulation paid all the bills for the first 30 years, 

and it’s by no means played out. Around 1980 hardware got cheap enough to use it for mediating communication 

between people, and this gave rise to the Internet, email, the web and social media, touching far more people than 

simulation did. This too still has plenty of room to evolve; for example, telepresence is still pretty bad. Around 2010 

computing and sensing hardware got capable and cheap enough for a third great wave, which is about interactions 

with the physical world: robots, sensor networks, natural user interfaces, image recognition and many other things. 

This is just getting started, but it will have even more impact. The big system issues are real time and uncertainty. 

3.5 Dependable 

The price of reliability is the pursuit of the utmost simplicity. It is a price which the very rich find 

most hard to pay. —Tony HoareQ33 

As a rule, software systems do not work well until they have been used, and have failed repeatedly, 

in real applications. —David ParnasQ57 

Perfect ↔ adequate, exact ↔ tolerant  [D] { 
Just good enough. Worse is better.  

Flaky, springy parts. Fail fast, fix fast. End-to-end. 

Precise vs. approximate software  [T]  Get it right. Make it cool. Shipping is a feature. 

Centralized ↔ distributed, share ↔ copy [E]  Do it again. Do it twice. Find consensus. 

Consistent ↔ available ↔ partition-tolerant  Safety first. Always ready. Good enough. 

Generate ↔ check  Trust but verify. 

Persistent ↔ volatile  Don’t forget. Start clean. 
 

A system is dependable if it is: 

− Reliable—it gives the right answers in spite of partial failures and doesn’t lose data that 

it’s supposed to preserve. 

− Available—it delivers answers promptly in spite of partial failures. 

− Secure—it’s reliable and available in spite of malicious adversaries. 

The secret of reliability and availability is fault tolerance by redundancy: doing things inde-

pendently enough times that at least one succeeds. Redundancy can be in time or in space. 

• Redundancy in time is retry or redo: doing the same thing again. You have to detect the need 

for a retry, deal with any partial state changes, make sure the inputs still available, and avoid 

confusion if more than one try succeeds. The main design tool is end-to-end validation.  

• Redundancy in space is replication: doing the same thing in several places. The challenges are 

giving all the places the same input and making the computation deterministic so that the out-

puts agree. The main tool is consensus. 

It’s very important for the redundancy to mostly use the same code as the normal case, since that 

code is tested and exercised much more, and hence has many fewer bugs. And of course redun-

dancy won’t do any good if a deterministic bug (a Bohrbug) caused the failure. On the other hand, 

many bugs are infrequent nondeterministic Heisenbugs, usually caused by concurrency.R34 
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Redundancy by itself is not enough; you also need repair. If one of two redundant copies fails 

the system continues to run, but it is no longer fault-tolerant. This is the reason to scrub mirrored 

disks, reading every block periodically and restoring unreadable data from the mirror. Similarly, 

if a component is failing half the time and a retry triples the cost, the operation takes six times as 

long as it should.  

The idea of redundancy is to have no single points of failure. Finding all such points is hard; it 

takes careful analysis, a good understanding of the environment and a clear notion of what risks 

you are going to accept. Cloud services, for example, worry about large-scale disasters like earth-

quakes and put data centers far enough apart to tolerate them. For security this analysis yields a 

threat model. 

No single point of failure means a distributed system, which inherently is concurrent and has 

partial failures: some of the pieces can fail, including the communication links, while the whole 

system keeps working. This means that there are a lot more unusual states, which is why a distrib-

uted system is harder to get right than a centralized one, in which many errors just reset the whole 

system to a known state (perhaps passing through the Blue Screen of Death).  

A Bohrbug is also a single point of failure, unless the redundancy includes different code. 

Multi-version programming does this, building several different codes to the same spec; so far it 

has not been successful, because it’s quite expensive, it’s easy for programmers to misinterpret the 

spec in the same way, and it’s hard to get all the versions to track changes in the spec. 
»Arpanet partitioning. On December 12, 1986, New England was cut off from the Arpanet for half a day. The 

map showed that there were seven connections to the rest of the network, but not that all seven of them went through 

the same fiber-optic cable between Newark and White Plains.R37 In theory carriers can now guarantee that two con-

nections share no physical structure. 

»Cellphone disconnected. I tried to call a friend at the Microsoft campus on his office phone. It didn’t work 

because it was a VOIP phone and his building’s Internet connection was down. So I tried his cellphone, and that didn’t 

work either because his building had a local cell tower, which used the building’s Internet to connect to the wireless 

carrier and was too stupid to shut itself off when it could no longer connect. 

»Datacenter fans. An entire data center went down because a bug in new firmware for the fans.  Operations knew 

that you always do rolling updates for system software, converting only a fraction of the deployed machines at a time 

and only one at a time from a replication group. But nobody realized that the fan firmware was system software. 

3.5.1 Correctness 

The best way to get your code to be correct is to keep it simple, and the best way to do that is to 

structure your system so that the most critical parts of the spec depend only on a small, well-

isolated part of the code. This is the trusted computing base (TCB), invented to keep computer 

systems secure but applicable much more broadly. It’s a good idea, but there are some difficulties: 

− Keeping the TCB isolated from bad behavior in the rest of the system. 

− Keeping the “most critical” parts of the spec from growing to include all of it. 

− Maintaining the structure as spec and code change. 

The single best tool for making a TCB is the end-to-end principleR69; its underlying idea is that 

the client is in control. More specifically, if you can easily check whether an answer is correct and 

you have a backup procedure, then the code that generates the answer doesn’t need to be part of 

the TCB, and indeed doesn’t need to be reliable. To use it you need a check for failure; if you’re 

just sending a message this is a strong checksum of the contents, and a timeout in case it never 

arrives. The checksum also works for storage, but since you can’t retry, storage needs replication. 

You probably don’t want to give up if the check fails, so you need the backup; end-to-end says 

that this decision is up to the client, not the abstraction. You need to undo any visible state change 

caused by the failure or ensure that it doesn’t confuse the next steps. After that, if the failure is 
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nondeterministic retrying is a good backup. The canonical example is TCP, which makes the flaky 

best-efforts packet service of the raw Internet into a reliable congestion-controlled byte stream. 

Other possibilities are trying something more expensive, especially if it was a hint that failed, or 

running in a degraded mode such as eventual consistency (with or without notice to the client). 

There may be no backup; encryption, for example, can’t prevent a denial of service attack, though 

it can guarantee secrecy and integrity.  

If your program is going to be reliable, of course it has to be correct, right? And if you detect 

something wrong, for example a failing assert, you should report an error and abort, right? Well, 

not exactly. For one thing, if you’re running a reliable service you should never abort; you should 

always log the failure, undo the failing action and retry. If you had a Heisenbug, the retry will 

work. More drastic retries are more disruptive, but also more likely to work because they reset the 

state more thoroughly. 

It may not be important to guarantee a correct answer, and you can do surprisingly well with 

failure-oblivious computing: fix up the error in some straightforward way and press on. For exam-

ple, if the program dereferences null, catch the segfault and return 0.R65 Of course this idea can 

be pushed too far, but it works surprisingly often. 
»Unverified build script. IronFleet verifies code for distributed systems, using the methodology described earlier. 

It has a tool for building the system (verifying, compiling, linking, etc.) which turned out to have a bug: it would 

sometimes think that the verification succeeded even though it had actually failed.R28 Lesson: Bugs can show up 

anywhere; the toolchain is not exempt. 

3.5.2 Retry—Do it again 

If you can tell whether something worked, and there’s a good chance after it fails that it will work 

better the second time, then retry is the redundancy you want. This applies especially to network-

ing, where often you don’t have good control of the communication, and even if you do it’s much 

cheaper to tolerate some errors. Retry is based on the end-to-end principle, and in most applications 

you expect it to succeed eventually unless the network is partitioned or the party you are talking 

to has failed. Retry is a form of fast path: success on the first try is the fast path, with cost 𝑓, and 

the cost of the slow path is 𝑠 = 𝑟(1 + 𝑝 + 𝑝2 + ⋯ ) = 𝑟 (1 − 𝑝)⁄ , where 𝑟 is the time for one retry 

(the time it takes to detect a failure, usually a timeout but perhaps a negative acknowledgment, and 

try again) and 𝑝 is the chance of failure. The slowdown caused by retries is 1 + 𝑝(𝑠 𝑓⁄ ). To make 

this small you need 𝑝 ≪ 𝑓 𝑟⁄ . For example, if a retry costs 10 × a success (𝑟 = 10𝑓), then you 

need 𝑝 ≪ 10%. If instead 𝑝 ≈ 𝑓 𝑟⁄  then the slowdown is 1 + 1/(1 − 𝑝) ≈ 2 ×. 

If 𝑝 is too big (perhaps because the chance of corrupting a message bit is too big), forward 

error correction (an error-correcting code) can make it smaller. An alternative is to reduce the 

number of bits by breaking the work into smaller chunks that fail and retry independently. 

A retry that succeeds is supposed to yield the same final state as a single try; this is idempo-

tence. Some actions are intrinsically idempotent, notably a blind write of the form 𝑥 ≔ constant. 
To make an arbitrary action such as 𝑥 ≔ 𝑥 + 1 idempotent, make it testable: give it a unique ID, 

remember the IDs of completed actions (often the versions of variables), and discard any redundant 

retries. In communication this is at-most-once messaging (“at most” rather than “exactly” because 

the message is lost if the sender fails or gives up). A common case is TCP, whose code is tricky 

because the IDs are volatile (making the ID persistent would be too expensive), so each connection 

has to do a “handshake” to set them up. (TCP has other complications because it sets up a connec-

tion rather than sending a single message, and because of the window mechanism for flow control 

and exponential backoff for congestion control.) If the messages and IDs are persistent it’s called 
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a message queue and it’s exactly once. The reason that the payment pages of online commerce 

often say “don’t hit the back button and retry” is that they are doing this wrong. 

A different form of retry is redo recovery from a log after a crash. If every pair of actions 𝑎 

and 𝑏 in the log either commute (𝑎; 𝑏 = 𝑏; 𝑎) or absorb (𝑎; 𝑏 = 𝑏), then redoing prefixes of the 

log repeatedly (which happens if there are crashes during recovery), followed by redoing the whole 

log, is equivalent to redoing the whole log once. This is log idempotence. A blind write absorbs an 

earlier write to 𝑥 and commutes with a write to any other variable. A testable action absorbs itself. 

Retry can happen at different levels, resetting more and more of the state. For something like 

a web service where you control the whole system, they are the 5 Re’s:R10 

− Retry, the level discussed here; if it succeeds the system runs normally. 

− Restart a transaction, an application, a thread or whatever, and then retry. 

− Reboot the OS; this resets a lot of state that may be bad. The client will likely see a hiccup. 

− Reinstall/reimage the application or the entire OS. 

− Replace the hardware, since it must be broken (unless it’s a Bohrbug in the application).  

3.5.3 Replication—Do it twice 

A replicated state machine (RSM) is a way of doing a fully general fault-tolerant computation 

using the ideas of being and becoming. You make several replicas of the host running the same 

code, start them in the same state, and feed them the same sequence of deterministic commands. 

Then they will produce the same outputs and end up in the same state. Any of the outputs will do 

as the output of the RSM, or you can vote if you have at least three replicas and want to protect 

against the possibility that a minority is Byzantine. 

Of course there are some complications: 

• The replicas must all see the same sequence: they must all agree about the first command, the 

second command, etc. The Paxos algorithm for distributed asynchronous consensus does this, 

by getting a set of nodes to agree on a value; it guarantees that replicas will never disagree 

about commands, and it makes progress as long as a suitable quorum of replicas can communi-

cate for long enough. The idea behind Paxos is to collect a majority for some value, and if 

failures keep this from completing, to try again. The tricky part is ensuring that if there was a 

majority, retries choose the same value. 

• The commands must be deterministic; this requires some care. It means no randomness 

(pseudo-randomness is OK if they all use the same seed) and no real time. Concurrency re-

quires great care, because it’s inherently nondeterministic. Each replica must run the same 

code, or code that implements the same deterministic spec. This can be tricky; for example, 

two codes for sorting might order items with equal keys differently. 

• If a replica fails, you can redo the whole sequence of commands from scratch, or copy the state 

of some other replica and redo recent commands. If the commands are idempotent you can 

make a fuzzy copy and then redo all the commands since copying started. 

• You can use the RSM to add or delete replicas; this is a bit tricky. 

Reads must go through the RSM as well, which is expensive. To avoid this cost, use the fact 

that physics provides a reliable communication channel called real time. One replica takes out a 

time-limited lock called a lease on part of the state through the RSM; this stops anyone else from 

changing that state. Drawbacks are that the leaseholder can be a bottleneck, and if it fails everyone 

must wait for the lease to expire. 

The usual way to do replication is as primary-backup: one replica is the primary, chosen by 

the RSM, and it has a lease on the whole state so that it can do fast reads and batch many writes 
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into one RSM command. The backups see all the writes because of the RSM, and they update their 

state to be ready in case the primary fails. The RSM needs three replicas, but they only need to 

store the commands, not the entire state. 

Replication can improve performance as well as fault tolerance, since you can read from any 

replica that you know is up to date. This only helps if there are a lot more reads than writes, since 

replicated writes are more costly. 

If all you want is fault-tolerant storage, an error-correcting code (not to be confused with the 

code that satisfies a spec) uses much less storage than replication. ECC comes in many flavors; 

cloud providers want storage to be as reliable as simple three-way replication, and local recon-

struction codes can do this using 1.33 × storage, spending about 2 × the latency and 5 × the band-

width of an error-free read to reconstruct a bad block. Rewriting data in place is expensive with 

LRC; the cloud systems use three-way replication for writes, bundling up data for LRC only after 

it’s settled down.R38 The first major effort along these lines was RAID (Redundant Arrays of In-

expensive Disks), which was quite popular for a while but eventually faded because doing a good 

job on every workload and in every failure condition was too complicated. 
»Tandem mirrored disks. Tandem Computers built one of the first fault-tolerant disk systems, writing each sector 

onto two drives. Several years later, when they analyzed data from the field, they observed that if one of the drives in 

a pair failed, the other was about 40 times more likely to fail than a drive in a pair without any failures. The reason 

was that when trying to replace a failed drive, the technician often pulled out the working one instead. They solved 

this problem by putting a green light on the back of each drive, and giving instructions never to pull a drive with the 

green light lit. 

»Ariane 5. The first flight of the European Space Agency’s Ariane 5 rocket self-destructed 40 seconds into the 

flight because both inertial reference system computers failed, delivering a diagnostic bit pattern to the control com-

puter instead of correct flight data. The computers shut down because of an uncaught exception caused by an overflow 

in a floating point to integer conversion. It was a deliberate design decision not to protect this conversion, made 

because the protection is not free, and (incorrect) analysis had shown that overflow was impossible. Shutdown seemed 

reasonable to engineers familiar with random hardware failures rather than software Bohrbugs.R8 

»Diesel generators. Once there was a bank with a mission critical data center. They had a diesel generator to 

provide backup power, and they tested the backup regularly by switching to it for 15 minutes once a week. Eventually 

there was a real power failure, and after 30 minutes the generator seized up for lack of lubricating oil. Lesson: Every 

part of the system should be used routinely in normal operation. 

3.5.4 Detecting failures: real time 

Real time is not just for leases. It’s the only conclusive way to detect that a service is not just slow 

but has failed—it hasn’t responded for too long. Another way is for the service to tell you about 

it, but it might be wrong or dead. How to decide how long is too long? Choose a timeout, and when 

it expires either retry or report the problem. For a client device the report goes to the human user, 

who can decide to keep trying or give up. For a service it ultimately goes to the operations staff. 

In a synchronous system a part that doesn’t respond promptly has failed; a heartbeat checks for 

this at regular intervals. 

How do you choose a timeout? If it’s too short there will be a lot of unnecessary retries, failo-

vers or whatever. If it’s too long the overall system latency will be too long. If the service reports 

the progress it’s making, that might help you to choose well. 

This story applies to a fail-stop system, which either satisfies its spec or does nothing. After a 

Byzantine failure the system might do anything. These are trickier to handle, and out of scope here. 
»Thrust reversers. The two major suppliers of commercial airplanes have somewhat different philosophies about 

the role of computers. Boeing believes that when push comes to shove, the pilot is in control. Airbus believes that 

sometimes the computer knows best. Thirty years of experience have not been enough to reveal which is right, but 

they have provided some good stories. One dark and stormy night an Airbus plane was landing in a rainstorm with a 

tail wind and wind shear. The plane touched down and applied the brakes, but it just aquaplaned. The pilot pulled the 
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lever to engage the thrust reversers. They didn’t come on. Cycling the lever again didn’t help. Eventually the plane 

ran off the end of the runway and caught fire, and two people were killed. Why? The computer knows that if the thrust 

reversers come on when the plane is in the air, it will fall like a stone, but how do you know it’s on the ground? The 

answer that was designed in: the wheels are turning fast enough, or shock absorbers are compressed at both main 

landing gears. But they weren’t.R86 Something similar seems to have happened with Boeing’s MCAS failures in 2018. 

3.5.5 Recovery and repair 

It’s common to describe availability by counting nines: 6 nines is 99.9999% available, which is 

half a minute of downtime per year (there are ≈ 225 or 𝜋 × 107 seconds in a year). A good approx-

imation is 𝑀𝑇𝑇𝑅/𝑀𝑇𝑇𝐹, mean time to repair over mean time to failure (how long the system runs 

before it fails to serve its clients promptly enough). When part of a fault-tolerant system fails, 

𝑀𝑇𝑇𝑅 is the time to fail over to a redundant component, not the time to fix the failing part. In a 

well-engineered system failover is less than the specified response time, so the system doesn’t fail 

at all; this is why it’s important to make failover fast. Repair is also important. 
»Memory errors. At Xerox Parc in 1971 we built a medium-sized computer called Maxc, using the new Intel 1103 

1024-bit dynamic RAM chip (2019 chips are more than 50 million times bigger). We didn’t really know whether this 

chip worked, but with single bit error correction we could tolerate a lot of failures, and indeed we never saw any 

failures in the running system for quite a while. So we used the same chips 18 months later in the Alto, but error 

correction was a much larger fraction of the cost in a much smaller machine and we decided to just have parity. 

Everything was fine until we ran the first serious application, the Bravo full-screen editor, and we started to get parity 

errors. Why? It turned out that 1103’s are pattern-sensitive (sometimes a bit will flip when the values of surrounding 

bits are just so) with a very long tail. Although Maxc hardware reported a corrected error, there was no software to 

read the reports, and there were quite a few of them. Lesson: Do repairs. 

With some effort we got the problem under control using a random memory test program that ran whenever a 

machine was idle and reported errors over the ethernet. Two years later we built the Alto 2, using 4k RAM chips and 

error correction. The machine seemed to work flawlessly, but after another two years we found that in one quarter of 

the memory neither error correction nor parity worked at all, because of a design error. Why did it take us two years 

to notice? The 4k chips were much better than 1103’s, and most bits in RAM don’t matter much, so most single-bit 

errors don’t actually cause software to fail. This is why consumer PCs don’t have parity: chips are pretty reliable, and 

parity errors hurt the PC manufacturer, but if random things happen Microsoft gets blamed. Lesson: Different parties 

may have different interests. 

»Ethernet slowdown. The ethernet on one of the Altos at Xerox was transferring data at 1/10 the speed of the 

others. This turned out to be because its ethernet interface was on the verge of failing and was dropping a lot of packets. 

The Pup Internet reliable transmission protocol was getting the data through, but with much lower bandwidth. Lesson: 

do repairs. 

3.5.6 Transactions—Make it atomic 

If a complex action is atomic (either happens or doesn’t), it’s much easier to reason about. The 

slogan for this is ACID: Atomic, Consistent, Isolated, Durable.  

• Atomic: Redo recovery makes it atomic with respect to crashes: after a crash either the whole 

action has happened, or none of it. 

• Consistent: The transaction can decide to abort before committing, which undoes any state 

changes and so makes it atomic with respect to its own work. So it can make changes fearlessly, 

only needing to leave the system in a good state (consistent) when it commits. It just aborts if 

it runs into internal trouble and can’t complete. Don’t confuse this with a consistent distributed 

system.  

• Isolated: The locks of easy concurrency make it atomic with respect to concurrent actions. 

Optimistic concurrency control has the same effect. 

• Durable: Changes made by a committed transaction are written to persistent storage, usually 

in several copies, so that they survive anything short of a truly catastrophic failure. 
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Transaction processing systems ensure all these properties by draconian control over the transac-

tion’s application code. 

Isolation works badly for long-running transactions such as balancing a bank’s books, because 

concurrent transactions either are blocked for a long time or force the long transaction to abort. 

The solution to this is a form of multi-version called snapshot isolation. 
»Pixie dust. Transactions are the pixie dust of computing. They take an application that understands nothing about 

fault tolerance, concurrency, undo, storage or load-balancing, and magically make it atomic, abortable, immune to 

crashes, and easy to distribute across a cluster of machines. 

3.5.7 Security 

But who will watch the watchers? She’ll begin with them and buy their silence. —JuvenalQ36 

If you want security, you must be prepared for inconvenience. —Gen. Benjamin ChidlawQ11 

 

Computer security is hard because of the conflict between isolation and sharing. People don’t want 

outsiders to mess with their computing, but they do want to share data, programs and resources. In 

the early days isolation was physical and there was no sharing except by reading paper tape, punch 

cards or magtape. Today there’s a lot more valuable stuff in your computers, and the Internet 

enables sharing with people all over the world. The job of security is to say “No,” and people like 

to hear “Yes,” so naturally they weaken the security until they actually get into trouble.  

Here are the most important things to do for security (which all add inconvenience): 

− Focus: figure out what you really need to protect. 

− Lower aspirations: secure only things so important that you’ll tolerate the inconvenience. 

− Isolation: sanitize outside stuff to keep it from hurting you, or don’t share dangerous stuff. 

− Whitelisting: decide what you do trust, rather than blacklisting what you don’t. 

It’s traditional to describe the goals of security as confidentiality, integrity and availability; the 

acronym is CIA. The mechanisms of security are isolation and the gold standard of authentication 

(who is making a request), authorization (who is allowed access to a resource), and auditing (what 

happened). A decentralized system has the additional problem of establishing trust, which you do 

by indirection: you come to trust someone by asking someone else that you already trust. Thus to 

answer questions like, “What is the public key for billg@microsoft.com,” you trust a statement 

from microsoft.com that says, “The public key for billg@microsoft.com is 𝐾, valid through 

3/15/2019.”R48 

What are the points of failure?  For security they are called a threat model, especially important 

because there are so many possible attacks (hardware, operating system, browser, insiders, phish-

ing, …) and because security is fractal: there’s always a more subtle attack. For example, how do 

you know that your adversary hasn’t hacked the BIOS on your PC, or installed a Trojan Horse in 

the hardware?R88 So you need to be very clear about what you are defending against and what you 
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are not worrying about. The TCB is the dual of the threat model; it’s just what you need to defend 

against the threats. The end-to-end principle makes the TCB smaller: encryption can make a secure 

channel between the two ends, so that the stuff in the middle is not a threat to secrecy or integrity.  

Code for security is often tricky, so don’t roll your own. For secure channels, use TLS. For 

parsing text that is going to be input to complex modules like SQL or the shell, use standard li-

braries to defend against SQL injection and similar attacks. Similarly for encrypting data; it’s easy 

to make mistakes in coding crypto algorithms, managing keys and blocking side channels. 

Isolation can protect a system from an untrusted network (usually the host is trusted), or it can 

protect the host from an untrusted application, browser extension, webpage with JavaScript, etc. 

The latter is called sandboxing. Isolation is hard, because the adversary only has to find one flaw. 

As with so many other things, simpler is better. Physical isolation is simpler than software, and 

virtual machines are simpler than operating systems, because the interfaces are less complex and 

better specified. A library OS can drastically simplify the interface that isolation depends on.R39  

There are basically two approaches to isolation: high assurance and fixing bugs. The former 

tries to build a TCB that is simple enough to be formally verified or thoroughly tested. This has 

proved easier to say than to do; the closest approximations that are widely deployed are hypervi-

sors. Everyone practices the latter for want of anything better, but decades of experience tell you 

that there are always more bugs. 
»Bitcoin proof of work. The blockchain ledger underlying the Bitcoin cryptocurrency needs a distributed consen-

sus protocol to make sure that all the copies of the ledger are the same, and the one it uses is based on proof of work, 

known as mining here. The idea is that in order to corrupt the ledger you would need to control more than half of all 

the mining capacity in the world. If mining is being done on millions of PCs, this seems impossible. Unfortunately, 

specialized hardware can do mining so much more efficiently than a general purpose machine that by 2018 a few 

miners in China in fact did control the ledger. This was not a surprise to people who had thought about using proof of 

work to control spam. Every proof of work system that I know about has this problem.R40 

»Orange Book. The DoD’s Orange Book is a famous security failure. 

3.6 Yummy 

The Mac is the first personal computer good enough to be criticized. —Alan KayQ40 

Simple ↔ rich, general ↔ specialized  [S] KISS: Keep It Simple, Stupid. Do one thing well 
 

A system is much easier to sell if it’s yummy, that is, if customers are enthusiastic about it. There 

are some good examples: 

• Apple makes consumer products that people love to use, sacrificing functionality for complete-

ness (within the overall goals for the product), coherence and elegance. The Macintosh, the 

iPod and the iPhone are well known. 

• Amazon’s mission statement is, “To be Earth’s most customer-centric company,” and they 

approach a project by “working backwards”: first write the press release, then the FAQ, then 

the customer scenarios, then the user manual.R83 So they make Prime, Kindle, Alexa and AWS. 

• People use and love the web as soon as they see it. Writing for it is less yummy, though. 

• Facebook must be yummy, judging by the number of users it has, though I don’t get it. This 

goes double for Snapchat. 

• Spreadsheet are loved (especially by accountants); VisiCalc, and later Lotus 1-2-3, are what 

made PCs take off. 

• Porsches and Corvettes are yummy. 

By contrast, Microsoft Word, Linux, SharePoint, dishwashers and the Honda Accord are good 

products, but not yummy. 
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So what? Is it important for your system to be yummy? If it’s a consumer product it certainly 

helps a lot, and it might be crucial. For an enterprise product, staying power is more important. 

Clearly there’s a lot of noise, but to cheaply boost your chances of making a yummy system, Am-

azon’s approach is best. Much more expensive, but even better, is to study the users deeply. 

3.6.1 User interfaces  

And the users exclaimed with a snarl and a taunt, “It’s just what we asked for but not what we 

want.” —AnonymousQ93 

There are only two industries that refer to their customers as “users”. —Edward TufteQ79 

First axiom of user interface design: Don’t make the user look stupid. —Alan CooperQ14 

EMACS could not have been reached by careful design, because that arrives only at goals estab-

lished at the outset. No one visualized an extensible editor. (paraphrased) —Richard StallmanQ71 

People think that good user interfaces are all about dialog boxes, animations, pretty colors and so 

forth. Two things are much more important: 

• The user model of the system: is there a way for the user to think about what the system is 

doing that makes sense, is faithful to what it actually does, and is easy to remember?  

• Completeness and coherence of the interface: can the user see clearly how to get their whole 

job done, rather than just some piece of it? Are there generic operations like copy and paste 

that tell the user what operations are possible? Do the parts look and feel like a coherent design?  

User models and coherence are hard because it’s hard to find out what the users really need. You 

can’t just ask them, because they are paid to do their jobs, not to explain them. No user would have 

asked for the iPhone. The only way is to watch them at their work or play for a long time.  

Here are some examples of good user models: 

− Files and folders on the desktop. 

− The web, with links that you click on to navigate. 

− Web search, which pretty often finds what you’re looking for. 

− Spreadsheets, which can do complex calculations without any notion of successive steps. 

And here are some less good examples: 

− Microsoft Word, with styles, sections, pages, and other things interacting confusingly. 

− The user interface to security—there’s no intelligible story about what’s going on and how 

a user should think about it. 

− System administration, where the sound idea that the user should describe the desired state 

by a few parameters is badly compromised by poor engineering of the components. 

Programmers often think that the data structures and routines they deal with are the real system, 

and the user interface just a façade. The truth is closer to the opposite: the UI is what the customers 

are buying, and it won’t bother them at all if you replace all the underlying code. The germ of truth 

in the misconception is that if the UI really is a sloppily done façade, it’s easy to replace it with 

something else that’s just as sloppy. 

It’s good to separate the internal state of a system from the details of the UI. The usual way to 

do this is called model-view-controller (MVC). The model is the internal state, the view is the way 

it’s displayed to the user, and the controller is the way the user changes the display and the model. 

In a world of communication and collaboration, often asynchronous, some form of eventual 

consistency is very important. Changes trickle in and must be integrated with what’s currently 

being displayed, and perhaps changed by the user, in a way that’s not too distracting. To be re-

sponsive a system must be able to run with only local data, and catch up later. 
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»Bravo and Gypsy. The most successful application on the Alto was the Bravo editor  (the ancestor of Microsoft 

Word), the first What You See Is What You Get editor, built to exploit the Alto’s display and processing power. When 

Charles Simonyi and I designed it, we made a deliberate decision not to work seriously on the user interface, not 

because we thought it was unimportant but because we knew it was hard and we didn’t have the resources to both 

build an editing engine and invent a new UI. We were very lucky that Larry Tesler and Tim Mott came along with 

their Gypsy system for the book editors at Ginn, a publishing company that Xerox had bought. Their first step was to 

spend several weeks watching their customers at their daily work, learning what they actually spend time on. They 

used the Bravo engine but completely replaced our UI, and they invented modeless commands and copy/paste, the 

basis of all modern UIs.R77 Later versions of Bravo adopted their work. 

»Lotus Notes. It’s nice when the user is the customer. Often, however, it’s the IT department. Why did Lotus 

Notes and Microsoft SharePoint succeed? Ordinary people find them almost unusable, but IT departments really like 

them because their customization is a good match for the skills of IT staff. And of course once IT has done some 

customization, they are hooked. Lesson: know your customer. Lotus Notes is also one of the many examples of a 

strange fact about email: for about the first 20 years, an email product that you had to pay for was bound to be junk. 

Lotus Notes, Digital All-In-One, and Microsoft Outlook are just three examples. I think the reason for this is that none 

of these systems was built to be an email client, but rather to solve the much grander problem of office automation 

(which they all failed to do). Only Outlook has succeeded in transcending its origins. Lesson: do one thing well. 

3.7 Incremental 

Being ↔ becoming  [I] How did we get here? Don’t copy, share. 

Indirect ↔ inline  [EI] Take a detour, see the world. 

Fixed ↔ evolving, monolithic ↔ extensible  [AI] The only constant is change. Make it extensible.  
  

There are three aspects to incremental:  

− small steps—otherwise it wouldn’t be incremental, 

− meaningful steps—you get something useful each time, and 

− steps proportionate to the size of the change—you don’t have to start over. 

Increments can be qualitative or quantitative. Qualitative ones are being and becoming, many 

forms of indirection, relaxation, evaluating small changes, subclassing, path names and many other 

techniques. Quantitative ones add elements without changing the structure: 

− Nodes to the Internet or a LAN (and you don’t even have to take it down). 

− Peripherals to a computer. 

− Applications to an OS installation or extensions to a browser. 

− Features to a language, often as syntactic sugar. 

3.7.1 Being and becoming 

This is an opposition: being is a map that tells you the values of the variables, becoming a log of 

the actions that got you here. Some examples: 

• A bitmap can represent an image directly, but so can a “display list” of drawing commands 

that produce the image, which generalizes to an arbitrary program, as in PostScript. 

• There are many ways to represent a store, a map from variable names called addresses to var-

iable values. Virtual memory uses page tables; an address is a virtual page number. File sys-

tems do it with a variety of schemes, among them the hierarchical index blocks and buffer 

cache of Unix version 6, the delta-based structures of copy-on-write systems, and the striped 

and redundant layout of high performance network file systems such as GFS; an address is a 

byte position in a file. Some text editors use a “piece table” (see fig. 2g); an address is a char-

acter position in the document, and a single replacement requires touching at most three pieces. 

• A log-structured file system uses the log to store the data bytes, with an index just like the one 

in an ordinary file system except that the leaf nodes are in the log. Amazon’s Aurora pushes 

this to a limit. 
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• A sequence of states, such as the frames of a video or successive versions of a file, compresses 

into a few complete states (called key frames for MPEG videos, checkpoints in other contexts) 

together with “deltas”, actions that take one state to the next. 

• Source code control systems like GitHub make it easy to access multiple versions. They usu-

ally work by storing just the edits (actions) for each new version, creating the complete text of 

a version only when it’s needed for feeding to a compiler. Content management systems for 

large sets of documents that are frequently revised also use this scheme. 

• This idea generalizes to any computation with a result that’s expensive to store. If it’s deter-

ministic it’s okay to discard old results, remember the program that produced them, and recom-

pute them transparently on demand, as in the version of map-reduce in Nectar. 

• Database systems do the opposite, remembering the result of a query in a materialized view. 

This is a version of memoizing: caching the result of a function call in case it’s needed again. 

Dynamic programming breaks down a problem into subproblems and memoizes solutions to 

avoid redoing work. 

• The standard way to recover from failures in a data storage system is to apply a redo log that 

produces the current state from a persistent state that reflects only some prefix of the actions. 

If the system has transactions, the persistent state may already contain updates from uncom-

mitted transactions, and applying an undo log backs out the effects of a transaction that aborts. 

• A more general approach to fault tolerance uses a replicated state machine, which applies the 

same log to several identical copies of the state. 

• You can think of any kind of indirection as a move from being toward becoming, because it 

introduces some amount of computing into the map’s job of returning the value of a variable. 

• Becoming gives you a history that you can audit as well as replay. Among other things, you 

can use it to keep track of the provenance of your data: what agent made each change. 

How do you find the value of a variable (that is, construct the map) from the log? Work back-

ward through the log, asking for each logged action 𝑢 how it relates to the read action 𝑟. If 𝑢 is a 

blind write 𝑚(𝑎1) ≔ 𝑥, and 𝑟 is 𝐫𝐞𝐭𝐮𝐫𝐧 𝑚(𝑎2), then either 𝑢 and 𝑟 commute (if 𝑎1 ≠ 𝑎2) or 𝑢 

determines the result 𝑥 of 𝑟 regardless of anything earlier in the log. 
»Bravo undo. How do you undo some actions to get back to a previous version 𝑣? Simply replay the log up 

through the last action that made 𝑣. We did this in Bravo, logging the user commands, although our original motivation 

was not undo but reproducing bugs, so the replay command was called bravobug. I’ve never understood why later 

systems didn’t copy this; perhaps they didn’t want to admit that they had bugs.R50 

Optimizations 

There are many variations on these ideas. To keep a log from growing indefinitely (which 

increases both the space to store it and the time to compute the current value of a variable), you 

can take a checkpoint, which is a map as of some point in the log. You can share parts that don’t 

change among multiple versions; a copy-on-write file system does this, as does a library for im-

mutable data like immutablejs. So does a multiprocessor that implements total store order: all the 

processors share the RAM, and each processor has a private write buffer holding its writes that 

have not yet made it to RAM. 

The idea behind all these optimizations is to deconstruct the map, moving it closer to a log. 

The base case that the hardware provides is a fixed-size finite array of bytes in RAM, pages on 

disk or whatever; here the variables are integers called addresses 𝐴. Call this a store 𝑆: 𝐴𝑆 → 𝑉 and 

represent it abstractly by a hierarchical structure 𝑆 = 𝐴𝑆 → ((𝑇, 𝐴𝑇) 𝐨𝐫 𝑉), where 𝐴𝑇 is an address 

in a lower level store 𝑇. Each level takes an address and either produces the desired value or returns 
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a lower level store and address. You can think of this as a way to compress a log of updates. Log 

structured memory is one example of this idea. 

To efficiently build a store 𝑆 on top of lower-level stores 𝑇1, 𝑇2, …, build an index from (ranges 

of) 𝑆 addresses [𝑎𝑆, 𝑎𝑆 + Δ] to pairs (𝑇𝑖, 𝑎𝑇𝑖
); each entry in this index is a piece. Then the value of 

𝑆(𝑎) for 𝑎𝑆 ≤ 𝑎 ≤ 𝑎𝑆 + Δ is 𝑇𝑖(𝑎𝑇 + (𝑎 − 𝑎𝑆)) (fig. 2a). A write changes the index for the range 

of addresses being written (fig. 2b). There are many data structures that can hold the index: a sorted 

array, a hash table, a balanced tree of some kind. 
   

  
 

Fig. 2a: A single range Fig. 2b: Writing “his” in place Fig. 2c: Reusing 𝑆0 in the 

write 
   

Since the 𝑇𝑖 are stores themselves, this idea works recursively. And the indexes can be partial 

overlays, with a sequence of stores 𝑆𝑛, 𝑆𝑛−1, … 𝑆0; if 𝑎 is undefined in 𝑆𝑛, … , 𝑆𝑖 then you look in 

𝑆𝑖−1 (fig. 2c, with just 𝑆1 and 𝑆0). In the extreme each 𝑆𝑖 holds just one byte and corresponds to a 

single log entry and a write of a single byte. Several successive writes can appear explicitly (fig. 

2d, with 𝑆2, 𝑆1 and 𝑆0), or you can collapse them to a single level (fig. 2e, with just 𝑆2 and 𝑆0, like 

CPU store buffers), or all the way to an index that maps every address (fig. 2f, like a copy-on-write 

file system optimized for speed, with a full index for each version). Keeping 𝑛 versions as in fig. 

2d means a worst-case cost 𝑂(𝑛) to find the value of an address. 
   

 

 
 

Fig. 2d: Two writes, three ver-

sions 

Fig. 2e: A single 

discontinuous write 
Fig. 2f: Back to a full index for 𝑆2 

   

These structures work in almost the same way for editing text, where the addresses can change. 

The difference is that you must adjust the 𝑎𝑆 addresses in the ranges that follow the edit (fig. 2g, 

corresponding to fig. 2e). When reusing 𝑆0 you don’t need the index range preceding the edit 

because those addresses don’t need to be adjusted. 
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Fig. 2g: Writing “everyone’s” in place. Compare 

fig. 2b; note that “ time” is now at 18-22 
Fig. 2h: Reusing 𝑆0 twice in the write; 

compare fig. 2c 
  

An extension of these ideas is to apply a function lazily to a range of addresses by attaching 

the function to each piece that is part of the range. To actually get the value of an address, compose 

all the functions on the path from the root to the stored value 𝑥, and apply the result to 𝑥. To 

preserve ordering give them sequence numbers. This is the way Bravo represents character and 

paragraph properties like bold and centered. 

Amazon Aurora applies many of these ideas to a cloud database, separating storage completely 

from the database code. It treats the redo records that contain database writes as the truth; when 

the database reads a page, storage reconstructs it from the redo records. If there are many of them, 

it takes a checkpoint just for that page. This drastically reduces write bandwidth, especially taking 

the cost of replication into account.R82 

Multi-version state 

The log, checkpoints, and shared index structure can make it cheap to get access to any old 

version of the state, but there are some important cases where you don’t need all this generality. 

One of them is a wait-free tree structure, which you update by constructing a new subtree and then 

splicing it in with a compare-and-swap instruction CAS(linkAddress, oldLink, newLink) that 

atomically stores newLink into linkAddress if its old contents is oldLink. This is a highly spe-

cialized form of optimistic concurrency control where the hardware directly provides the needed 

atomicity. 

Another is the use of epochs to keep a state (or some properties of it, such as the existence of 

objects) immutable until the end of an epoch. This makes it much easier for concurrent computa-

tions to work on the state. Of course the price is that any updates have to be held aside until they 

can be applied at the end of the epoch, but as long as they commute with other updates, the log is 

a good place to keep them. 

Snapshot isolation for long-running transactions keeps one extra version of the state, as of the 

transaction’s start. Usually the code does the inverse of copy-on-write, saving the old value of each 

variable that gets written for the long transaction to see. 

3.7.2 Indirection—Take a detour, see the world. 

Indirection is in opposition to inlining, but there are many other examples; a lot of them have to 

do with binding a client resource less tightly to the code or objects that implement it. Recall that 

indirection replaces the direct connection between a variable and its value, 𝑣 → 𝑥, with an indirect 

connection or link, 𝑣 → 𝑢 → 𝑥. This means that you go through intermediary 𝑢 to get to the object, 

and 𝑢 can do all kinds of things. It can multiplex 𝑥 onto some bigger object or federate it with 𝑦 

so that its own identity becomes invisible. It can encapsulate 𝑥, giving it a different interface to 

everyone’s

1,7→ T(5) 8,10→ U(1) 18,5→T(15)

But now is the time

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 0

now is everyone’s time

UT

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

S'1

S'1

S0

everyone’s

8,10→ U(1)

1 2 3 4 5 6 7 8 9 0

18,5→S0(11)

U

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

now is everyone’s time

now is the time

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

then

then



 

52 

 

make it more portable or more secure. It can virtualize 𝑥, giving it properties its creators never 

dreamt of. It can interpose between 𝑣 and 𝑥 to instrument the connection. It can act as a name for 

𝑥, decoupling 𝑥 from its clients and making it easy to switch 𝑣 to a different 𝑥.  
 

 
Fig. 3: Forms of indirection 

 

Multiplexing divides up a resource into parts. The classic example is dividing a communica-

tion channel into subchannels, either statically by time, frequency, or code division multiplexing, 

or dynamically by packet switching. An OS multiplexes files onto a disk or processes onto a CPU. 

When combined with naming, this makes it easier to move a resource. Routing does this repeat-

edly; Internet packets, email messages and web page requests (through proxies) all go through 

several indirections. 

Federation is almost the opposite, combining several resources into a single one: several disks 

into one volume, several filesystems into a bigger one by mounting, a sea of networks into the 

Internet. Load-balancing federates servers: each client sees a single resource, but there are many 

clients and the balancer spreads the load across many servers. 

Encapsulation isolates a resource from its host, as a secure enclave that keeps the resource 

safe from the host or a sandbox that keeps the host safe from an app.  

Virtualization converts a “physical” host resource into a “logical” guest one that is less limited 

(virtual memory much bigger than physical memory, missing instructions trapped and done in 

software) and easier to move (virtual machines not bound to hardware). Usually this is paired with 

multiplexing, as in an operating systems or hypervisor. It can also change the interface, for exam-

ple with a different ISA on the guest so you can run old programs (emulation) or for portability, 

as with the Java Virtual Machine (JVM). An interpreter can run the guest ISA by executing in-

structions of the host, or a compiler can translate guest programs to the host ISA either statically, 

or dynamically using JIT. Other examples: virtual hard disks, overlay networks, NAT, the C li-

brary. An adapter can handle a smaller interface change. 

Interposing splices more or less arbitrary code between a client and a service, often to log 

audit records or to collect information about performance. It’s easy to do this for a class, but it’s 

always possible, even at the level of machine instructions. Proxies and content distribution net-

works such as Akamai do this on a larger scale to distribute load and improve locality. 

Naming decouples a service such as Twitter from the physical machines that implement it. In 

that example there are several levels: DNS maps twitter.com to an IP address, and the Internet 

delivers packets with that address to a machine, possibly passing through NAT translators and 

load-balancers on the way. The mapping from file names to physical disk addresses is similar. A 

copy-on-write file system uses indirection to assemble a big thing out of pieces that are shared or 

reused; more on this here. It may make sense to cache parts of these mappings. In other cases the 

mappings are done statically, as between variable names and CPU register numbers in a compiled 

program, but then the CPU uses renaming to map register numbers dynamically to physical regis-

ters. Similarly, a style in a word processor names a group of character or paragraph properties, 

decoupling the markup from the final appearance, and a mailing list, security group or role names 

a group of people, decoupling the structure of an organization from the current membership. An 

n1

n2
obj

alias

obj1

obj2
name

renamevirtualize/interpose

obj1 obj2name n2

multiplex name group

obj1

obj3

name obj2

federation

n1

n3

name n2

obj1

obj3

obj2



 

53 

 

index makes name lookup or search cheaper. Indirection makes it easier to have aliasing: several 

different 𝑣’s that map to the same 𝑥. 

The state of a name space 𝑛𝑠 is just a partial function 𝑁𝑎𝑚𝑒 → 𝑉𝑎𝑙𝑢𝑒, and the basic operations 

are  

− 𝐿𝑜𝑜𝑘𝑢𝑝(𝑛𝑠, 𝑛) = 𝐢𝐟 𝑛 ∈  𝑛𝑠. 𝑑𝑜𝑚𝑎𝑖𝑛 𝐭𝐡𝐞𝐧 𝑛𝑠(𝑛) 𝐞𝐥𝐬𝐞 𝑛𝑜𝑡𝐷𝑒𝑓𝑖𝑛𝑒𝑑,  

− 𝑆𝑒𝑡(𝑛𝑠, 𝑛, 𝑣) = 𝑛𝑠(𝑛) ≔ 𝑣 and  

− 𝐸𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑛𝑠) = 𝑛𝑠. 𝑑𝑜𝑚𝑎𝑖𝑛 

Some name spaces lack 𝐸𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒; this can be because it’s impractical to implement, as with 

DNS, or because the need for it was overlooked. 

Certificates use indirection to establish trust. 

Sometimes indirection yields not a single result but a set from which you choose an element. 

This is useful for fault tolerance and for load-balancing. BitTorrent is a multi-level example with 

sets, where you go server → torrent file → tracker → peers/chunks. You fetch the rarest chunk 

first and become a seed for it, to balance the number of copies of each chunk. 

4 Process 

The most important single aspect of software development is to be clear about what you are trying 

to build. —Bjarne StroustrupQ73 

Systems resemble the organizations that produce them (paraphrased). —Melvin ConwayQ13 

If you can’t be a good example, then you’ll just have to be a horrible warning. —Catherine AirdQ1 

SOFTWARE IS HARD. … Good software … requires a longer attention span than other intellec-

tual tasks. —Donald KnuthQ43 

There are only two ways open to man for attaining a certain knowledge of truth: clear intuition 

and necessary deduction. —René DescartesQ17 

The acronym for process is ART: Architecture, Automation, Review, Techniques, Testing. I don’t 

have much personal experience with this; I’ve never run a team. But I have watched a lot of sys-

tems being developed, with teams that range in size from six to several thousand people. If you 

find yourself working on a team that breaks the rules in this section, it’s time to find another job. 

You can build a small system with willpower: one person keeps the whole design in their head 

and controls all the changes. You can even do without a spec. But a system that’s bigger (or lives 

for a long time) needs process. Otherwise it’s broken code and broken schedules. Process means: 

− Architecture: Design that gets done, and documented so that everyone can know about it. 

− Automation: Code analysis tools (very cheap for the errors they can catch) and build tools. 

− Review: Design review—manual, but a much cheaper way to catch errors than testing. 

− Review: Code review—manual, but still cheaper than testing. 

− Testing: Unit and component tests; stress and performance tests; end-to-end scenarios.R11 

Here’s another take on the same story, where I haven’t labeled the components from the acro-

nym, but I have italicized the ones that don’t seem to fit under it: 

− Process: have a spec; use source control, build with one command, build daily, track bugs 

in a database; fix bugs first; have a truthful schedule. 

− Coding: minimize distractions; buy the best tools; design for testing, build tests for your 

code.R73 

None of this will help, though, if the goal is badly conceived. If your system isn’t going to be 

yummy, it had better at least be useful. If it’s entering a crowded field, it needs to be a lot better 



 

54 

 

than the market leaders. If there’s a strong ecosystem of languages and applications in place, build 

on it rather than fighting it. And usually simplicity is key: if your system does one thing well, it’s 

easier to sell and easier to build. If it’s successful it will expand later. Some widely known exam-

ples: 

− Dropbox just syncs a subtree of the file system, unlike Groove and Microsoft Windows 

Live Mesh, which do a lot more very confusingly and less reliably. 

− The C language stays as close to the machine as possible. 

− HTML (the original) gives you links, text with simple formatting, and bitmap images. 

− Unix gives you files as byte strings, path names, processes linked by pipes, and the shell. 

− Internet email gives you string names rooted in the DNS as addresses, and plain text or 

HTML with extensible attachments for the contents. 

− Twitter gives you 140-character tweets that can go to millions of followers. 

The symbiotic relationship between a platform and its applications can take one of two forms: 

• Controlled: The platform only accepts applications that fit its self-image, with the goal of 

coherence and predictability for the whole ecosystem. Apple does it this way, and specialized 

systems like SQL databases or Mathematica get a similar result technically by making it much 

easier to build the kind of applications they want than to do anything else. 

• Wild and free: The platform accepts anything, and it’s up to the market to provide whatever 

coherence there is. Windows does it this way. Android is in the middle. 

Successful systems last, and you want your system to succeed, right? You don’t get to rewrite 

it from scratch; that’s not compatible with agile development and shipping frequently. And the 

shipping code reflects lots of hard-won knowledge, much of which has slipped out of the team’s 

heads (or the team has changed). This is why it pays to think through the initial design, and to put 

as much code as possible into modules with clean interfaces, especially performance-critical code. 

It also pays to clean up messy code when you need to change it; IDE tools can help. If the system 

is too slow, first measure and then work on the few modules need to be fast and predictable. Your 

system doesn’t have that structure? Then you have incurred technical debt. The solution is to 

change it until it does; those changes are expensive, but they have enduring value. Then keep it 

that way. And keep shipping.R74 
»Intel Itanium. When Intel made a big bet on a VLIW (Very Long Instruction Word) design for its 64 bit Itanium 

architecture to replace the x86, the performance predictions were apparently based on a single hand-coded inner loop, 

30 instructions long, since they didn’t have the optimizing compiler working.R18 Most real programs turned out to be 

less amenable. Usually chip designs are based on extensive simulation of real workloads. 

»Windows phone. Microsoft was early to the smartphone market, but was completely blindsided by the iPhone 

and Android, and ended up abandoning the Windows phone after spending billions of dollars. It failed because it 

didn’t have apps, and that was because a good phone came to market too late to compete with the incumbents. Earlier 

Windows phones were not good enough to catch on, and this was because they were built by a weak team. The team 

was weak for two reasons: 

• First, there was no business model; it doesn’t work to license software at $10 per phone into a market of 50 million 

phones. Apple’s business model was selling hardware, which Microsoft didn’t do at the time, and Android’s 

business model was ads, which Microsoft didn’t understand. 

• Second, Microsoft is a horizontal company. Since the cellphone market was controlled by the major carriers, this 

meant that they all had to be satisfied by the design. But carriers have no clue about design or about software. 

The only reason that AT&T allowed Apple to control the iPhone design is that they were desperate, losing badly 

to Verizon, and they were not afraid of Apple. They never would have given Microsoft this control. 

First-class engineers didn’t want to work in a team facing these two problems. 

Later it became clear that a smartphone was strategically important, and management assigned an A-team, but by 

then it was too late to create a healthy app ecosystem in competition with Apple and Android. It’s ironic that for 
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several years Microsoft refused to recognize this, since the main reason that MS-DOS and Windows succeeded was 

the carefully cultivated app ecosystem. 

5 Oppositions 

Finally, here is a brief exploration of each opposition. 

Simple ↔ rich, fine ↔ features, general ↔ specialized [S Y] 

KISS: Keep It Simple, Stupid. Do one thing well. Don’t generalize. 

Don’t hide power. Leave it to the client. Make it fast. Use brute force.  

If in doubt, leave it out. —Anonymous 

The cost of adding a feature isn’t just the time it takes to code it, [it’s the] obstacle to future 

expansion. ... Pick the features that don’t fight each other. —John CarmackQ10 

Exterminate features. —Chuck ThackerQ76 

Any intelligent fool can make things bigger and more complex. It takes a touch of genius—and a 

lot of courage—to move in the opposite direction. —E. F. SchumacherQ68 

‘Free’ features are rarely free. Any increase in generality that does not contribute to reliability, 

modularity, maintainability, and robustness should be suspected. —Boris BeizerQ5 

Systems are complicated because it’s hard work to make them simple, and because people want 

them to do many different things. You can read a lot about software bloat, the proliferation of 

features in browsers and in rich applications like Word and Excel. But each of those features has 

hundreds of thousands of users at least. The tension between keeping things simple and doing a 

lot is real, and there is no single right answer, especially for applications that interact with users. 

Still, it’s best to add features and generality slowly, because: 

− You’re assuming that you know the customers’ long-term needs, and you’re probably 

wrong. It’s hard enough to learn and meet their immediate needs. 

− It takes time to get it right, but once it’s shipped legacy customers make it hard to change. 

− More features mean more to test, and more for a bad guy to attack. 

So why do systems get overambitious? Because there are no clear boundaries,Q9 as there are with 

bridges for example, and programmers are creative and eager to tackle the next challenge. But 

features that have a lot in common can add power without adding too much complexity; it’s best 

to do this with a single mechanism that takes different parameters for the different features. So a 

search engine can index many different data types, a webpage can include text, images and video, 

or an email program can keep a calendar. 

For software whose clients are other programs, the solution is building programs on compo-

nents. A single component should do one thing, and its code should do it well and predictably so 

that clients can confidently treat it as a primitive building block; beware of components that don’t 

have these properties. With a good set of such components a client can do a lot without writing 

much code, relying on them to take care of most performance issues. Some examples: key-value 

stores; Unix shell programming on top of primitives like diff, sort, grep; mathematics systems 

like Mathematica and Julia. Building one of these components is a lot of work. It’s worth doing if 

the component is critical for your system, or if it’s part of a platform like an operating system or a 

browser where it will have lots of clients.  

The opposite of doing one thing well is doing a lot of things badly. Assuming reasonably com-

petent engineering, this usually happens because of excessive aspirations. Some striking examples: 
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• The original Arpanet spec mandated that a packet handed to the network should be delivered 

reliably (rather than the best-efforts delivery of the Internet, which is free to drop packets when 

the going gets tough). This turned out to make the network much slower than expected. 

• Many systems that rely on remote procedure calls have run into trouble because RPCs look 

like ordinary procedure calls, but in fact have very unpredictable latency and can fail com-

pletely when the network or the target system fails. 
• »Air traffic control. The FAA’s air traffic control modernization system, the Advanced Automation System, be-

gun in 1981, was abandoned a decade later. The leading causes of this failure were a wildly unreasonable require-

ment for 99.99999% reliability (3 seconds per year of downtime) and the assumption that the contractor was an 

enemy to be regarded with suspicion, rather than a partner.R79 

• »Orange Book. The DoD’s Orange Book program to deploy multilevel secure systems failed miserably. Vendors 

developed several such systems, but essentially no one in the DoD bought them in spite of formal requirements 

to do so, because they were more expensive, slower, and less functional than alternative, less secure systems. It 

was much more expedient to get a waiver from the requirement.R52 

Perfect ↔ adequate, exact ↔ tolerant [S T D] —Just good enough. Flaky, springy parts. 

Worse is better. —Richard GabrielQ29 

The best is the enemy of the good. —VoltaireQ82 

It’s impossible to make anything foolproof, because fools are so ingenious. —Anonymous 

This is not about whether there is a precise spec, but about how close the answer needs to be to an 

ideal result. “Close” can take different forms: a tolerance or a probability of being right, results 

that may just be wrong in some difficult cases, or a system that behaves well as long as its envi-

ronment does. Some examples: 

Tolerance or probability: 

− Available 99.5% of the time (down no more than one hour per week), rather than 100%. 

− Response time less than 200 ms with 99% probability, rather than always. 

− A 98% hit rate in the cache on the Spec benchmark, rather than 100%. 

− A schedule with completion time within 10% of optimal, rather than optimal. 

Such properties usually come from a randomized algorithm, or as statistics derived from measuring 

a running system.  

Wrong in difficult cases: 

− Words are hyphenated if they appear in a hyphenation dictionary, rather than always. 

− Changes to DNS may not appear immediately at all servers, because it uses eventual con-

sistency for high availability. 

− A database system may fail, but it recovers without losing any committed work. 

− An operating system usually just tries to avoid disaster, rather than using the hardware 

resources optimally. 

Friendly environment. Every system at least depends on its host to execute its instructions 

correctly, but often the system can be simpler or cheaper by assuming more about its environment: 

− Data is not lost as long as the power doesn’t fail. 

− Your files are available if you have a connection to the Internet. 

− Faces are recognized reliably if the lighting is good enough. 

− The routine works if its precondition is satisfied; otherwise all bets are off. 

The environment is not just the host you depend on; it’s also your clients. If they are not too de-

manding, your system may be adequate even if it doesn’t satisfy an ideal spec. 
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Spec ↔ code [S] 

Keep secrets. Good fences make good neighbors. Free the implementer.  

Embrace nondeterminism. Abstractions are leaky.  

Don’t tie the hands of the implementer. —Martin RinardQ63 

Writing is nature’s way of letting you know how sloppy your thinking is. —Richard GuindonQ31 

 

We’re much better at building software systems than we are at predicting what they will do. —

Alan KayQ38 

A spec tells you what a system is supposed to do, and the code tells you how. Both are described 

by actions; how do they differ? A spec constrains the visible behavior of the system by saying 

what behaviors (sequences of steps) are acceptable or required. A spec is not a program, and the 

right language for writing it is either English (if it’s not time to be precise) or mathematics.  

The code is executable, but it still may not be a program you can run; it may be an algorithm 

such as Quicksort or Paxos, described precisely in pseudocode that abstracts from the details of 

how the machine represents and acts on data. Code is less likely to be nondeterministic, except 

that concurrency makes the ordering of actions in different threads nondeterministic. At the top 

level a concurrent program keeps freely choosing a ready thread’s action to run: 

𝐰𝐡𝐢𝐥𝐞 𝑡𝑟𝑢𝑒 𝐝𝐨 𝐜𝐡𝐨𝐨𝐬𝐞 𝑖 𝐬𝐮𝐜𝐡𝐭𝐡𝐚𝐭 𝑡ℎ𝑟𝑒𝑎𝑑𝑖 is ready;  𝑡ℎ𝑟𝑒𝑎𝑑𝑖. 𝑝𝑐. 𝑎𝑐𝑡𝑖𝑜𝑛 𝐞𝐧𝐝 

Immutable ↔ append-only ↔ mutable [S] —Make it stay put. 

Data is much easier to deal with if it doesn’t change: 

− Concurrency is easier: the data doesn’t move around under you.  

− Caching data (or functions of it) is easier: the cache entry can’t become invalid.  

− Reasoning is easier: an expression always has the same value, as it does in mathematics. 

Functional programming is simple and reliable because the variables are immutable. 

So it’s a no-brainer? No, because if you want to change something (say, your sister’s salary) 

you have to make a copy of the entire HR database, and if it’s big that’s expensive. The only way 

around this in general is to keep multiple versions, moving from the being to the becoming view 

of the state as a library the way immutablejs does; if you want the value of a variable, you have 

to specify the version. Usually you optimize the data structure so that this is fast for the most recent 

version. Sometimes it’s enough to make the data append-only, writing only to the end of a se-

quence; the length of the sequence determines the version. Log-structured file systems do this. 

An important special case is to keep changes in a buffer, consult it on every read, and merge it 

into the main data structure when it’s convenient (often at the end of an epoch) or when a transac-

tion commits (with OCC). CPU store buffers do this, and the Bw-tree elaborates the idea by keep-

ing the buffers local to the deepest tree node being changed, out of the way of most reads.R53 
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Declarative ↔ functional ↔ imperative [S E] —Say what you want. Make it atomic. 

The many styles of programming can be grouped into three broad classes: declarative, functional 

and imperative (which has object-oriented as a subclass). These three styles vary along the axis of 

expressing detail. The other important axis is modularity: how easy it is to change one part of the 

program without affecting the rest. The essential idea for modularity is abstraction. Object-oriented 

programming is one way to code abstraction. 
   

   
Fig. 1: Styles of programming  

   

An imperative program (for example, one written in Java or C) has a sequence of steps and a 

program counter, as well as named variables that the program can read or write. Interesting pro-

grams take lots of steps thanks to loops or recursion. If big chunks are atomic (can be viewed as a 

single step), the code is easier to understand. Most computing hardware is imperative. 

A functional program (perhaps written in pure Lisp or in the functional subset of ML or 

Haskell) has function calls instead of steps, and immutable values bound to function parameters 

or returned from the calls instead of state variables; it also has implicit state that keeps track of 

how the nested function calls are evaluated. Interesting programs have recursive functions, so they 

can make lots of calls.  Real languages aren’t purely functional because when the values are big 

and changes are small, it’s hard to map a functional program efficiently to the hardware’s step-by-

step execution; the programmer can guide this process by writing part of the program imperatively. 

Inversely, you can embed immutable data structures in an imperative language, and a library like 

immutablejs can make this efficient using the techniques of becoming. The most widely used pro-

gramming languages are functional: spreadsheets and database query systems. However, they are 

special-purpose and have escapes to imperative code. Single-assignment imperative programs are 

also functional. 
»Haiku. Jim Morris explained the problem with functional languages by analogy with haiku and karate. All three 

are “unnatural”, like all disciplines; that’s not the issue. Haiku have great aesthetic appeal, but they need an apprecia-

tive audience. Karate will work in a barroom brawl even if no one else knows it. Programmers care about results.R57 

I agreed to write a piece for Alan Kay’s 70th birthday celebrationR46, and recklessly provided 

the title “Declarative Programming”; this seemed safe, since everyone knows that declarative is 

good. When it came time to write the paper I realized that I didn’t actually know what declarative 

programming is, and searching the literature didn’t help much. I finally concluded that a program 

is declarative if it has few steps; this makes it easier to understand (as long as each step is under-

standable), since people are bad at understanding long sequences of steps. Often it’s also easier to 

optimize, since it doesn’t commit to the sequence of steps the machine should take.  

Powerful primitives help to make a program declarative; for example, code to compute a tran-

sitive closure has lots of steps, but a transitive closure primitive is a single easy step. The SQL 

query language for relational databases has many such primitives, as does HTML as an abstract 

description of a desired webpage.  

Another way is to write the code as a constrained optimization problem such as a linear pro-

gram, or as the solution to an equation: 𝑥 𝐬𝐮𝐜𝐡𝐭𝐡𝐚𝐭 𝑝(𝑥). For example, the median of a set 𝑠 of 

odd size is  

imperative
state, loops

functional
no state, recursion

object-

oriented
hidden state

declarative
few steps
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𝑥 𝐬𝐮𝐜𝐡𝐭𝐡𝐚𝐭 𝑥 ∈ 𝑠 𝐚𝐧𝐝 |{𝑦 ∈ 𝑠 | 𝑦 < 𝑥}| = |{𝑦 ∈ 𝑠 | 𝑦 > 𝑥}| 

Program synthesis 

It’s obvious how to run a declarative program written with powerful primitives; the only big 

question is how much to optimize. SQL query optimizers make it clear that you can get good 

performance for many workloads. It’s less clear how to get a reasonably efficient executable pro-

gram from an equation or optimization; exhaustive search for a solution works if the solution space 

is finite, but it’s too slow. Program synthesis is sometimes the answer; for imperative or functional 

programs it’s called inductive programming, and in practice usually requires exhaustive search in 

some space of possible programs, checking each one against the declarative spec. This works when 

there’s a good program that’s not too long, so it’s important to have powerful but efficient primi-

tives that keep the programs short. The spec can be extremely partial, perhaps just a few input-

output examples as in Excel’s FlashFill feature.R35 

A different kind of program synthesis is machine learning, in which the program is a function 

expressed as a multilevel neural net, and learning consists of adjusting the weights to bring the 

output as close as possible to the training data. This works well surprisingly often, but it doesn’t 

give any guarantees about the results. 

The paradigm for program synthesis is “signal + search = program”. The signal is some sort of 

partial spec such as I/O examples in FlashFill, demonstrations of desired behavior, natural lan-

guage, or training data. The search is optimizing over some sort of DSL (including a neural net), 

guided by the partial spec, past successes on similar problems, user hints about how to subdivide 

the problem, or inverting a probabilistic program that generates the training data to recover the 

model that drives it, as in Alexandria.R87 If the program is differentiable, gradient descent can make 

the search much faster. 

Precise ↔ approximate software [T D] —Get it right. Make it cool. Shipping is a feature.Q54 

Unless in communicating with [a computer] one says exactly what one means, trouble is bound to 

result. —Alan TuringQ81 

Vaguely right is better than precisely wrong. —Leonard LodishQ47 

There’s no sense being exact about something if you don’t even know what you’re talking about. 

—John von NeumannQ84 

Broadly speaking, there are two kinds of software, precise and approximate, with the contrasting 

goals “Get it right” and “Get it soon and make it cool”.  

Precise software has a specification, even if it’s not written down very precisely, and the cus-

tomer is unhappy if the software doesn’t satisfy its spec. Obviously software for controlling air-

planes or nuclear reactors is precise, but so are word processors, spreadsheets, and software for 

handling money. The spec might be nondeterministic, but that doesn’t mean that it’s imprecise. 

Approximate software, on the other hand, has a very loose spec, or none at all; the slogan is 

“Good enough.” The packet-switched Internet, web search, retail shopping, face recognition, and 

social media are approximate. Strictly speaking, this kind of software does have a spec, a weak 

one, but the customers don’t think in those terms. 

Approximate software is not better or worse than precise, but they are very different, and it’s 

important to know which kind you are writing. If you wrongly think it’s precise, you’ll do extra 

work that the customers won’t value, and it will take too long. If you wrongly think it’s approxi-

mate, the customers will be angry when code doesn’t satisfy the (unwritten) spec they counted on. 
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Dynamic ↔ static [E A] —Stay loose. Pin it down. Shed load. Split resources.  

A computer is infinitely flexible, but a program is not; both what it does (the spec) and how (the 

code) are more specialized. Yet the code can be more or less flexible, more or less able to adapt to 

changes in itself or in the environment. Flexibility is costly; code that takes advantage of things 

that stay constant is more efficient, and static checking automatically proves theorems about your 

code before you ship it. To some extent you can have both with just-in-time (JIT): make a static 

system based on the current code and environment, and remake it if there are changes. This per-

forms like retry: well if changes are rare.  

There are (at least) four aspects of this opposition: interpret vs. compile, indirect vs. in-line, 

scalable vs. fixed, and online vs. preplanned resource allocation. Another name for it is late vs. 

early binding. 

Compiling commits the code to running on a host that is usually less flexible and closer to the 

hardware. The compiler chooses how data is represented, and often it infers properties of the code 

(examples: at this point 𝑣 = 3 always; the address of 𝑎[𝑖, 𝑗] increases by 𝑛 each time around this 

loop) and uses them to optimize. It may do trace scheduling, using information from past runs or 

heuristics about common code patterns to predict code properties (in this JavaScript program, 𝑖 is 

usually an integer).R31 These predictions must be treated as hints and checked at runtime, with 

fallback to slower code when they are wrong. Together with JIT, trace scheduling can adapt a very 

general program to run efficiently in common cases. 

A different aspect of the dynamic-static opposition is resource allocation, and scheduling in 

particular. CPUs and distributed systems can allocate resources online to a sequence of tasks that’s 

not known in advance (using caches, branch prediction, asynchronous concurrency, etc.), but if 

you know the sequence you can do this work just once. Examples: resources reserved for a real-

time application; the graphics pipeline of a GPU; a systolic array in which work items pass through 

a sequence of processors, taking the same amount of time in each one with no queuing.R43 Storage 

allocation is similar; you can do it dynamically, but static allocation (splitting up the storage) is 

cheaper if you know the sizes in advance or can guess them well. And when it fails, it’s much 

easier to figure out why. 

If scheduling is dynamic, continuity (in the form of many small jobs of about the same size) 

makes it work better, especially when the resources are not identical and it’s hard to predict how 

long a job will take. Individual scheduling decisions are less critical, and stragglers hurt the overall 

performance less. Examples: the Cilk parallel computing system, virtual nodes for DHTs, parallel 

sorting. Dynamic allocation can have a surprisingly long tail of bad performance, even if it has 

good average performance.R24 

Being dynamic is an aspect of adaptability, and scaling and extensibility are two other ways in 

which systems can be dynamic. 

Indirect ↔ inline [E I] —Take a detour, see the world. 

Any problem in computing can be solved by another level of indirection. —David WheelerQ85 

Any performance problem can be solved by removing a level of indirection. —M. HaertelQ32 

Indirection is a special case of abstraction that replaces the direct connection between a variable 

and its value, 𝑣 → 𝑥, with an indirect connection 𝑣 → 𝑢 → 𝑥, often called a link; the idea is that 

ordinary lookups to find the value of 𝑣 don’t see 𝑢, so that clients of 𝑣 don’t see the indirection. 

You can change the value of 𝑣 by changing 𝑢, without changing 𝑥. Often 𝑢 is some sort of service, 

for example the code of a function, reached indirectly by jumping to the code for the function, or 
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even more indirectly by obtaining the address of the code from a “virtual function table” if the 

function is a method of a class; this gives the most flexibility, since you can run arbitrary code in 

the service. The link doesn’t have to be explicit; it could be an overlay that maps only some of the 

possible 𝑣’s, like a TLB or a cache; the code for this uses a hash table or content addressable 

memory to detect the overlaid 𝑣’s. Often indirection is lazy: if you never need the variable’s value 

you don’t pay for it. Simple examples of indirection are the hard links, indirect blocks, symbolic 

links and mount points in a file system. Virtualization is an important subset of indirection.  

Inlining replaces a variable 𝑣 with its value 𝑥. This saves the cost of looking up 𝑣, and the 

code can exploit knowing 𝑥. For example, if 𝑥 = 3 then 𝑥 + 1 = 4; this saves an addition at 

runtime. If 𝑣 is a function you can inline its code, avoiding the control transfer and argument 

passing, and now you can specialize to this particular argument. But inlining takes more space and 

makes it hard to change the function’s code. The tradeoff is the usual one between dynamic and 

static: flexibility versus being able to do static analysis and optimization; doing it dynamically is 

a special case of JIT. Inlining generalizes to currying, which replaces 𝑓(𝑥, 𝑦) with 𝑓(𝑥)(𝑦). At 

first this looks like a step backward because making a new function 𝑓(𝑥) is costly, but it saves the 

cost of passing the argument 𝑥, and this can pay if there are many calls to 𝑓 with 𝑥 as the first 

argument, for example in a loop. Also, the code of 𝑓(𝑥) can exploit the known value of 𝑥; this is 

program specialization. 

Another way to look at it is that inlining is evaluating a function composition: 𝑣 → 𝑢 composed 

with 𝑢 → 𝑥 yields 𝑣 → 𝑥. Saving the composition is a form of caching; it’s often called snapping 

the link. To make it work you need a way to get control when following an unsnapped link; this is 

easiest when it’s a control link (a jump), but it could be something that traps such as a page table 

entry. Examples: TLBs, shadow page tables, dynamic linking, JIT compiling of interpreted code, 

content distribution networks. The snapped link could be a hint that has to be checked, such as the 

compiled code address for a method call in Smalltalk, where the check is that this code was used 

for the object’s class last time it was called.R25 To invalidate the snapped link, use the usual tech-

niques for caches. Soft state in networking is similar. 

Time ↔ space [E] —Cache answers. Keep it close. 

Time is nature’s way of keeping everything from happening at once. —Ray CummingsQ16 

There’s often a tradeoff between execution time and storage space: precompute or save something 

to speed up a later computation. The reasons are to do less total work (a form of speculation) or to 

reduce latency. Some examples: 

• An index into a set of data items makes it much faster to retrieve the items that have some 

properties, but the size of the index grows linearly with the size of the set and the typical 

number of properties. The Google search engine is an extreme example; it indexes hundreds 

of billions of webpages and took up more than 1017 bytes in April 2019.R33 

• Caching the result of a function call (memoizing) saves time if the call is repeated, but takes 

space for the cache. 

• Precomputing a “rainbow table” of size 𝑅 speeds up the search to invert a hashed password 

and find its plaintext from 𝑁 (the number of possible passwords) to 𝑁/𝑅 (but takes time 𝑁 as 

well).R61 Many other algorithms run faster with precomputation. 

• For example, binary space partitioning speeds up graphics rendering by precomputing infor-

mation about the ordering of overlapping polygons in a scene.R59 

On the other hand, getting data from storage needs communication, which can’t be faster than 

the speed of light, so the latency to access 𝑛 bits grows at least like √𝑛
3

 in our 3-D world. Put 
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another way, fast computing needs locality, and it’s easier to make small things local, so saving 

space can also save time. To get locality as a system scales up, you have to shard: divide the state 

and the work into independent tasks. 

Lazy ↔ eager ↔ speculative [E] —Put it off. Take a flyer. 

When you come to a fork in the road, take it. —Fort Gibson New EraQ92 

The common theme is to improve efficiency by reordering work. The base case is eager execution, 

which does work just when the sequential flow of the program demands it; this is the simplest to 

program. Lazy execution defers work until it must be done to produce an output, gambling that it 

will never be needed. It can pay off in lower latency because it first does the work that produces 

output, and in less work if the output turns out not to be needed at all. Laziness has been studied 

mainly in programming languages such as Haskell, but it’s used much more widely in systems.  

Indirection is lazy as well as dynamic—if you never need the value of the name, you never pay 

the cost of following the link. Other examples are write buffers, which defer writes from a cache 

to its backing store; redo logging, which replays the log only after a crash; eventual consistency, 

which applies updates lazily and in an arbitrary order until there’s a need for a consistent result; 

and computing in the background, using resources that would otherwise be idle. Often representing 

the state as becoming is lazy. 

If a function is a predicate (the result is true or false) then it defines a set: the values for 

which it returns true. You can list the members of the set explicitly (an extensional definition), or 

represent the predicate as code that computes the set (an intensional definition). It’s the difference 

between “{Cain, Abel, Seth}” and “the children of Adam and Eve.” The code for a predicate is 

often a pattern (as in grep) or a query (as in SQL). To avoid storing the set, package the code in 

an iterator, a routine that returns an element of the set each time it’s called, or that passes each 

element of the set to a client function. 

More generally, it’s lazy to represent a function by code rather than as a set of ordered pairs. 

Of course if the set is infinite then code is the only option. Pushing this idea farther, to defer the 

execution of some code, wrap it in a function and don’t invoke it until the result is needed.  

Sometimes lazy execution postpones work until it’s convenient, rather than necessary; this is 

a form of batching. Read-copy-update and generational garbage collection use the end of an epoch 

to trigger execution. B-link trees and write buffers accumulate small changes until there are enough 

of them to make cleanup worthwhile. Sloppy counters keep a per-core fragment of a counter to 

make incrementing fast, and use a demand for a true total value to trigger consolidation; if all you 

need is a monotonic counter you can even read the total without blocking any incrementors. 

A twist on laziness is work stealing, where one agent takes up work from another agent’s 

queue. Usually the agent is a thread, as in the Cilk system for fine-grained concurrency or in help-

ers for wait-free data structures, but it might be recovery code processing a redo log after a crash. 

This idea also works for cleanup operations that don’t change the abstract state: rather than doing 

the cleanup in the background, a client that notices a need for it can just do it. 

Speculative execution anticipates work in advance, gambling that it will be useful. This makes 

sense if you have resources that are otherwise idle, or to reduce latency in the future. Prediction is 

the most common form of speculation, for example when a storage system prefetches data from 

memory to cache or from disk to memory, or when a CPU predicts which way a branch instruction 

will go. Caching speculates that an entry will be used before it has to be replaced. Exponential 

backoff in networks and optimistic concurrency control in databases speculate that there will be 

little contention. Precomputing speculates that there will be enough later tasks that will run faster. 
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If the gamble fails and the result isn’t needed, the speculative work is wasted. The result might 

also be stale: no longer valid because some inputs have changed since it was computed. If you 

detect this at the time of the change, you can discard the speculative result or update it. The other 

possibility is to treat it as a hint and check that it’s still valid before using it. Memoizing a function 

call is the same idea. 

Usually laziness or speculation keeps the program’s results unchanged. This is simplest if the 

parts being reordered commute. They do in a functional program, but code with side effects may 

not. Sometimes, as with eventual consistency, you settle for sloppy results. 

Centralized ↔ distributed, share ↔ copy [E D] —Do it again. Do it twice. Find consensus. 

A distributed system is one in which the failure of a computer you didn’t even know existed can 

render your own computer unusable. —Leslie LamportQ45 

If you have a choice, it’s better to be centralized. Distributed systems are more complicated be-

cause they have inherent concurrency and partial failures, and they have to pay for communication. 

But they are essential for serious fault tolerance, and for scaling beyond what you can get in a 

single box. A well-engineered distributed system has much better availability and much more total 

performance than any centralized system that is likely to be built, because it can be built out of 

commodity components. Any big or highly fault-tolerant centralized system will have a small mar-

ket; witness supercomputers, and fault-tolerant systems since the decline of Tandem and Stratus. 

Hence it will be expensive—there are only a few sales to pay for all the engineering. 

A distributed system needs fault tolerance because it has to deal with partial failures; you don’t 

want to crash the whole system when one component fails, and in a big distributed system there 

are always some failed parts. This means that there has to be redundancy: retry for communication 

and replication for the data. For the latter the essential primitive is fault-tolerant consensus. But 

even a very large system can be centrally managed (in a fault-tolerant way) because management 

doesn’t require that much computing or data; this is how large cloud systems like AWS and Azure 

and large search engines like Google and Bing work. The jargon for this originated in networking: 

separating the control plane from the data plane. Sometimes politics prevents centralization, as in 

the Internet. 

Fixed ↔ evolving, monolithic ↔ extensible [A I] 

The only constant is change. Make it extensible. Flaky, springy parts. 

No matter how far down the wrong road you have gone, turn back now. —Turkish proverb 

Always design your program as a member of a whole family of programs, including those that are 

likely to succeed it. —Edsger DijkstraQ20 

It’s cheaper to replace software than to change it. —Phil NechesQ53 

Success is never final. —George Starr WhiteQ86 

It is a bad plan that admits of no modification. —Publilius SyrusQ74 

If you want truly to understand something, try to change it. —Kurt LewinQ46 

The classic way to develop software, known as the waterfall model, is sequential: figure out what’s 

needed (requirements), design something that meets the needs, write code to implement the design, 

test it, and deploy it. This implicitly assumes (among other things) that the needs are known at the 

outset and don’t change, but this is seldom true. Often the customer’s needs are unclear, and suc-

cessful systems tend to live for a long time, during which the needs change. Just thinking hard is 

usually not enough to make unclear needs clear, because you aren’t smart enough. It’s better build 
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a prototype, try it out, and improve it. Agile and spiral models for software development do this, 

trying to converge on a system that does what the customers want by taking fairly small steps, 

either down a gradient toward the goal or repeating the sequence of the waterfall steps.R30 

A successful system must do more—it must evolve, because needs change as people see ways 

to make it do more, as the number of users grows, as the underlying technology changes, and as it 

interoperates with other systems that perhaps didn’t even exist originally. Evolution requires mod-

ularity, so that you can change parts of the system without having to rebuild it completely. Inter-

faces allow clients and code to evolve independently. These are aspects of divide and conquer. 

Evolution is easier with extensibility, a well-defined way to add certain kinds of functionality. 

This is a special form of modularity, and it needs a lot of care to keep from exposing secrets of the 

code that you might want to change. Examples: 

• You can add new kinds of tags to HTML, even very complicated ones, and old implementa-

tions will simply ignore them.  

• Most operating systems can incorporate any number of I/O drivers that know about the details 

of a particular scanner, printer, disk, or network.  

• Inheritance and overloading in programming languages like Smalltalk and Python make it con-

venient (if dangerous) to add functionality to an existing abstraction.  

• Defining policy for a system specializes its mechanism for particular needs.  

• Backward compatible changes enable new things without breaking old ones. The evolution of 

ethernet, C++ and HTML show how far this can be taken. It’s much easier if interfaces and 

persistent data have explicit version identifiers that are always visible. 

• A platform that supports applications lets you build whole new things on top of it. 

Another way to extend a component is to let the client pass in a (suitably constrained) program 

as an argument; for example, a search engine can take a parser for an unfamiliar format, and an 

SQL query can take a user-defined function as a selection predicate. You can do this without pre-

planning by patching, but it’s tricky to maintain all the code’s invariants. 

Evolution ↔ revolution —Stay calm. Seize the moment. Ride the curve. 

Usually things change slowly, by small improvements on what’s there already, and dramatic in-

novations fail; expensive examples are phase change memory, photographic data storage, the Intel 

iAPX 432 and Itanium, the DEC Alpha, Windows Vista. But sometimes the environment changes 

enough that a big change can succeed, and this happens more often in computing than in most 

fields since Moore’s Law means that the cost of computing drops fast. The result has been a “vir-

tuous cycle” in which cheaper computing opens new applications, expands the market dramatically 

and justifies more investment to make it cheaper still. Obvious examples are personal computers, 

the Internet, and the web. Very few companies have ridden these waves and thrived in computing 

for more than a couple of decades. 

Often people have an idea that is new to them, but was tried 30 years ago and failed. Things 

are different now, so perhaps it can succeed, but you need to understand why it failed earlier. 

Policy ↔ mechanism [A] —It’s OK to change your mind. 

When the facts change, I change my mind. What do you do, sir? —Paul SamuelsonQ66 

The mechanism is what the system can do, determined by its specs and code, and the policy is 

what the system should do: the control system for the mechanism. Policy is different for each 

installation, typically changes much faster than the code, and is set by administrators rather than 
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developers. It should give them as much control over the mechanism as possible, bearing in mind 

that policy is more likely to be wrong because most administrators are not good programmers. 

The most elaborate example of the distinction is in security, where the mechanism is access 

control and the policy is what principals should have access to what resources. Other examples: 

policy establishes quotas, says how much replication there should be, or decides what software 

updates should be applied. Policy is an aspect of system configuration, which also includes the 

hardware and software elements that make up the system and the way they are interconnected. 

Historically all these things were managed by hand, but cloud computing has forced automation. 

Application resources are constants that sit between policy and mechanism: fonts, colors, 

search paths etc. You can think of them as part of the code that you can change without changing 

any of the executable instructions, or as parameters to the code supplied when it is installed or 

updated. 

Consistent ↔ available ↔ partition-tolerant [D] —Safety first. Always ready.  Good enough. 

If you want a system to be consistent (that is, all the parts of it see the same state) and highly 

available (very unlikely to fail, because it’s replicated in different places), then the replicas need 

to communicate so that all the parts can see all the changes. But if the replicas are partitioned then 

they can’t communicate. So you can’t have all three; this is the CAP “theorem”. The way to get 

around it in practice is to make partitioning very unlikely. Because that’s expensive, usually you 

have to choose, most often to sacrifice consistency in the hope that clients will notice inconsistency 

less than unavailability. A partial mitigation is leases, which are locks that time out, using the 

passage of real time for uninterruptible communication. If you spend enough money on the net-

work, as major cloud providers do, you can make partitioning so unlikely that it’s negligible com-

pared to other failures that make a system unavailable.R12 

Generate ↔ check —Trust but verify. 

A problem is in complexity class NP if finding a solution is hard (takes work 𝑂(2𝑛)), but checking 

it is easy (work 𝑂(𝑛𝑘)). The most common place for a check is in an assert, but there are many 

others, mostly from the domain of program verification: 

• Proof-carrying code exploits the fact that it’s much easier to check a proof than to generate it. 

If a client wants to safely run some code from an untrusted source, the source can provide a 

proof that the code satisfies its spec, and the client only needs to check the proof. Pushing this 

further, the code might carry only enough hints about how to generate the proof that it’s cheap 

for the client to do so, for example, the loop invariants. Or write the code in a stylized way 

that’s easy for the client to check, as in the Informer. 

• Validation just proves that a result is correct, not the program that finds it; for example, a 

complicated sorting routine, but a check that the result is ordered. 

• Translation validation, instead of verifying that a compiler is correct, just checks that the be-

havior of the compiled code is a subset of the behavior of the source code.R70 

The general idea, however, is much broader: keep a hint that might be wrong, but is easy to check. 

This is a narrower meaning of “hints” than in the title of this paper, but there are many examples 

of it throughout. The end-to-end principle is closely related. 

Persistent ↔ volatile [D] —Don’t forget. Start clean. 

Persistent state remains the same in spite of failures, unless code changes it explicitly; the canon-

ical examples are file systems and databases. A crash resets volatile state such as RAM; more 
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generally, a failure may change it or a bug may corrupt it (crashes and failures are events that the 

code does not control). Persistent state is more expensive because  

• fault tolerance requires redundancy,  

• physical storage that survives power failures is slow (though only 10-100 times slower when 

it’s flash memory, rather than 10,000 times slower when it’s disk), and  

• to ensure that state survives bugs and changes in the code, you must represent it conservatively 

rather than efficiently.  

But a dependable system almost always needs persistent state. 

There are two ways to make complex state persistent: checkpoints and transactions. A check-

point writes the volatile state to persistent storage, preferably using a simple representation; an 

example is saving a document from an editor to a file. This is fairly expensive. In contrast, a trans-

action makes state changes, often just a few, and then commits. The system maintains a volatile 

cache of the state, uses a persistent redo log to make sure that the changes are not lost, and takes 

checkpoints opportunistically to keep the log short. 

A simpler form of volatile state is a write-through cache, which just contains a subset of some 

more persistent state. Discarding the cache may slow down the program, but won’t change its 

meaning. These caches speed up reads, but don’t help with writes. A related technique is soft state, 

an unreliable cache of hints that time out if not refreshed. 

If data changes frequently but needs to persist for months or years, it must have a very simple 

form. Otherwise the unavoidable bugs in the code that is changing it will corrupt the data. Two 

such forms have stood the test of time: a text file without complicated internal structure, and a 

relational database with a simple schema. If the text file gets messed up, you can edit it with ed. 

The schema keeps the database from being messed up too badly. A running program can read one 

of these simple data structures and make more complicated volatile state such as an index, a com-

plicated data structure and one that you might want to change, but anything that needs to last should 

be expressed in text or tuples. 
»Persistent objects. In 1981 I heard about a novel idea: extend the new operator to create a persistent object that 

works just like an ordinary object, with updatable links to other persistent objects. Of course you need transactions so 

that a change involving several objects can’t be interrupted in the middle by a crash. I thought it wouldn’t work, 

because even if every bit is preserved, millions of objects connected by arbitrary links that are created over many 

months by code that is changing will end up as a rubble of objects, rather than anything useful. And so it has proved. 

Being ↔ becoming [I] — How did we get here? Don’t copy, share. 

There are two ways to represent the state of a system: 

− Being: the values of the variables—a map 𝑣 → 𝑥 

− Becoming: a sequence of actions that gets the state to where it is—a log of actions. 

Different operations are efficient in different representations. If you’re only interested in a single 

point in time, you want the map. If you care about several different versions (to recover the current 

state from a checkpoint, undo some actions, or merge several versions), you want the log. There 

are ways to convert one representation into the other, and points between the extremes: applying 

the actions gets you the values, a diff produces a delta (a sequence of actions that gets you from 

one state to another), checkpoints shorten the log. Ordinary programs use being; fault-tolerant pro-

grams use both, getting redundancy by writing the actions into a log and replaying the log from a 

checkpoint after a crash. More on this here. 

Another way to look at it is that becoming (the log) is fundamental: after all, that’s how you 

got here. Being (the values of the variables) is just a cache. Becoming is also the essence of lazy 

computing: you don’t run the program until you really need the result. 
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Iterative ↔ recursive, array ↔ tree [I] —Treat the part like the whole. 

To iterate is human, to recurse divine. —Peter DeutschQ18 

There are few things known about systems design, but the basic principle of recursive design is: 

make the parts of the same power as the whole. —Bob BartonQ4 

Iteration and recursion are both Turing-complete. You can write an iteration recursively using tail-

recursion (which is easy: the last step in the loop is the only recursive call), and you can write a 

recursion iteratively using a data structure to simulate a call stack (which is a pain). A simple 

example is these two versions of factorial:  

Iteration: 𝑥 ≔ 𝑛; 𝑓 ≔ 1; 𝐰𝐡𝐢𝐥𝐞 𝑥 > 1 𝐝𝐨 𝑓 ≔ 𝑥 ∗ 𝑓; 𝑥 ≔ 𝑥 − 1 𝐞𝐧𝐝  

Recursion: 𝑓(𝑥) ≡ 𝐢𝐟 𝑥 = 1 𝐭𝐡𝐞𝐧 1 𝐞𝐥𝐬𝐞 𝑥 ∗ 𝑓(𝑥 − 1)  

But iteration is more natural when there’s a list or array of unstructured items to process, and 

recursion is more natural when the items have subparts, especially when the parts can be as general 

as the whole. 

Thus recursion is what you want to process a tree (or a graph, taking care to visit each node 

only once) where the description of the structure is itself recursive. You don’t need recursion to 

treat different items differently, though, because you can make them into objects that carry their 

own methods. Here are examples that illustrate both points: 

• A hierarchical file system can have different code at each directory node. Some nodes can be 

local, others on the Internet, yet others the result of a search: bwl/docs/?author=smith.R32 

• Internet routing is hierarchical, using BGP at the highest level and other protocols within an 

Autonomous System. 

These examples also show how a path name (a sequence of simple names) identifies a path in 

a graph with labeled edges and provides decentralized naming. Just as any tree node can be the 

root of an entire subtree, a path name can grow longer without conflicting with any other names. 

This even works when there’s no tree; if you have a sequence of items labeled with path names 

and sorted by them, you can always insert another one by extending the label of its predecessor. 

Recompute ↔ adjust [I] —Take small steps. 

If you have computed 𝑓(𝑥) there are two ways to compute 𝑓(𝑥⨁Δ𝑥). The simplest is to start from 

scratch and apply 𝑓 to the new argument 𝑥⨁Δ𝑥. Trickier, but often more efficient, is to take ad-

vantage of knowing 𝑓(𝑥). For example, if 𝑥 is an array of 1000 numbers, 𝑓(𝑥) = ∑ 𝑥𝑖 , and Δ𝑥 a 

new value for 𝑥𝑖, that is, a pair (𝑖, 𝑣), then 𝑓(𝑥⨁Δ𝑥) is 𝑓(𝑥) − 𝑥𝑖 + 𝑣. Adding an entry to a B-tree 

usually requires no more than a lookup plus an insertion into a leaf node. When the leaf node 

overflows it has to be split, but that is rare. If insertions are concentrated in one part of the key 

space, the tree may have to be rebalanced, but that’s even more rare. If an approximate answer is 

good enough and you can compute a derivative for 𝑓, then 𝑓(𝑥⨁Δ𝑥) ≈ 𝑓(𝑥)⨁𝑓′(𝑥)Δ𝑥.  

6 Conclusion 

I don’t know how to sum up this paper briefly, but here are the most important points: 

− Keep it simple. Complexity kills. 

− Write a spec. At least, write down the abstract state. 

− The ABCs of efficiency: algorithms, approximate, batch, cache, concurrent (shard, stream). 

− Being vs. becoming: map vs. log, pieces, checkpoints, indexes. 

− Eventual consistency: local data, high availability, sharding. 
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