

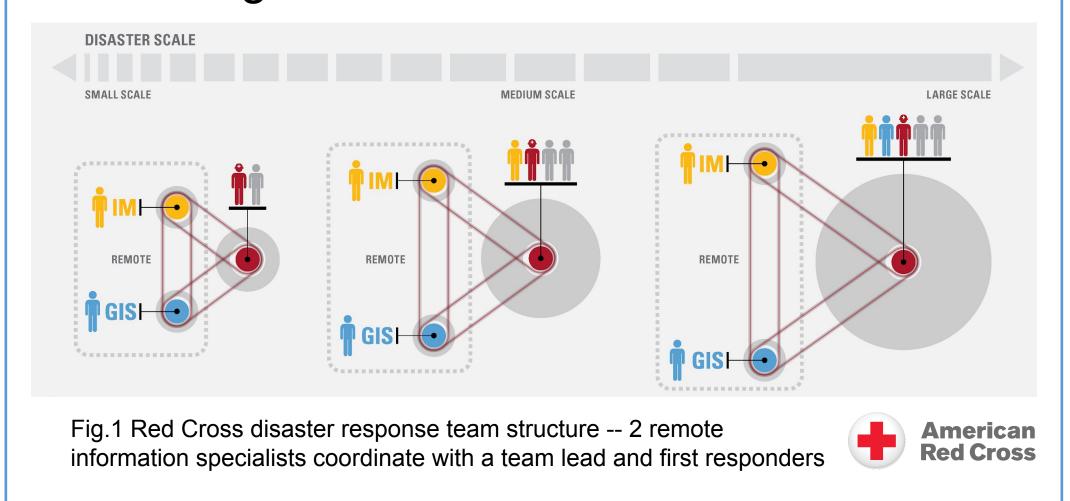
Machine Learning for Humanitarian Data

Vinitra Swamy¹, Elisa Chen², Anish Vankayalapati², Abhay Aggarwal², Chloe Liu², Vani Mandava¹, Simon Johnson³

Microsoft AI & Research¹, UC Berkeley Division of Data Sciences², UN Office for the Coordination of Humanitarian Affairs³

Motivation

- There is a need for data interoperability and standardization for humanitarian data
- However, labor-intensive process of data labeling requires crisis responders to spend hours wrangling data instead of assisting with relief efforts

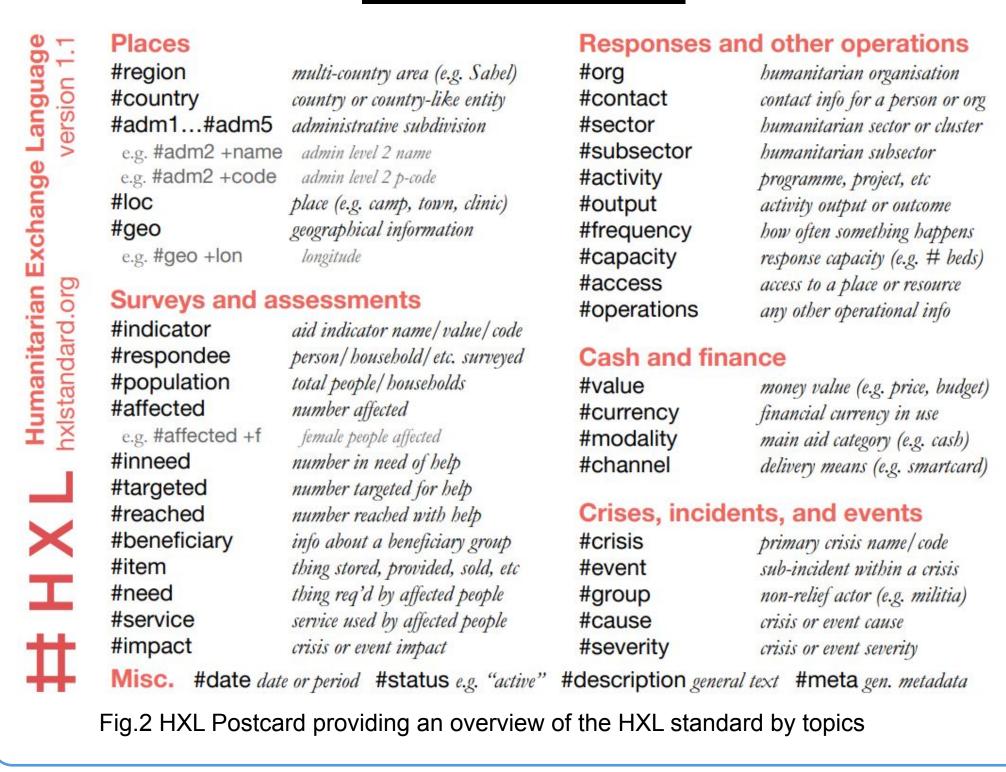


 We propose a deep learning solution to improve efficiency in crisis response

Project Goals

- The Humanitarian Data Exchange (HDX), an open data platform to store humanitarian datasets, uses the Humanitarian Exchange Language (HXL) to tag data columns
- The goal for the collaborative project is to build a machine learning model to add HXL header tags to over 6,000 untagged datasets, as well as create a tool to predict tags in real-time for new unseen datasets.

HXL Standard



Data Cleaning and Scraping

Data Cleaning, Web Scraping, Preprocessing

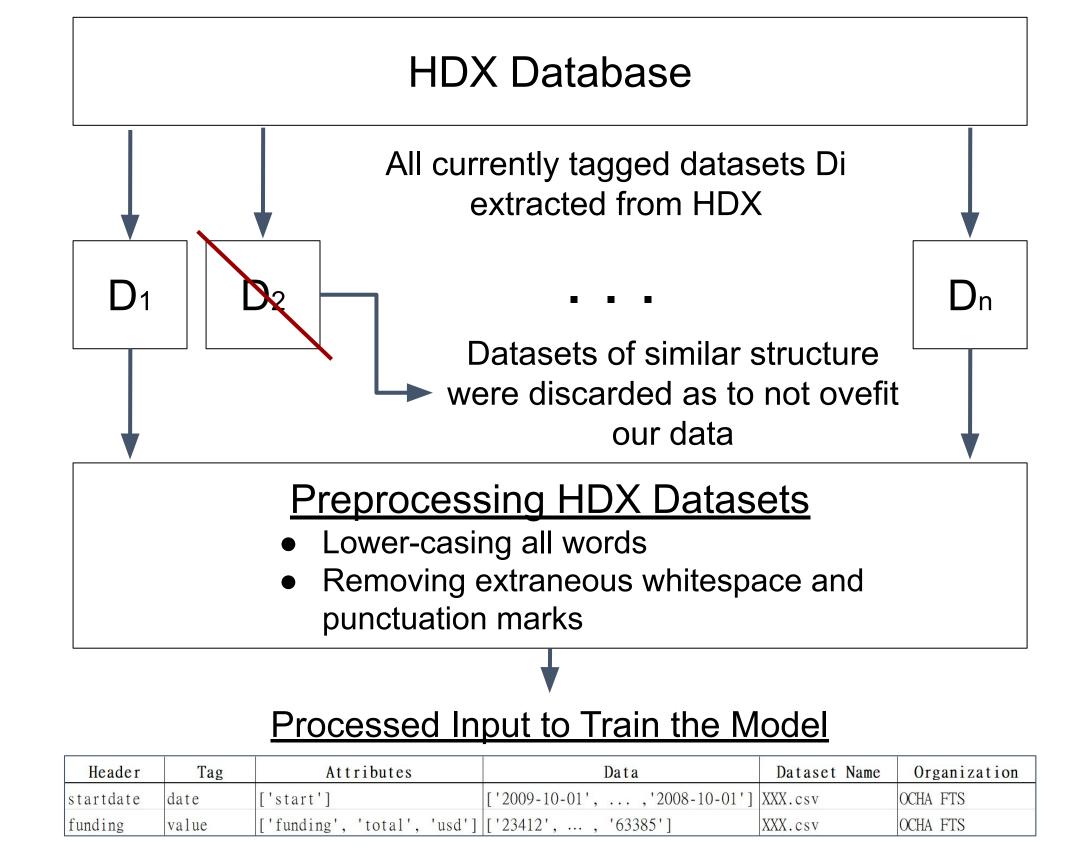


Fig.3 Preprocessing pipeline to transform raw input datasets from HDX into training dataset

Tag Prediction Pipeline

Multilayer Perceptron Classifier (MLP), FastText Embeddings

Model Design

- The model was trained with our processed input using headers, first seven rows of data and organization name as features
- We employed MultiLayer Perceptron (MLP) classifier with ReLU activation layers, a learning rate of 0.001, epsilon of 1e-08 and hidden layers of size 150

 The model was trained and tested against a test size of 33% of the input sample of 3659 datasets

Word Featurization and Encoding

FastText, a Facebook Al Research (FAIR)
library for efficient learning of word
representations, was used to encode the
features and stack input word embeddings

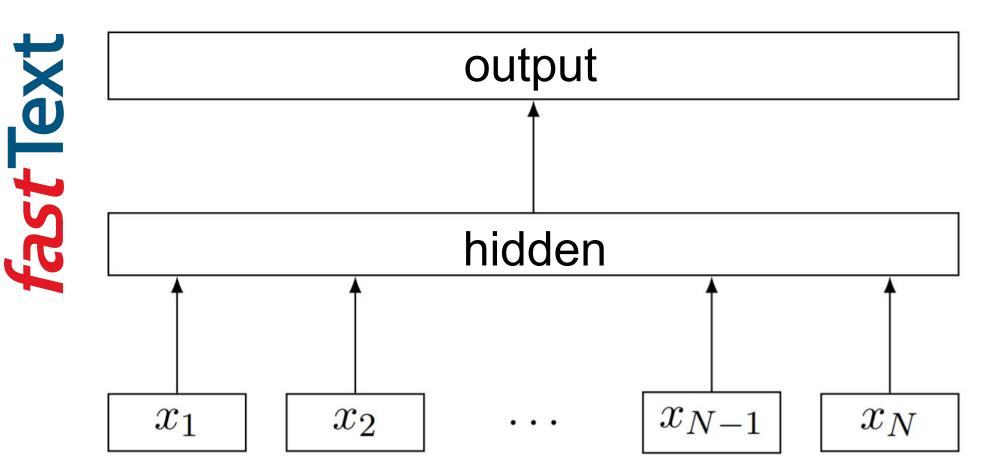


Fig.5 Model Architecture of FastText for a sentence with N n-gram features. The features are embedded and averaged to form the hidden variable.

- FastText uses a hierarchical softmax that takes advantage of the unbalanced distribution of the classes to speed up computation
- Similar to Word2Vec, FastText uses
 Continuous Bag-of-Words and Skip-Gram for
 word representation learning, but instead of
 feeding individual words into the neural
 network, FastText breaks words into several
 n-grams allowing rare words to be
 represented more appropriately as well

Organization O1 HXL Tag-Predict API suggests header tags for each dataset column *fast* Text Post-processing if confidence > 0.85 HDX Dataset Dataset does not have HXL tags Dnc Sanity Check if confidence Header-Tag Organization O2 if mapping does not modified prediction Preprocess / encode input Blank-Tag **Dataset** Repeat for columns Dn1 through Dnc Fig.4 Tag Prediction Pipeline: the classification architecture contains preprocessing, encoding, modeling, and postprocessing sections

Results

- Using the header, organization name and the data content as features in the model, we obtained an **accuracy of 94.3%** using the MLP Classifier on the holdout test set.
- We perceive a roughly 15% improvement compared to the previous model which had an ~80% accuracy on its test set.
- The accuracy of the model was tested against multiple Sci-Kit Learn classification algorithm implementations and reached the highest accuracy with the MLP Classifier

Classifier	Accuracy	Hyperparameters
K Nearest Neighbors	90.4%	K = 3
MLP Classifier	94.3%	hidden layers = 150
Random Forest Classifier	67.7%	max-depth = 5
Naive-Bayes Classifier	62.5%	

Fig.6 Tag-Prediction Model accuracy by classifier

Continuing and Future Work

- Data skew: We expect accuracy to be lower on tags that do not appear in the training set
- Mitigate false predictions: Postprocessing in which we compare predictions with weak confidence levels against common header-tag mappings
- HXL Dashboard Integration: HXL tags enable the development of an UI for graphical data comparison, quick analysis and interoperability
- Attribute Prediction Model: Improvement on a follow-up model to predict the additional HXL attributes for each header
- ONNX: Open Neural Network eXchange
 Exporting and continuing to optimize our model for real time inference performance using the ONNX model format

Acknowledgements

