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Log-Structured Merge (LSM) KVs

Q Designed for write-heavy workloads /@,‘5%6

cassandra

Q Handle large-scale data
LEVELDB

Q Working set does not fit in RAM

% RocksDB
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Lower is better

LSM KV Latency Spikes in RocksDB

Nutanix write-intensive production workload
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Lower is better

LSM KV Latency Spikes in RocksDB

Nutanix write-intensive production workload

3 @; ............... |
- @
g S\ ‘
= E 107
m T~
(@)
0 500 1000 1500 2000
Time (s)

Latency spikes of up to 1s in write dominated workloads!
Spikes are up to 3 orders of magnitude > median tail latency
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Latency Spikes in LSM KVs

Why is this important?

e Cannot provide SLA guarantees to clients.

@ Unpredictable performance when connecting LSM in larger pipelines.
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Our Contribution: The SILK LSM KV

0 Solves latency spike problem for write-heavy workloads.

9 No negative side-effects for other workloads.

Q SILK introduces the notion of an I/O scheduler for LSM KVs.



Experimental Study:
Reason Behind Latency Spikes




What Causes LSM Latency Spikes?

Severe competition for I/O bandwidth between

client operations and LSM internal operations (~GC).
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LSM KV Overview
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LSM KV Overview

Write buffer\

SSTables

e sorted files
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« many SSTables/Level N 2 R L
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LSM KV Client Operations

update
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LSM Internal Ops

Three types of internal ops:
1. Flushing

2. LO = L1 compaction

SSTables 3. Higher level compactions

(sorted flles | ' . . . . L, No coordination between
internal operations.
-I.l EEEEE -
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LSM Internal Ops: Flushing

Flush when Write buffer full.

EEENEEEEE -
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LSM Internal Ops: Flushing

update
. . ™. New write buffer AFlush buffer
Memory

Incoming writes absorbed in

new write buffer.

. . .. . . ... L FIUSh buffer written to LO.
2
| ] e

oana.balmau@sydney.edu.au 16




LSM Internal Ops: LO = L1 compactions

Merge one LO SSTable with L1.

|
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LSM Internal Ops: LO = L1 compactions

Merge one LO SSTable with L1.
Makes room on LO for flushing.
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LSM Internal Ops: Higher Level Compactions

~GC in the LSM tree.

Discard duplicates & delete values.

Less urgent than LO>L1 compactions.

AP ... but need to complete.
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LSM Internal Ops: Higher Level Compactions

~GC in the LSM tree.

Discard duplicates & delete values.

Less urgent than LO->L1 compactions.

L, ... but need to complete.

Can have many higher level

compactions running in parallel.
Ls
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LSM Review

Internal operations:
1. Flushing. From memory to disk.
2. LO = L1 compaction. Make room to flush new files.

3. Higher level compactions. ~GC, I/O intensive.

e No coordination between internal ops and client ops.
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What Causes LSM Latency Spikes?

Both reads and writes experience latency spikes.

Focus on writes. Less intuitive.

Writes finish in memory. Why do we have 1s latencies?
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Cannot Flush

EEENEEEEE -
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Cannot Flush

No room to write on LO

L3
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Cannot Flush

update
., & ™. Write buffer AFIush buffer
Memory A=

L, No room to write on LO
EEENNNEEE -
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Cannot Flush

AFlush buffer

No room to write on LO

L

oana.balmau@sydney.edu.au 26



Cannot Flush

u date
p ‘V"te et AFIUSh et
Memory

Disk

|_ ; No room to write on LO
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1. Writes Blocked Because LO is Full.

No coordination between internal ops.
v

Higher level compactions take over |/O.

v
LO = L1 compaction is too slow.

N
Not enough space on LO.

v
Cannot flush memory component.
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1. Writes Blocked Because LO is Full.

flush flush

Higher level compaction

Higher level compaction

Higher level compaction

’
0 1 2 3 4 5 B 7 8 9 101112 13 14 15 16

Time (seconds)
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Cannot Flush

update
G ‘Vrite buffer AFlush buffer
Memory

No room to write on LO

L
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1. Writes Blocked Because LO is Full.

flush flush

Higher level compaction

Higher level compaction

Higher level compaction
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1. Writes Blocked Because LO is Full.

flush

LO is FULL

flush

flush

Higher level compaction

Higher level compaction

Higher level compaction
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1. Writes Blocked Because LO is Full.

flush

LO is FULL

flush

Cannot flush.

1 No space on LO

flush

Higher level compaction

Higher level compaction

Higher level compaction
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1. Writes Blocked Because LO is Full.

LO is FULL

flush

flush flush

Latency spike!

Higher level compaction

Higher level compaction

Higher level compaction

3 4 5 6 7 8 9 101112 13 14 15 16

Time (seconds)
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Flushing is Slow

EEENNEEEE -

oana.balmau@sydney.edu.au

L3

34



Flushing is Slow

update .
.. Write buffer

AFlush buffer

L1
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Flushing is Slow

., " ™. Write buffer
Memory AN,

AFlush butter
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Flushing is Slow

update
. ™. Write buffer AFlush buffer
Memory AT,

Write buffer fills up
before flush buffer is

written to disk.

L3
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Flushing is Slow

update
F Q ‘Vrite buffer AFlush buffer
Memory

Write buffer fills up
before flush buffer is

written to disk.

L3
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2. Writes Blocked Because Flushing is Slow.

No coordination between internal ops.
N

Higher level compactions take over I/O.

v
Flushing does not have enough I/O.

N7
Flushing is very slow.

N7
Memory component becomes full.
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Flushing is Slow

u date
J erte buffer AFlush buffer
Memory

Disk

Write buffer fills up
before flush buffer is

written to disk.

L3
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Flushing is Slow

u date
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Disk
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2. Writes Blocked Because Flushing is Slow.

flush flush

Higher level compaction
Higher level compaction
Higher level compaction
Higher level compaction

Many parallel higher level compactions | |Higher level compaction

Higher level compaction
Higher level compaction

I 2 3 4 5 6 7 8 9 10 11 12 13
Time (seconds)
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2. Writes Blocked Because Flushing is Slow.

Flush does not have enough 1/0 to finish fast

flush flush

Higher level compaction
Higher level compaction
Higher level compaction

Higher level compaction

Many parallel higher level compactions | [Higher level compaction

Higher level compaction
Higher level compaction

I 2 3 4 5 6 7 8 9 10 11 12 13
Time (seconds)
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2. Writes Blocked Because Flushing is Slow.

flush

flush

Latency spike!

Higher level compaction

Higher level compaction

Higher level compaction

Higher level compaction|
Higher level compaction|

Higher level compaction]
Higher level compactiop
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Naive Solution 1: Compaction Rate Limiting

Rate Limiting: simple attempt to coordinate between internal and external ops.
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Naive Solution 1: Compaction Rate Limiting

Rate | Static compaction rate limiting does not work in the long term.

Chance to run many parallel high level compactions increases.
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Naive Solution 2: Delay Compaction Work

Selective/Delayed Compaction (TRIAD [USENIX ATC “17], PebblesDB [SOSP “17]).

Latency (micros)

|

Time (s)
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Naive Solution 2: Delay Compaction Work

Being selective about compactions does not avoid interference.
Eventually need to do the delayed compaction work.

0 500 1000 1500 2000

Time (s)
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Lessons Learned

1. Make sure LO is never full.
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Lessons Learned

1. Make sure LO is never full.

2. Ensure sufficient I/O for flush/compactions on low levels.
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Lessons Learned

1. Make sure LO is never full.
2. Ensure sufficient I/O for flush/compactions on low levels.

3. Higher level compactions should not fall behind too much.
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The SILK I/O Scheduler
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SILK Key Idea

I/O scheduler for LSM KVs: coordinate I/O bandwidth sharing

to minimize interference between internal ops and client ops.
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Lessons Learned

Make sure LO is never full.

Ensure sufficient I/O for flush/
compactions on low levels.

Make sure other compactions do
not fall behind too much.

SILK Design



Lessons Learned

Make sure LO is never full.

Ensure sufficient I/O for flush/
compactions on low levels.

Make sure other compactions do
not fall behind too much.

SILK Design

‘ Prioritize internal operations
at lower levels of the tree.
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Lessons Learned SILK Design

Make sure LO is never full. Prioritize internal operations
: at lower levels of the tree.

Ensure sufficient I/O for flush/ - Preempt higher level
compactions on low levels. compactions if necessary.

Make sure other compactions do
not fall behind too much.
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Lessons Learned SILK Design

Make sure LO is never full. Prioritize internal operations
: at lower levels of the tree.

Ensure sufficient I/O for flush/ Preempt higher level
compactions on low levels. compactions if necessary.

Make sure other compactions ‘ Opportunistically allocate 1/O
do not fall behind too much. | for higher level compactions.
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Prioritize & Preempt

Prioritize internal ops at lower tree levels:

8 First priority: Flushing

8 Second priority: LO = L1 compactions

9 Third priority: Higher level compactions

oana.balmau@sydney.edu.au
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Prioritize & Preempt

Prioritize internal ops at lower tree levels:
8 Flushing — dedicated flush operation queue.

8 LO > L1 compactions

Higher level compactions




Prioritize & Preempt

Prioritize internal ops at lower tree levels:

8 Flushing — dedicated flush operation queue.

e

8 LO = L1 compactions LO = L1 compaction
preempts higher level

9 Higher level compactions compactions.




2. Preempt

Dedicated flush queue:

Compaction queues:

VNN W
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2. Preempt

Dedicated flush queue:

Compaction queues:

oana.balmau@sydney.edu.au
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Running:

Flush
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2. Preempt

Dedicated flush queue:

Compaction queues:

L0->L1
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2. Preempt

Dedicated flush queue:

Compaction queues:

L0-2>L1

oana.balmau@sydney.edu.au
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Running:

(o

Preempt!

=)

L1=>12

12213
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2. Preempt

Running:
Dedicated flush queue: LIS

(o

LO->L1
L1=>12

Compaction queues:

PLIERE | L2-13 |
=

12213

BN N W

12213
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2. Preempt

© LO->L1 compactions never wait behind
higher level compactions

PLIEEE | L2213
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/O Bandwidth

Opportunistically allocate I/O for compactions

Real Nutanix client load example

B Client I/0O
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/O Bandwidth

Opportunistically allocate I/O for compactions

Real Nutanix client load example

B Client I/0 Client workload is not constant.
200
Y
o0
< 100

0 50 100

Time (s)
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Opportunistically allocate I/O for compactions

Real Nutanix client load example

Bl Client I/0 Client workload is not constant.
= 200
=
30 SILK continuously monitors
2 client I/0 bandwidth use.
B = 100
- \

0 50 100

Time (s)
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Opportunistically allocate I/O for compactions

Real Nutanix client load example

-
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[l Client /0 [ Internal Ops I/0

Allocate less I/O to compactions
during client peaks.

Allocate more I/O to compactions
during client low load.
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Opportunistically allocate I/O for compactions

Real Nutanix client load example

[l Client /0 [ Internal Ops I/0

More I/O to high level compactions

= 200 during low load = don’t fall behind.
2 4

2

c 0

@ = 100

o,
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0 50 100
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/O Bandwidth

Opportunistically allocate I/O for compactions

Real Nutanix client load example

(MB/s)

[l Client /0 [ Internal Ops I/0

0 50 100

oana.balmau@sydney.edu.au

More I/O to high level compactions
during low load = don‘t fall behind.

Even in peak load, guarantee min I/O
for flushing and LO - L1 compaction.
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SILK Evaluation
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SILK Implementation

Extends RocksDB. ﬁ RocksDB

Open Source https://github.com/theoanab/SILK-USENIXATC2019
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YCSB

Benchmark with different workloads:
write-intensive, read-intensive, scan-intensive.

Show:
1. Write-heavy workloads: SILK is much better for tail latency.

2. Other workloads: SILK is not detrimental.

oana.balmau@sydney.edu.au
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Lower is better

YCSB Benchmark
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Lower is better

YCSB Benchmark

SILK 99p ] RocksDB 99p
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SILK decreases tail latency by 4 orders of
magnitude in write-dominated workloads.
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Lower is better

YCSB Benchmark

1 SILK 99p ki RocksDB 99p
2 106 SILK does not affect read/scan dominated workloads |
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Lower is better

YCSB Benchmark Median Latency
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L ower is better

YCSB Benchmark Median Latency
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Nutanix Production Workload

Write dominated:
57% writes, 41% reads, 2% scans.

Bursty (open loop):
Peaks and valleys in client load.

Dataset size: 500GB, KV tuple size 400B on average.
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Lower is better

SILK vs RocksDB Tail Latency 99P
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SILK for Nutanix Production Workload 24h
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Breakdown of SILK Techniques

ost| Dynamic I/O Rate Limiting
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SILK vs RocksDB Stalling

Lower is better
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SILK for Nutanix Production Workload 24h
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SILK Take-Home Message

* We introduce the new concept of an I/O scheduler for LSM.
« Coordinate I/O sharing to avoid latency spikes.

* Three orders-of-magnitude improvements on tail latency.
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* Three orders-of-magnitude improvements on tail latency.

Thank you! Questions?



