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Abstract
The increasing availability of large-scale annotated databases, together with advances in data-driven learning
and deep neural networks, have pushed the state of the art for computer-aided detection problems like audio
scene analysis and event classification. However, the large variety of acoustic environments and their acoustic
properties encountered in practice can pose a great challenge for such tasks and compromise the robustness of
general-purpose classifiers when tested in unseen conditions or real-life applications. In this work we perform
a quantitative analysis of the effect of room acoustics on general audio event detection scenarios. We study the
impact of mismatches between training and testing conditions in terms of acoustical parameters, including the
reverberation time (T60) and the direct-to-reverberant ratio (DRR), on audio classification accuracy and class
separability. The results of this study may serve as guidance for practitioners to build more robust frameworks
for audio event classification tasks.
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1 INTRODUCTION
Sound events serve humans as cues for understanding content and contextual information regarding their sur-
roundings. The aim of computerized audio event detection is to effectively process and convert audio signals
into descriptive representations that can be used by automatic processes for inference. There has been consider-
able research interest in audio event detection and classification over the past few decades, resulting in scientific
challenges like DCASE [1], in publicly available data sets [2, 3, 4] and open source contributions.
Recent advances in audio event detection and classification have seen adoption in a variety of applications
spanning different fields. In health care monitoring scenarios, Ghiasi [5] proposed a system for classifying
heart sounds related to coronary artery disease and heart valve defects; in [6] lung sound signals related to
pneumonia and other respiratory diseases are detected, and in [7] an assisted living framework for monitoring
patients’ behaviour is presented. In home security [8] and surveillance applications, Foggia [9] studied auto-
mated detection of road accidents in audio streaming scenarios. Other applications include: multimedia database
retrieval, where Esling [10] proposed audio retrieval and classification via multi-objective audio matching; and
audio tagging and segmentation, with recent work focusing on scenarios with increased number of classes and
label uncertainty [11], that better reflect practical system requirements.
Research on audio event detection and classification faces two major challenges: i) limited availability of reli-
ably annotated data and ii) large variability in terms of the recording hardware, noise conditions, and acoustic
environment. The first challenge (i) arises from the fact that collecting and carefully annotating large amounts
of audio data is a time consuming and costly task. Recently, efforts have been made to exploit data sets with
sparse or noisy labels, driven in part by the increasing availability of large databases containing user-contributed
audio clips and meta data. Task 4 of the 2018 DCASE challenge addressed the large-scale detection of sound
events using weakly labeled data without explicit event time stamps [12]. The goal was to exploit large amounts
of unbalanced and unlabeled training data combined with a smaller set of weakly labeled data. In a similar set-
ting, the 2019 DCASE challenge seeks to exploit a small amount of reliably, manually labeled data, together
with a large quantity of noisy web data in a multi-label audio tagging task with a large vocabulary of labels.
The second challenge (ii) is exacerbated by an increasing reliance on large, user-contributed data sets, as these
sets presumably exhibit high inter- and intra- class variability in terms of the recording equipment, acoustic
environment, and background noise conditions compared to data sets collected in a concerted effort by pro-



fessionals. This variability poses a challenge for audio event classification models. Lopatka [13] studied the
deterioration of acoustic event classification in the presence of background noise, and how this effect varies per
class type. They show that the sound of glass breaking displayed moderate classification deterioration in low
signal-to-noise (SNR) cases in terms of precision and recall, while gunshot sound classification demonstrated
a more significant deterioration at low SNRs, and scream sounds showed a big spread between precision and
recall for low SNR cases. The organizers of the first DCASE challenge further discussed the inherent difficulty
in detecting overlapping sound events [14]. However, to the best of our knowledge, there is little previous work
studying the effect of reverberant environments for the task of audio event classification.
In speech recognition, noise and overlapping sounds are known to negatively affect model performance. Prior
work on the effect of reverberation suggests that parameters such as the clarity index (C50) as well as the
direct-to-reverberant ratio (DRR) strongly affect speech recognition performance [15]. A recently published
DCASE task involves localization and recognition of individual sound events within various reverberant and
noisy conditions [16]. This task may ignite interest in addressing the issue of reverberation in audio event
classification. Here we study the effect of the acoustic environment, in terms of reverberation parameters, on
the performance of a machine-learning based audio event classification model.

2 DATA CORPUS AND METRICS
To determine the effect of reverberation on audio event classification, we rely on an audio event classification
corpus, and a large set of measured acoustic impulse responses (AIRs) to simulate various acoustic conditions.

2.1 Sound event data set
The Environmental Sound Classification (ESC-50) data set consists of 2 000 audio recordings [3]. Each file
in the data set was recorded at 44 100 Hz and has a duration of 5 seconds. The clips were annotated using
a crowd sourcing platform, were judges were presented with 50 classes, under the categories animals, natural
soundscapes, human non-speech sounds, domestic sounds and exterior noises. All classes in the data set are
balanced, containing 40 examples each, and are split into 5 folds for cross validation.

2.2 Impulse Responses
A large corpus of acoustic impulse responses was compiled from real measurements from proprietary and public
data set sources: ACE Challenge Corpus [17], PORI Concert Hall Impulse Responses [18], REVERB Challenge
corpus [19], Echothief Impulse Response Library [20], SOFA [21], SMARD [22], Real Acoustic Environments
Working Group database [23], and Multichannel Acoustic Reverberation Database at York [24].

2.3 Impulse response parameter estimation
The reverberation time (T60) describes the time it takes for the energy of an AIR to decay by 60 dB. It
is estimated here using a method by Karjalainen et al. [25]. A related parameter known to be perceptually
relevant is the early decay time (EDT). It can be estimated by fitting a line to the energy decay curve (EDC),
from the point where the EDC drops below -5 dB to where it drops below -15 dB.
Given an AIR, h[n], the direct-to-reverberant ratio (DRR) is the ratio of the energy of the direct path, estimated
in a 2.5 ms window around the maximum amplitude point of the impulse response, to the energy of the reflected
paths outside this window [17]. With nd = argmax

n
|h[n]|, DRR is given as:

DRR = 10log10

(
∑

nd+nw
n=nd−nw

h[n]2

∑
∞
n=nd+nw h[n]2

)
, (1)

where and nw is the number of samples in a 2.5 ms window at the given sampling rate. Note that nd and (1)
are slightly modified compared to the definitions given by Eaton [17]. The clarity index (C50) measures the
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Figure 1. Distribution of impulse response parameters.
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Figure 2. Distribution of impulse response parameters.

energy ratio between early and late parts of the impulse response [26]:

C50 = 10log10

(
∑

n0+n50
n=n0 h[n]2

∑
∞
n=n50

h[n]2

)
, (2)

where n0 is defined as the sample with the largest drop in the EDC, which was found to be a relatively robust
measure for determining the direct path, and n50 is the number of samples corresponding to a 50 ms window
at the given sampling rate.

2.4 Corpus generation
All samples and AIRs were resampled to 16 000 Hz for further processing. After pruning AIRs with measure-
ment artifacts, low sampling rates, or extreme reverberation parameters (e.g., reverberation times longer than 4
seconds), we compiled a corpus of 11 684 AIRs. For training and evaluation of the audio event classification,
we created two separate sets: a raw set (raw) and a reverberant set (rev). The raw set consists of the raw
ESC-50 samples. The rev set was created by convolving the raw ESC-50 samples with AIRs from our AIR
corpus, to generate audio event examples with varying acoustic conditions. To ensure a uniform and dense sam-
pling of the acoustic parameters, we generated 10 000 rev examples from the 2 000 raw samples, by convolving
each sample with 5 AIRs drawn randomly from a uniform distribution between 0.25 and 4 seconds for T60, and
between -12 and 6 dB for DRR. Note that for T60, the distribution was chosen to be uniform on a logarithmic
scale, as we hypothesize that to be more in line with the expected effect of T60 on classification. It should also
be stated that the acoustic conditions of the raw set are unknown. We assume that these unknown conditions
are randomly distributed in terms of their acoustic parameters, and that their effect can be mitigated through
averaging of the classification results. Figure 1 illustrates the distribution of the four acoustic parameters studied
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Figure 3. Class prediction model: CNN with 10 convolutional layers and a fully connected layer.

here, for the randomly drawn AIRs. As can be seen, EDT has a distribution similar to T60, while C50 exhibits
a Gaussian distribution. Plotting T60 against the other parameters confirms the desired uniform distribution with
DRR (Figure 2, center), while revealing a strong correlation between T60 and EDT (Figure 2, left) as well as
C50 (Figure 2, right). While this correlation is not surprising given the physical processes underlying AIRs, it
should be considered when studying the effects of these AIR parameters in isolation.

2.5 Evaluation metrics
As the ESC-50 data set contains a balanced number of samples per class, the weighted accuracy (WA) measure
was used for evaluating classification performance. WA is given by

WA =
∑

J
j=1 Ncorr, j

N
, (3)

where N is the total number of samples, and Ncorr, j is the number of correct predictions for class j = [1, ..., J].

3 AUDIO EVENT CLASSIFICATION MODEL
ESC-50 was created from a set of user-uploaded data and includes challenging examples with large ambiguity
between classes. Previous work has shown promising results on this set by using transfer learning and ex-
tracting audio features using models pre-trained on large data sets [27, 28]. However, to analyze the effect of
reverberation on both training and testing performance of an audio event classification model, we rely only on
features and embeddings extracted directly from our data corpus, described in Section 2.

3.1 Model architecture
The classification model and data processing used here closely follow the AclNet convolutional neural network
(CNN) architecture in [29], which was shown to provide near state-of-the-art performance on ESC-50. Unlike
AclNet, which operates directly on time domain input signals, we use a Mel-frequency spectrogram as input
to the network, as described in Section 3.2. A block diagram of the model used here is shown in Figure 3.
The network consists of 10 convolutional layers with rectified linear unit (ReLU) activation, batch normalization
after all but the first and last layer, a kernel size of 3×3 and a stride of 1. Dropout is added for regularization
before layers 4, 8, and 10, with a rate of 0.2. Max pooling over 2×2 patches with a stride of 2 is performed
after layers 1, 3, 5, 7, and 9. After each max pooling layer, the number of CNN filters doubles, from 24 to
48, 96, 192, and 384. The final CNN layer has 50 filters, equal to the number of classes. It is followed by a
single 2×4 average pooling to reduce the number of outputs to 50. The classification result is obtained at the
output of a single fully connected linear layer.

3.2 Data augmentation and feature extraction
To increase the amount of available training data, a common technique is to apply transformations to the in-
put signals or features, a process referred to as data augmentation. Here we perform augmentation online, that



is, transformations are applied to all samples as they are retrieved for training or testing. As proposed by
Huang [29], we first extract a random 2-second segment from the 5-second audio clips. As the ESC-50 clips
contain silent segments, we discard segments whose amplitude never exceeds 10% of the overall maximum
amplitude. The 2-second segment is then stretched in time through resampling with a random factor drawn uni-
formly from [0.8, 1.25]. The resulting segment is cropped to 1.5 seconds, and a random gain drawn uniformly
from [-6, 6] dB is applied. A Mel-spectrogram is extracted from the resulting clip using an FFT size of 512
samples and an overlap of 160 samples, yielding 128 spectral and 151 temporal bins. This feature matrix is fed
as input to the CNN model, after taking the logarithm and applying a constant bias and gain for normalization.
During testing, the same feature matrix is calculated for the 1.5-second segment with the highest energy.

4 EXPERIMENTAL EVALUATION
4.1 Train and test conditions
To explore the effect of reverberation on classification performance, we used the following conditions:

1. Train on raw, test on raw (TrRaw-TeRaw); this serves as the baseline, and corresponds to the typical
experimental setup in prior work using the ESC-50 data set.

2. Train on raw, test on rev (TrRaw-TeRev); this reveals the performance impact of testing on acoustically
more challenging conditions than the network was trained on.

3. Train on rev and raw, test on raw (TrRev-TeRaw); applying reverberation to (some) training data could
potentially be seen as a form of data augmentation.

4. Train on rev and raw, test on rev (TrRev-TeRev); this scenario illustrates the benefit of training the
model on acoustic conditions similar to the ones encountered during testing.

The same classification model (see Section 3.1) is trained and tested on all 4 conditions outlined above. The
effect of the reverberation is determined by analyzing the classification performance as a function of the rever-
beration parameters of the AIRs used to generate the rev samples (see Section 2).

4.2 Model training
The CNN model is implemented in PyTorch [30] and trained using stochastic gradient descent, with a learning
rate of 0.01, a momentum of 0.9, and a weight decay of 0.0002, over 500 epochs for TrRaw-TeRaw and
TrRaw-TeRev, and 130 epochs for TrRev-TeRaw and TrRev-TeRev. Five-fold cross-validation is performed
per the ESC-50 recommendations, with 4 folds used for training and 1 fold for testing.

4.3 Results
For the baseline condition TrRaw-TeRaw, the model achieved an average classification accuracy of 68.1%.
As seen in Table 1, performance dropped significantly for TrRaw-TeRev, i.e., when testing on reverberant
data, to 45.6%. Including rev data for training improved performance for both raw and rev test sets, with
TrRev-TeRaw and TrRev-TeRev achieving 71.2% and 62.4% accuracy, respectively. This indicates that adding
reverberant examples to the training data can be useful both for data augmentation and for reducing potential
mismatches between acoustic conditions in training and testing.

Table 1. Average classification performance of the CNN (see Section 3.1) for all experimental conditions.

TrRaw-TeRaw TrRaw-TeRev TrRev-TeRaw TrRev-TeRev

WA (%) 68.1 45.6 71.2 62.4
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Figure 4. Classification accuracy per class for all experimental conditions.
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Figure 5. Classification accuracy as a function of IR parameters.

Figure 4 illustrates the performance of the model for all classes and experimental conditions. To reduce vari-
ability, the results are averaged over all 5 folds, 3 identical models trained with slightly different (learning rate,
dropout rate) settings, i.e., (0.01, 0.2), (0.005, 0.2), and (0.005, 0.5), as well as 6 training epochs from epochs
450 to 500 for TrRaw-TeRaw and TrRaw-TeRev, and from epochs 90 to 140 for TrRev-TeRaw and TrRev-
TeRev. Vertical lines indicate 95% confidence intervals. As shown, the per-class classification performance
ranges from about 20% for the “sea waves” and “clock tick” to about 90% for “siren”.
To highlight the effect of mismatches in terms of the reverberation parameters between training and testing, the
results are sorted for the condition TrRaw-TeRev in terms of the average classification performance relative
to the baseline condition, TrRaw-TeRaw, that is, from the class most affected by a reverberation parameter
mismatch to the class least affected. There are several possible explanations for the per-class performance impact
of reverberation. Some classes may exhibit acoustic features less affected by reverberation. These features may
include slow spectro-temporal changes that are not masked by reverberation (e.g., “siren”), or spectro-temporal
patterns that are sufficiently distinct to be recognizable regardless (e.g., “clock alarm”). Conversely, samples
with distinct transient features, including “clock tick” and “keyboard typing”, may be negatively impacted by
reverberation. Furthermore, the raw ESC-50 samples do not exhibit random acoustic conditions, but that there
is some correlation between the class and the typical acoustic conditions in which its samples are recorded. For
example, “sea waves” is not typically subject to reverberation, but “washing machine” might be.
However, the response of complex machine learning models to even subtle changes in the input features can
be rather non-intuitive, especially in the case of mismatches between training and testing. Thus, it may be
more insightful to look for trends averaged over all classes. Figure 5 shows how the total accuracy varies with
respect to the different AIR parameters. The results are binned and averaged over all samples of the exper-
imental conditions with reverberant test sets, TrRaw-TeRev and TrRev-TeRev. For reference, we also show
the accuracy of models TrRaw-TeRaw and TrRev-TeRaw, binned and averaged over the same samples, even



though no reverberation was applied to those samples. As can be seen, for these conditions the performance is
relatively constant across all bins, i.e., any effects visible for the reverberant test conditions, TrRaw-TeRev and
TrRev-TeRev, are most likely a result of the added reverberation. For TrRaw-TeRev, performance is signifi-
cantly worse compared to other conditions across all AIR parameters. Furthermore, classification performance
seems to decrease with T60 and EDT and increase with DRR and C50, by a margin of about 10%. Adding re-
verberation during training boosts performance by about 16% (see Table 1), an indicator that matching acoustic
conditions during training and testing are important for achieving high classification performance.

5 CONCLUSIONS
We present an exploratory study on the effect of reverberation on sound event classification for the Environmen-
tal Sound Classification (ESC-50) data set. A convolutional neural network (CNN) based on AclNet [29] was
trained and tested on a combination of raw and artificially reverberated ESC-50 samples. For the given model
and samples, we observed an average classification performance drop of 22.5% for a model trained on raw
ESC-50 samples and tested on reverberant samples. The performance drop ranged from close to 0% to about
50% depending on the class. Our results indicate a correlation between this drop and reverberation time (T60)
and early decay time (EDT), as well as direct-to-reverberant ratio (DRR) and clarity (C50). Adding artificially
reverberated samples to the training data reduced the performance gap and even improved performance on the
raw ESC-50 samples, suggesting adding reverberation may further be useful for data augmentation. A more
detailed analysis of the impact of reverberation on class-dependent features is left for future work.
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