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Fig. 1. Temporally coherent approximate convex decomposition of an animated mesh and transfers into new, previously unseen animations.

Many geometric quantities can be computed efficiently for convex meshes.
For general meshes, methods for approximate convex decomposition have
been developed that decompose a static, non-convex object into a small set
of approximately convex parts. The convex hulls of those parts can then be
used as a piecewise convex approximation to the original mesh.

While previous work was only concerned with static meshes, we present
a method for decomposing animated 3D meshes into temporally coherent
approximately convex parts. Given a mesh and several training frames—that
is, different spatial configurations of its vertices—we precompute an approx-
imate convex decomposition that is independent of any specific frame. Such
a decomposition can be transferred in real-time to novel, unseen frames.
We apply our method to a variety of pre-animated meshes as well as a 3D
character interactively controlled by a user’s body pose. We further demon-
strate that our method enables real-time physics simulations to interact with
animated meshes.
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1 INTRODUCTION
As hardware capabilities increase, modern graphical applications
make use of ever larger and more detailed 3D models. Rendering
methods reduce the computation time such large meshes would
require by employing specialized acceleration structures such as
octrees and bounding volume hierarchies (BVH) that efficiently cull
irrelevant parts of the mesh. While this works well for ray-mesh
intersection queries, other applications such as physics simulation
need to answer more complex questions involving these meshes.
They need to be able to efficiently determine whether a given point
in space lies inside or outside of a mesh, whether two meshes in-
tersect, how far they interpenetrate and so on. Answering these
questions is non-trivial and computationally expensive for general
meshes. The problems would suddenly become much simpler if one
knew that all participating meshes were convex, since for convex
meshes those questions turn into convex optimization problems that
can be efficiently solved using greedy algorithms. This observation
motivates the decomposition of meshes into a set of convex parts.
Splitting the mesh into exactly convex parts [Chazelle 1981] gener-
ally produces too many pieces to be usable in practice and has been
superseded by approximate convex decomposition [Ghosh et al.
2013; Lien and Amato 2007; Liu et al. 2016; Mamou 2016; Mamou
and Ghorbel 2009], which decomposes the mesh into a small set of
approximately convex parts, whose bounding hulls can be used as a
piecewise convex approximation to the original mesh.
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While prior work was concerned with decompositions of static
meshes, we present an algorithm for the approximate convex decom-
position of animated meshes. Our algorithm splits animated meshes
into temporally coherent parts with tight bounding hulls. Different
levels of detail arise naturally from the formulation of our algorithm
and can be used as required by the problem at hand. Furthermore,
once a decomposition has been pre-computed, it can be transferred
in real-time to any pose of the mesh as long as that mesh’s topology
stays constant. This enables us to produce high-quality approxima-
tions of animated meshes for real-time and interactive settings such
as games and virtual reality.

1.1 Related Work
There are various algorithms that focus on different aspects of mesh
representation. This includes algorithms for the purpose of seg-
mentation [Kalogerakis et al. 2010; Koschan 2003], mesh editing
[Shlafman et al. 2002], structure extraction [de Goes et al. 2008;
Shatz et al. 2006; Wu and Kobbelt 2005], recombination [Kreavoy
et al. 2007] and shape approximation [Calderon and Boubekeur
2017] to name a few.

Of particular interest to us are algorithms that decompose a mesh
into a set of convex parts, a problem that has been studied in the
past. [Chazelle 1981] shows that a non-convex polyhedron can be
decomposed into a set of convex polyhedra by iteratively cutting
through carefully chosen edges of the polyhedron. Each cut splits
the mesh into smaller, increasingly more convex parts until all parts
are exactly convex. Decomposing a mesh into exactly convex parts
is often impractical though due to the high number of parts this pro-
cess can generate. Instead, approximate convex decomposition was
developed to segment a mesh into a small number of approximately
convex parts. The convex hulls of these parts can then serve as a
convex approximation to the mesh. Two different approaches are
used for finding approximate convex decompositions: surface based
and volumetric methods.
Surface based methods cluster the faces of a mesh into nearly

convex patches bounded by edge loops. ACD [Lien and Amato 2004,
2007] is one such method which was the first to focus on approxi-
mate convex decomposition. They measure concavity (the opposite
of convexity) as the distance from a vertex on the mesh to a carefully
chosen part of its convex hull. They then iteratively cut patches
along the vertex with the highest concavity until a global concav-
ity threshold has been reached. FACD [Ghosh et al. 2013] builds
on this foundation and introduces the notion of relative concavity.
Instead of optimizing a global concavity measure they use dynamic
programming to find cuts which maximize the change in concavity
induced by this cut. This leads to decompositions which can retain
smaller mesh features like fingers and toes while at the same time
keeping larger structures like head and torso intact. CoRise [Liu
et al. 2016] is another method following the definition of concavity
introduced in [Lien and Amato 2007]. It iteratively clusters vertices
on the convex hull to form convex ridges respecting a given con-
cavity threshold. The mesh is then split into components according
to the convex ridges by finding appropriate cuts between them
using a graph cut method. In [Au et al. 2012], concavity-sensitive
scalar fields are computed across the surface to locate isolines that

are then used as seams for subsequent cuts into surface patches.
HACD [Mamou and Ghorbel 2009] works by iteratively collaps-
ing edges of the mesh’s dual graph. This simplification process is
guided by a concavity measure and a regularization term that keeps
the resulting components compact. Since surface-based methods
do not consider a volumetric representation of the mesh they are
not suitable for meshes of arbitrary shape: for example, the outside
surface of a handle-less cup is a perfectly convex patch. Its convex
hull however fills the inside of the cup and is as such an unsuitable
approximation to the mesh.
In response to the shortcomings of surface based methods, V-

HACD [Mamou 2016] has been developed as a volumetric method.
In a first step it creates a binary voxelization of the mesh using a
regularly sampled grid. The voxel representation is then iteratively
split along the grid boundaries, minimizing a convex approximation
error. The convex hulls of the resulting voxel clusters can be used as
a convex approximation to the mesh. A different approach is to take
a tetrahedralized mesh and create a hierarchical decomposition into
polyhedra using a bottom-up clustering [Attene et al. 2008]. Other
methods employ the pairwise inner visibility between surface points
as an implicitly volumetric representation and do not require a vox-
elization or tetrahedralization of the mesh but a sampling of surface
points instead [Asafi et al. 2013; Kaick et al. 2014]. Somewhere be-
tween surface and volume based approaches lies [Ren et al. 2011].
Like the previous method they also employ pairwise connections be-
tween surface points but compute perpendicular distances between
those connections and the mesh surface instead of visibilities. This
makes the method volumetric in 2D. In three dimensions, they use
2D projections of the mesh to compute this concavity information
which makes the method not fully volumetric anymore.

All of these methods, whether surface-based or volumetric, work
on a single static mesh. For animated meshes the decomposition
would need to be recomputed each frame, rendering it too expensive
for use in real-time and interactive settings. We develop a novel
algorithm for the approximate convex decomposition of animated
meshes instead.

Our algorithm is based on the idea of iteratively cutting through
the animated mesh by choosing a suitable frame for the next cut
and transferring this cut to all other frames of the animation. This
iterative cutting approach has two advantages compared to existing
methods for approximate convex decomposition: Firstly, unlike
surface based methods which fail for certain shapes, it works for
general polyhedral meshes. Secondly, we show that cuts through a
polyhedral mesh are suitable for transfer from one mesh to another
as long as those meshes share the same topology (e.g. between the
frames of a mesh animation). Such a transfer would not be possible
for a voxel method like V-HACD, since voxelizations of meshes of
same topology do not necessarily correspond to one another.
Several related works address various decompositions of ani-

mated meshes, though none of them into approximate convex parts.
[Wuhrer and Brunton 2010] find the near-rigid components of a
mesh by building its dual graph and clustering the dual graph’s
vertices according to changes in the dihedral angles over the course
of the animation. [Liao et al. 2012] first compute multi-scale high di-
mensional feature vectors on themesh surface and then cluster those
features to extract near-rigid parts. Similar to near-rigid component
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extraction, [Lee et al. 2005] use the motion similarity of vertices
and cluster them into components using a region growing approach.
[Thiery et al. 2016] compute a multi-resolution approximation of
the animated mesh based on a hierarchy of spheres which they use
for collision detection and animation compression. This works well
as a coarse approximation but has problems approximating objects
with sharp edges and corners.

While our method is not itself a collision detection method, its re-
sults can be used as a basis for efficient collision detection with static
or animated meshes in the narrow phase using efficient collision
detection methods such as GJK [Cameron 1997; Gilbert et al. 1988].
In the broad phase of collision detection any of the many available
acceleration structures can be used, most notably bounding volume
hierarchies based on primitives like oriented boxes [Gottschalk et al.
1996], spheres [Hubbard 1995] or convex polytopes [Klosowski et al.
1998] as well as BVHs optimized for animated scenes [James and
Pai 2004; Kavan and Žára 2005].

1.2 Overview
We introduce the notation that will be used throughout the paper:

LetM be a closed two-manifold mesh with N vertices and a set
of edges and faces. A static mesh has a single set of vertex positions
V:

V = {v1, . . . ,vN } vi ∈ R
3 (1)

An animatedmesh hasK sets of vertex positionsV1, . . . ,VK , called
frames:

V j = {v
j
1, . . . ,v

j
N } v

j
i ∈ R

3 (2)

When referring to the topological concept of a vertex as opposed to
its position in space we write v̂i to mean the i-th vertex ofM.
A decomposition D = {P1, . . . } ofM is a set of submeshes Pi ,

called parts, that make upM.
Our goal is to find a decomposition of the mesh into parts such

that each part is approximately convex across all frames. This will
allow us to approximate the mesh by the convex hulls of those parts.
We also want to be able to efficiently apply the precomputed approx-
imate convex decomposition to novel unseen frames. This enables
the use of our technique in interactive and real-time settings where
not all frames are known in advance or where it is too expensive to
store a decomposition for each frame.

Section 2 shows how we compute an approximate convex decom-
position for a static mesh.
Section 3 describes how we enable decompositions to be trans-

ferred from one frame of a mesh to another by choosing a suitable,
frame-independent representation of the decomposition.
Section 4 then combines static approximate convex decomposi-

tion with the ability to transfer decompositions between frames
to design an algorithm for approximate convex decomposition of
animated meshes.

2 STATIC APPROXIMATE CONVEX DECOMPOSITION
Before we derive our algorithm for approximate convex decompo-
sition of static meshes we lay the theoretical groundwork by first
looking at exact convex decomposition.

α

e

πcπl πr

(a) Different hyperplane
orientations around concave
edge e .

(b) The two parts after cutting along
hyperplane πc .

Fig. 2. Cut through a mesh along a concave edge. (a) The mesh before
the cut. An infinite number of hyperplanes can be constructed that contain
the concave edge e and split the dihedral outer angle α into two parts.
Pictured are three possibilities: πc , the hyperplane that exactly bisects the
dihedral angle α as well as πl and πr , the hyperplanes with the most
extreme rotation towards the left and right adjacent face respectively. Any
rotation in between would also produce a valid hyperplane. (b) The mesh
after the cut along hyperplane πc . Open holes are closed by introducing new
vertices, edges and faces along the cut, here shown in green. The previously
concave edge e is present in both new parts but guaranteed to be convex
now.

2.1 Exact Convex Decomposition
There exists a conceptually simple algorithm to produce an exact
convex decomposition of a mesh [Chazelle 1981]. The idea is to
iteratively cut the mesh along concavities into smaller parts until all
parts are convex. This set of parts forms a non-unique, exact convex
decomposition of the mesh. Figure 2 depicts this process.

Let us formalize this algorithm: We say that an edge (a vertex in
two dimensions) is concave if the dihedral outer angle enclosed by
its two adjacent faces is larger than 180 degrees. One can construct
a hyperplane πe that contains this edge e and splits the dihedral
angle into two parts (see Figure 2a). Cutting the mesh along this
hyperplane creates two new smaller parts in which the offending
edge is not concave anymore. New vertices are introduced where
edges of the original mesh intersect the hyperplane and open holes
are closed by introducing new edges and faces along the cutting
plane (see Figure 2b). Note that such a newly added vertex is a linear
combination of the edge’s end vertices, weighted by the position
along the edge the new vertex was introduced at. The algorithm
iteratively proceeds to cut the new smaller parts until there are no
more concave edges left to cut. The output of the algorithm is the
set of connected components of the generated parts. We refer to
the original mesh asM while we call parts created by the cutting
process P. Algorithm 1 summarizes this process.

If the original mesh contained n concave edges Algorithm 1 can
produce up to 2n convex parts and is as such not suitable for real-
world use. Further, the algorithm does not describe how to orient the
hyperplanes and in which order to do the cuts. In the next section
we will solve these problems and derive a method for approximate
convex decomposition.

2.2 Approximate Convex Decomposition
In order to turn the algorithm for exact convex decomposition into
a practical algorithm for approximate convex decomposition we
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Algorithm 1: Exact convex decomposition.
Input :Static meshM
Output :Exact convex decomposition D

1 D ← ∅

2 activeParts← {M}
3 while activeParts , � do
4 P ← any element out of activeParts
5 if P does not contain a concave edge then
6 D ← D ∪ {P}

7 else
8 πe ← any hyperplane through e splitting outer angle
9 P1, P2 ← cut P at πe

10 activeParts← activeParts ∪ {P1, P2}
11 D ←

⋃
P∈D ConnectedComponents(P)

need to choose the cuts in such a way that already a small number
of cuts—and thus a small number of parts—leads to a decomposition
that is not exactly convex but is close enough.

To quantify the quality of each part of a decomposition, we define
a convex approximation error e(M) as a volume difference between
a mesh and its convex hull:

e(M) B Volume(ConvexHull(M)) − Volume(M) (3)

Note that convex objects by definition have zero convex approxi-
mation error. This measure is similar to other convexity measures
like [Liu and Zhang 2007] but relies on absolute difference instead
of relative difference to give more importance to bigger non-convex
parts. Specialized convexity measures can be substituted but the
one presented here works well for general application [Zunic and
Rosin 2004].

Finding an optimal approximate convex decomposition D∗ with
M parts can now be expressed as minimizing the convex approxi-
mation errors of its parts:

D∗ = argmin
D

∑
P∈D

e(P) s.t. |D| = M (4)

This optimization problem is in general intractable. Instead of
solving for all M parts simultaneously, we iteratively add more
parts to the decomposition. Given a decomposition withM ′ parts
we greedily solve for the next best cut to produce a decomposition
with M ′ + 1 parts. This process starts from the simplest possible
decomposition—containing only the original mesh as a single part—
and continues until the decomposition containsM parts.
Thus, given a current decomposition D withM ′ parts, we find

a hyperplane πe cutting through the part P∗ that has the largest
convex approximation error such that its error is minimized. Let
P∗πe ,1 and P

∗
πe ,2 be the two parts that arise from cutting P∗ at πe .

The optimal cutting plane π∗e can then be defined as:

π∗e = argmin
πe

(
e(P∗πe ,1) + e(P

∗
πe ,2) − e(P

∗)

)
(5)

where
P∗ B argmax

P∈D

e(P) (6)
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Fig. 3. Influence of the number of concave edges considered during decom-
position. The horizontal axis shows the number of concave edges furthest
from the convex hull taken into respect. The vertical axis shows the percent-
age of volume increase of the convex hulls of the decomposition with respect
to the original mesh. The graph shown represents the numbers averaged
across the V-HACD dataset.

Searching for cuts only in the part P∗ with the largest convex
approximation error as opposed to searching for cuts in all available
parts P ∈ D serves a dual purpose: firstly, it reduces the com-
putational cost while still generally decreasing the optimization
objective rapidly and secondly, it forces the algorithm to not ignore
“difficult” parts. If for example P∗’s convex approximation error
cannot be reduced in a single cut, an algorithm looking at all parts
would prefer to cut a different one even though P∗ is responsible
for the majority of the decomposition’s total convex approximation
error.
The new decomposition D ′ with M ′ + 1 parts is then the one

where part P∗ is replaced with its subparts P∗π ∗e ,1 and P
∗
π ∗e ,2

:

D ′ B
(
D \ P∗

)
∪

{
P∗π ∗e ,1

, P∗π ∗e ,2

}
(7)

Finding the hyperplane yielding the optimal cut (Equation 5) is
still an intractable problem since there are infinitely many hyper-
planes and the objective is highly non-convex. Fortunately, we know
from Section 2.1 that we are guaranteed to converge to an exact
convex decomposition if we only take hyperplanes containing a
concave edge into account. This leaves us with a finite number of
concave edges to construct hyperplanes from. We do not take all of
those concave edges into account but only the subset of the C con-
cave edges furthest from the convex hull. Figure 3 shows how this
influences the decomposition result. In practice we choose C = 8.

We sample a fixed number of hyperplanes for each concave edge
to make optimization feasible. In practice we construct R = 5 equian-
gularly rotated hyperplanes around each candidate edge (Figure 2a
shows the setup for R = 3). If a part consists of linearly separa-
ble disconnected components, we construct additional hyperplanes
splitting those components that are taken into account when choos-
ing the optimal cut. Algorithm 2 summarizes the process.

We are now able to compute approximate convex decompositions
for a static mesh (or a single frame of an animated mesh). In the next
section we show how we enable decompositions to be transferred
from one frame of a mesh to another. In Section 4 we then combine
the static approximate convex decomposition with our ability to
transfer decompositions between frames to design an algorithm
for temporally coherent approximate convex decomposition and
transfer for animated meshes.
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Algorithm 2: Static approximate convex decomposition.
Input :Static meshM, target number of partsM , number

of concave edges to sample C , number of
hyperplane orientations R

Output :Approximate convex decomposition D with at
mostM parts

1 D ← {M}

2 while |D| < M and there exists a concave edge do
3 π∗e ← nil
4 minError←∞
5 P∗ ← argmaxP∈D e(P)

6 E ← find the C concave edges e ∈ P∗ furthest from
ConvexHull(P∗)

7 for concave edge e ∈ E do
8 Πe ← construct R hyperplanes πe through e splitting

the outer dihedral angle
9 for hyperplane πe ∈ Πe do

10 P∗1 , P
∗
2 ← cut P∗ at πe

11 error← e(P∗1 ) + e(P
∗
2 ) − e(P

∗)

12 if error < minError then
13 minError← error
14 π∗e ← πe
15 P∗1 , P

∗
2 ← cut P∗ at π∗e

16 D ← (D \ P∗) ∪
{
P∗1 , P

∗
2
}

3 DECOMPOSITION REPRESENTATION AND
TRANSFER FUNCTION

We now start looking at animated meshes that do not have a single
set of vertex positionsV , but K sets of vertex positionsV j called
frames. Parts will be written P ji to indicate that they belong to the
j-th frame. Pi is now the set Pi B

{
P1
i , . . . ,P

K
i
}
that contains the

i-th part for every frame.
Let us consider a cut of a meshM by hyperplane πe in frame r

into parts Pr1 and Pr2 . LetV
r
1 andVr

2 be the sets of original vertices
ofM belonging to each half space defined by πe . The vertex sets of
Pr1 and Pr2 after the cut will consist of:

Pr1 = Vr
1 ∪V

′ (8)
Pr2 = Vr

2 ∪V
′, (9)

whereV ′ is a set of vertices, newly created by cutting each edge
ϵ = (vrϵ1 ,v

r
ϵ2 ), whose end points vrϵ1 and v

r
ϵ2 belong to different half

spaces (see Figure 2).
The set of triangles of a newly created part consists of those

original triangles whose vertices were all in the same half space
as the part. Additionally some original triangles will be split into a
triangle and a quadrilateral by the hyperplane. The quadrilateral will
be triangulated and all new triangles will be added to the triangle
sets of the respective part depending of which side of the hyperplane
they fall on. At last the parts’ open holes along the hyperplane are
closed by triangulation.

v8

v7

v6
v5

v4

v3
v2

v1 v10

v9

(a) Part with two concavities
and indicated cut position.

v11
1/3

2/3

v8

v7

v6
v5

v4

v3
v2

v1 v10

v9

(b) New edge and vertex after
the cut.

v11

v8

v7

v6
v5

v4

v3
v2

v1 v10

v9

(c) Next cut position.

v11
1/2

v12
1/2

v8

v7

v6
v5

v4

v3
v2

v1 v10

v9

(d) New edge and vertex after
the cut.

Fig. 4. An exemplary decomposition of the top left mesh into three parts
using two (green) cuts through the outer concave (red) angles. The first part
consists of the points {v1, v2, v3, v12, v11, v10 }, the second part consists
of the points {v3, v4, v5, v6, v7, v12 }, and the third part consists of the
points {v7, v8, v9, v11, v12 }. Each newly created point is a pairwise convex
combination of original or previously introduced vertices. Point v11 is de-
scribed as a convex combination of vertices v9 and v10 as v11 =

1
3v9 +

2
3v10,

and similarly v12 =
1
2v3 +

1
2v11.

Each newly created vertex v ′ϵ can be uniquely described as a
weighted sum of edge end points vrϵ1 and v

r
ϵ2 :

v ′ϵ = λϵv
r
ϵ1 + (1 − λϵ )v

r
ϵ2 . (10)

Figure 4 shows an example of this concept.
This allows us to transfer the split from reference frame r to any

other frame j by copying the indices of the triangle sets for each
part and defining a transfer function T j

e (v) for all original and new
vertices:

T
j
e (v

r
i ∈ V

r
1 ∪V

r
2 ) = v

j
i (11)

T
j
e (v
′
ϵ ∈ V

′) = λϵv
j
ϵ1 + (1 − λϵ )v

j
ϵ2 . (12)

The transfer function applied to a vertex set T j
e (V) is defined as a

transfer function applied to each vertex v ∈ V . In the next section
we will see how the ability to express parts in a frame-independent
way can be used to design an algorithm for temporally coherent
approximate convex decomposition.

4 TEMPORALLY COHERENT APPROXIMATE CONVEX
DECOMPOSITION AND TRANSFER FOR ANIMATED
MESHES

Instead of only taking a single frame into account when computing
the decomposition, we will use several representative frames that
capture the mesh’s range of motion. This will make sure that the
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decomposition does not “overfit” a particular frame but respects
the whole range of possible spatial configurations of the mesh’s
vertices.

Following the static decomposition approach, we define the opti-
mization objective as:

D∗ = argmin
D

K∑
j=1

∑
P∈D

e(P j ) s.t. |D| = M, (13)

where same parts P in different frames j have the same topological
structure—corresponding vertices and triangles.
This cost function can be optimized iteratively by finding a hy-

perplane πe cutting concave edge e minimizing:

π∗e = argmin
πe

K∑
j=1

(
e(T j (P∗r

∗

πe ,1)) + e(T
j (P∗r

∗

πe ,2)) − e(P
j )
)
. (14)

where, analogous to Equation 6, P∗r
∗

is the part-frame combination
with the highest convex approximation error:

P∗, r∗ B argmax
P∈D,r ∈{1, ...,K }

e(Pr ) (15)

This optimal cut in frame r∗ is then transferred into all frames us-
ing the transfer function P j = T j (Pr

∗

). The algorithm is described
in detail in (Algorithm 3). Figure 5 gives a high level depiction of
the process.
The vertex sets of resulting parts will consist of the vertices of

the original meshM and additional vertices, calculated as weighted
sums of endpoints of edges split by the cuts. To reconstruct these
points for an arbitrary new pose, and thus to transfer the convex
decomposition, we just need to keep track of the indices of interpo-
lated points and the weight λ. New points are calculated recursively
in the same order as they were created during optimization, as the
endpoints might already be interpolated points (see Figure 4).
The ability to transfer the decomposition allows to train using

only a subset of frames (also called keyframes), and transfer the result
to the remaining ones. Furthermore, the method can be applied for
an animated mesh whose frames are not known in advance—such
as a virtual reality avatar controlled by a user’s body pose.

5 RESULTS AND EXPERIMENTS
We implemented the algorithm as a multi-threaded C++ application
and compared it against state of the art methods for approximate
convex decomposition of static meshes. We also present qualitative
and quantitative results on animated meshes.

5.1 Quantitative Evaluation on Static Meshes
We evaluate our algorithm with respect to prior work by comparing
static mesh performance. A straightforward quantitative measure
on static meshes would be the ratio between the volume of the
original mesh and the sum of volumes of the convex hulls of parts,
as optimized in our cost function. However, for some of the methods
we compare to, the resulting parts are not guaranteed to form a
superset of the original mesh. Thus, we used the intersection over
union (IoU) measure with additional penalization of overlapping

Frame 1

Frame 2

Frame 3

Fig. 5. Graphic depiction of our algorithm for temporally coherent approxi-
mate convex decomposition. Pictured are three (key)frames. Each column
corresponds to one iteration of the cutting process. The leftmost column
shows the initial frames. Each subsequent column indicates with a red line
the cut in the reference frame that was chosen to execute the cut in and
with a blue line the transfer of the cut result to the other two frames. The
convex approximation errors—the difference between parts and their convex
hulls—are highlighted as black areas and become smaller as the algorithm
progresses.

Algorithm 3: Temporally coherent approximate convex de-
composition.
Input :Animated meshM, target number of partsM ,

number of concave edges to sample C , number of
hyperplane orientations R

Output :Approximate convex decomposition D with at
mostM parts

1 D ← {M}

2 while |D| < M and there exists a concave edge do
3 Pr ← part-frame combination Pr with largest e(Pr )
4 E ← find the C concave edges e ∈ Pr furthest from

ConvexHull(Pr )
5 π∗e ← nil
6 minError←∞
7 for concave edge e ∈ E do
8 Πe ← construct R hyperplanes πe through e splitting

the outer dihedral angle
9 for hyperplane πe ∈ Πe do

10 Pr1 , P
r
2 ,T ← cut Pr at πe

11 error←
∑K
j=1 e(T

j (Pr1 ))+ e(T
j (Pr2 )) − e(T

j (Pr ))

12 if error < minError then
13 minError← error
14 π∗e ← πe
15 Pr1 , P

r
2 , T ← cut Pr at π∗e

16 for all frames j do
17 P

j
1 , P

j
2 ← T j (Pr1 ), T

j (Pr2 )

18 D ← (D \ P) ∪ {P1, P2}
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(a)

(b)

(c)

(d)

(e)

Fig. 6. Temporally coherent approximate convex decomposition for animated meshes a) sporty grandma, b) warrok, c) zombie, d) dragon and e) armadillo (a
softbody simulation) at varying levels of detail, ranging from coarse body parts to the finest details capturing individual fingers. Our method managed to
decompose the animations into temporally coherent parts using only 12 training keyframes.

(a) (b)

(d)(c)

()(e)

Fig. 7. Temporally coherent approximate convex decomposition and transfer for an animated mesh. a) Input animation, b) Approximate Convex Decomposition,
c) d) e) f) Transfers to new previously unseen animations. More transfer results in the teaser figure.
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(a) (b)

Fig. 8. Comparison of static approximate convex decomposition of individual frames (a) and decomposition computed across all frames of an animated mesh
(b). The results are qualitatively and quantitatively very similar, however training on a subset of keyframes is much faster than computing an individual
decomposition per frame and leads to temporally coherent parts, more suitable for physics simulations. Furthermore the static method is more likely to
generate parts that do not have semantic meaning (see for example the third frame from the left in (a) where the ankles were merged).
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Fig. 9. Difference between the decomposition of an animated mesh into
16 parts computed from only the first frame of the animation (red) and all
frames (blue). The lower plot shows the approximation error throughout the
200 frames of the animation. The upper plot shows the histograms of those
approximation errors. One can see that the decomposition computed from
only the first frame “overfits” that frame and produces a low approximation
error only for this and similar frames. The decomposition computed from
all frames on the other hand has lower mean approximation error as well as
a lower standard deviation in those errors.

hulls:

score =
Volume(M ∩

⋃
P∈D ConvexHull(P))

Volume(M ′) +
∑
P∈D Volume(ConvexHull(P))

(16)

whereM ′ =M\
⋃
P∈D ConvexHull(P) is the part of the mesh not

covered by any convex hull. Note that for methods guaranteed to
produce a superset of the original mesh (ours and V-HACD [Mamou
2016]),M ′ = ∅ andM ∩

⋃
P∈D P =M. The error measure then

simplifies to the ratio between the volume of the original mesh and
the sum of volumes of the convex hulls of parts:

score =
Volume(M)∑

P∈D Volume(ConvexHull(P))
(17)

We also compared our results to the related works using a surface
distance measure. We compute the average absolute distance from

each point p on the mesh’s surface S(M) to the closest point on any
of the generated convex hulls:

distance =

∫
S (M)minP∈D Distance(p,ConvexHull(P)) dp

Area(S(M))
(18)

Notice that such a measure does not reliably penalize falsely filled
space.
The results of comparing our method to HACD [Mamou and

Ghorbel 2009], V-HACD 2.0 [Mamou 2016] and CoRise [Liu et al.
2016] on the V-HACD dataset can be found in Table 11. It shows
detailed results of the volumetric measure (Equation 16) as well
as aggregated results for the surface measure (Equation 18) and
runtime. To get a fair comparison, for each competing method we
instructed our method to output the same number of parts. Our
algorithm significantly outperforms existing approaches as judged
by the volumetric score. Even when considering the surface based
distance measure that our algorithm does not optimize for, we im-
prove upon the state of the art. Our running times are competitive
with the fastest related methods, taking for example approximately
7.2s on the Stanford bunny compared to 7.3s for HACD, 9.9s for
CoRise and 108s for V-HACD.

5.2 Qualitative andQuantitative Evaluation on Animated
Meshes

We tested our decomposition algorithm for animated meshes on
publicly available animated meshes from https://www.mixamo.com
and https://www.free3d.com as well as a soft body simulation cre-
ated in Houdini. Each temporally coherent convex decomposition
model was trained on a subset of 12 keyframes, uniformly sampled
from the input animation. The qualitative results at varying lev-
els of detail can be found in Figure 6. The results of the convex
decomposition transfer to another animated mesh with the same
topology (the same character) are shown in Figure 7. The difference
between the decomposition on individual frames and on the whole
animation is shown in Figure 8. The results are qualitative and quan-
titatively comparable, however a typical per frame decomposition
can not take advantage of being evaluated across a multitude of
frames. Furthermore, results obtained by our method for animated
meshes are temporally coherent which makes them much more suit-
able for physics simulations than per-frame decompositions which
can lead to “flickering”. The algorithm turned out to be very ro-
bust and worked consistently for every animation. Tested animated
meshes were slightly smaller in the number of vertices than the
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Fig. 10. Real-time fluid simulations using temporally coherent convex decompositions into 16 parts. We were able to calculate collisions and simulate up to 5
million particles in real-time. The resulting animations were rendered offline using Mitsuba [Jakob 2010] (fluid) and Blender (sand) renderers.

HACD VHACD CoRise
Mesh # theirs ours # theirs ours # theirs ours
Block 19 0.636 0.888 36 0.360 0.953 7 0.309 0.735
Bull 14 0.730 0.880 28 0.920 0.945 26 0.171 0.942
Bunny 8 0.699 0.876 38 0.893 0.961 28 0.698 0.952
Camel 16 0.801 0.851 27 0.892 0.923 28 0.819 0.927
Cow 13 0.795 0.863 21 0.890 0.913 38 0.169 0.949
Dancing Figurine 7 0.548 0.753 45 0.808 0.936 13 0.742 0.826
Devilish Head 19 0.616 0.949 69 0.435 0.972 31 0.780 0.961
Dinosaur 13 0.762 0.872 29 0.872 0.950 8 0.795 0.808
Double Donut 13 0.581 0.910 19 0.929 0.943 27 0.343 0.966
Elk Toy 13 0.832 0.860 28 0.892 0.958 29 0.874 0.959
Fish 7 0.709 0.880 15 0.921 0.941 13 0.879 0.932
Foot 3 0.768 0.914 12 0.929 0.974 8 0.856 0.967
Genus 12 0.366 0.838 36 0.924 0.959 10 0.472 0.785
Girl 34 0.585 0.869 27 0.847 0.860 33 0.741 0.870
Hand 9 0.658 0.883 24 0.840 0.963 25 0.765 0.965
Head 9 0.824 0.965 64 0.210 0.991 33 0.764 0.986
Head Sculpture 2 0.893 0.941 10 0.958 0.969 24 0.911 0.979
Helix 9 0.717 0.704 19 0.842 0.912 18 0.863 0.903
Homer 18 0.840 0.933 21 0.923 0.943 27 0.170 0.954
Horse 10 0.643 0.836 23 0.901 0.932 25 0.759 0.937
Metal Casting 11 0.536 0.776 45 0.851 0.923 46 0.297 0.925
Moai 6 0.864 0.921 29 0.914 0.972 22 0.841 0.968
Octopus 31 0.607 0.739 31 0.649 0.739 45 0.743 0.837
Organic Fountain 18 0.436 0.655 44 0.715 0.803 18 0.538 0.655
Pig 9 0.676 0.933 17 0.936 0.962 25 0.843 0.975
Screwdriver 8 0.717 0.832 27 0.879 0.920 7 0.765 0.819
Sledge 14 0.463 0.912 24 0.922 0.995 15 0.079 0.925
Sword 4 0.827 0.814 73 0.812 0.988 4 0.703 0.814
Table 5 1.000 0.997 6 0.938 0.998 5 1.000 0.997
Torus 5 0.825 0.885 12 0.950 0.977 1 0.691 0.691
Venus 6 0.840 0.920 51 0.912 0.987 33 0.080 0.981
Winged Lion 25 0.643 0.791 42 0.765 0.857 47 0.655 0.867
median volumetric
score 0.713 0.878 0.892 0.952 0.743 0.935

median surface
distance measure 0.43 0.428 0.272 0.224 0.405 0.242

median runtime 8.5s 1.6s 362s 3.4s 2.6s 3.1s

Fig. 11. Quantitative comparison of our method to HACD, V-HACD 2.0 and
CoRise. Each method resulted in different numbers of parts (#) for each
mesh. We ran our method such that it matched the number of parts. The
table shows detailed scores using the volumetric measure (Equation 16,
higher is better) as well as aggregated scores using the surface distance
measure in the second to last row (Equation 18, lower is better). The last row
shows the median runtime each method took to compute a decomposition.

Fig. 12. The user controls the original mesh via a Kinect and a precomputed
approximate convex decomposition is transferred in real-time to the novel
frames.

static meshes, and thus training took only from 20 to 50 seconds
per animation. The transfer for a new pose runs in real-time.
Figure 9 shows a typical quantitative difference between a de-

composition computed from only the first frame of the animation
and a decomposition computed from all frames of the animation.
The decomposition computed only from the first frame overfits and
achieves a low error score only on that specific frame while the
average error across all frames of the animation is higher than for
the decomposition that was computed based on the information
from all frames.

5.3 Application in Real-time Simulations
We tested the convex decompositions in the real-time fluid simula-
tion framework of [Ladicky et al. 2015]. Snapshots of the simulation
results are shown in Figure 10.We decomposed the animatedmeshes
into 16 temporally coherent approximate convex parts and used the
convex hulls of those parts in the narrow phase of collision detection
as well as simple axis aligned bounding boxes in the broad phase.
This setup allowed us to simulate up to 5 million fluid particles in-
teracting with an animated mesh in real-time. The simulations were
rendered off-line using Mitsuba [Jakob 2010] (fluid) and Blender
(sand).
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5.4 Interactive Applications
As the popularity of virtual and augmented reality increases we ex-
pect approximate convex decomposition to become more important
in these fields. Users want to interact with their virtual surround-
ings and a virtual physics representation of the user’s body is thus
needed. To showcase the applicability of our method to such sce-
narios we connected a Kinect device which is able to estimate a
user’s body pose with one of our animated meshes (Figure 12). A
temporally coherent approximate convex decomposition was pre-
computed on the animated mesh and then transferred in real-time
to the novel frames created by the user’s body pose.

6 DISCUSSION
We presented a novel method for the fast and robust decomposition
of animated meshes into temporally coherent approximately convex
parts and showed how the decomposition model can be transferred
to a new unseen animation with the same topology. Our method
was shown to work robustly for a large variety of animation. The
only artifacts appeared if the geometry of the training keyframes did
not cover the range of deformation in the whole sequence or in the
new unseen animation. This could have been observed for example,
when the arm in the training simulation was always straight and
ended up being one convex part in the decomposition, or when the
training animation contained a character always holding a sword
with both hands and fingers could not have been separated.

In the future we would like to explore variants of our algorithm
that work on open, non manifold meshes. This could be used to
compute robust signed distance fields or to repair topologically
broken meshes by closely approximating them with a high number
of convex hulls and merging those convex hulls back into a mesh
that is two-manifold.
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