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Abstract

We consider the problem of minimizing the composition of a smooth (nonconvex)
function and a smooth vector mapping, where the inner mapping is in the form of
an expectation over some random variable or a finite sum. We propose a stochastic
composite gradient method that employs an incremental variance-reduced estimator
for both the inner vector mapping and its Jacobian. We show that this method
achieves the same orders of complexity as the best known first-order methods
for minimizing expected-value and finite-sum nonconvex functions, despite the
additional outer composition which renders the composite gradient estimator biased.
This finding enables a much broader range of applications in machine learning to
benefit from the low complexity of incremental variance-reduction methods.

1 Introduction

In this paper, we consider stochastic composite optimization problems

minimize
x∈Rd

f
(
Eξ [gξ (x)]

)
+ r(x) , (1)

where f : Rp → R is a smooth and possibly nonconvex function, ξ is a randomvariable,gξ : Rd → Rp

is a smooth vector mapping for a.e. ξ, and r is convex and lower-semicontinuous. A special case
we will consider separately is when ξ is a discrete random variable with uniform distribution over
{1, 2, . . . , n}. In this case the problem is equivalent to a deterministic optimization problem

minimize
x∈Rd

f
(

1
n

n∑
i=1

gi(x)
)
+ r(x) . (2)

The formulations in (1) and (2) cover a broader range of applications than classical stochastic
optimization and empirical risk minimization (ERM) problems where each gξ is a scalar function
(p = 1) and f is the scalar identity map. Interesting examples include the policy evaluation in
reinforcement learning (RL) [e.g., 30], the risk-averse mean-variance optimization ([e.g., 28, 29],
through a reformulation by [35]), the stochastic variational inequality ([e.g., 12, 15] through a
reformulation in [10]), the 2-level composite risk minimization problems [7], etc.
For the ease of notation, we define

g(x) := Eξ [gξ (x)], F(x) := f (g(x)), Φ(x) := F(x) + r(x). (3)

In addition, let f ′ and F ′ denote the gradients of f and F respectively, and g′ξ (x) ∈ Rp×d denote the
Jacobian matrix of gξ at x. Then we have

F ′(x) = ∇
(

f
(
Eξ [gξ (x)]

) )
=

(
Eξ [g

′
ξ (x)]

)T
f ′

(
Eξ [gξ (x)]

)
.
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Table 1: Sample complexities of CIVR (Composite Incremental Variance Reduction)

Assumptions (common: f and gξ Lipschitz and smooth, thus F smooth)
Problem F nonconvex F ν-gradient dominant F convex, r convex

r convex r ≡ 0 Φ µ-optimally strongly convex

(1) O
(
ε−3/2) O

( (
νε−1) log ε−1) O

( (
µ−1ε−1) log ε−1)

(2) O
(
min{ε−3/2, n1/2ε−1}

)
O

( (
n + νn1/2) log ε−1) O

( (
n + µ−1n1/2) log ε−1)

In practice, computing F ′(x) exactly can be very costly if not impossible. Due to the nonlinearity of the
outer composition, simply multiplying the unbiased estimators E[g̃(x)] = g(x) and E[g̃′(x)] = g′(x)
results in a biased estimator for F ′(x), namely, E[[g̃′(x)]T f ′(g̃(x))] , F ′(x), see [e.g., 35]. This is in
great contrast to the classical stochastic optimization problem

minimize
x∈Rd

Eξ

[
gξ (x)

]
+ r(x) , (4)

where one can always get an unbiased gradient estimator for the smooth part. This fact makes such
composition structure be of independent interest for research on stochastic and randomized algorithms.
In this paper, we develop an efficient stochastic composite gradient method called CIVR (Composite
Incremental Variance Reduction), for solving problems of the forms (1) and (2). Wemeasure efficiency
by the sample complexity of the individual functions gξ and their Jacobian g′ξ , i.e., the total number
of times they need to be evaluated at some point, in order to find an ε-approximate solution. For
nonconvex functions, an ε-approximate solution is some random output of the algorithm x̄ ∈ Rd that
satisfies E[‖G(x̄)‖2] ≤ ε , where G(x̄) is the proximal gradient mapping of the objective function Φ
at x̄ (see details in Section 2). If r ≡ 0, then G(x̄) = F ′(x̄) and the criteria for ε-approximation
becomes E[‖F ′(x̄)‖2] ≤ ε . If the objective Φ is convex, we require E[Φ(x̄) − Φ?] ≤ ε where
Φ? = infx Φ(x). For smooth and convex functions, these two notions are compatible, meaning that
the dependence of the sample complexity on ε in terms of both notions are of the same order.
Table 1 summarizes the sample complexities of the CIVR method under different assumptions
obtained in this paper. We can define a condition number κ = O(ν) for ν-gradient dominant
functions and κ = O(1/µ) for µ-optimally strongly convex functions, then the complexities become
O

( (
κε−1) log ε−1) and O ( (

n + κn1/2) log ε−1) for (1) and (2) respectively. In order to better position
our contributions, we next discuss related work and then putting these results into context.

1.1 Related Work

We first discuss the nonconvex stochastic optimization problem (4), which is a special cases of (1).
When r ≡ 0 and g(x) = Eξ [gξ (x)] is smooth, Ghadimi and Lan [9] developed a randomized stochastic
gradient method with iteration complexity O(ε−2). Allen-Zhu [2] obtained O

(
ε−1.625) with additional

second-order guarantee. There are also many recent works on solving its finite-sum version

minimize
x∈Rd

1
n

n∑
i=1

gi(x) + r(x), (5)

which is also a special case of (2). By extending the variance reduction techniques SVRG [13, 34] and
SAGA [6] to nonconvex optimization, Allen-Zhu and Hazan [3] and Reddi et al. [24, 25, 26] developed
randomized algorithms with sample complexity O(n + n2/3ε−1). Under additional assumptions of
gradient dominance or strong convexity, they obtained sample complexityO((n+κn2/3) log ε−1), where
κ is a suitable condition number. Allen-Zhu [1] and Lei et al. [17] obtained O

(
min{ε−5/3, n2/3ε−1}

)
.

Based on a new variance reduction technique called SARAH [21], Nguyen et al. [22] and Pham et al.
[23] developed nonconvex extensions to obtain sample complexities O

(
ε−3/2) and O (

n + n1/2ε−1) for
solving the expectation and finite-sum cases respectively. Fang et al. [8] introduced another variance
reduction technique called Spider, which can be viewed as a more general variant of SARAH. They
obtained sample complexities O

(
ε−3/2) and O (

min{ε−3/2, n1/2ε−1}
)
for the two cases respectively,

but require small step sizes that are proportional to ε . Wang et al. [33] extended Spider to obtain
the same complexities with constant step sizes and O

(
(n + κ2) log ε−1) under the gradient-dominant

condition. In addition, Zhou et al. [36] obtained similar results using a nested SVRG approach.
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In addition to the above works on solving special cases of (1) and (2), there are also considerable
recent works on a more general, two-layer stochastic composite optimization problem

minimize
x∈Rd

Eν
[

fν
(
Eξ [gξ (x)]

) ]
+ r(x) , (6)

where fν is parametrized by another random variables ν, which is independent of ξ. For the case
r ≡ 0, Wang et al. [31] derived algorithms to find an ε-approximate solution with sample complexities
O(ε−4), O(ε−3.5) and O(ε−1.25) for the smooth nonconvex case, smooth convex case and smooth
strongly convex case respectively. For nontrivial convex r , Wang et al. [32] obtained improved sample
complexity of O(ε−2.25), O(ε−2) and O(ε−1) for the three cases mentioned above respectively.
As a special case of (6), the following finite-sum problem also received significant attention:

minimize
x∈Rd

1
m

m∑
j=1

fj

(
1
n

n∑
i=1

gi(x)
)
+ r(x) . (7)

When r ≡ 0 and the overall objective function is strongly convex, Lian et al. [19] derived two
algorithms based on the SVRG scheme to attain sample complexities O((m + n + κ3) log ε−1)) and
O((m + n + κ4) log ε−1)) respectively, where κ is some suitably defined condition number. Huo et al.
[11] also used the SVRG scheme to obtain an O(m + n + (m + n)2/3ε−1) complexity for the smooth
nonconvex case and O((m + n + κ3) log ε−1)) for strongly convex problems with nonsmooth r . More
recently, Zhang and Xiao [35] proposed a composite randomized incremental gradient method based
on the SAGA estimator [6], which matches the best knownO(m+n+(m+n)2/3ε−1) complexity when F
is smooth and nonconvex, and obtained an improved complexity O

(
(m + n + κ(m + n)2/3) log ε−1)

under either gradient dominant or strongly convex assumptions. When applied to the special cases (1)
and (2) we focus on in this paper (m = 1), these results are strictly worse than ours in Table 1.

1.2 Contributions and Outline

We develop the CIVR method by extending the variance reduction technique of SARAH [21–23] and
Spider [8, 33] to solve the composite optimization problems (1) and (2). The complexities of CIVR
in Table 1 match the best results for solving the non-composite problems (4) and (5), despite the
additional outer composition and the composite-gradient estimator always being biased. In addition:

• By setting f and gξ ’s to be the identity mapping and scalar mappings respectively, problem
(2) includes problem (5) as a special case. Therefore, the lower bounds in [8] for the non-
composite finite-sum optimization problem (5) indicates that our O

(
min{ε−3/2, n1/2ε−1}

)
complexity for solving the more general composite finite-sum problem (2) is near-optimal.

• Under the assumptions of gradient dominance or strong convexity, theO
( (

n + κn1/2) log ε−1)
complexity only appeared for the special case (5) in the recent work [18].

Our results indicate that the additional smooth composition in (1) and (2) does not incur higher
complexity compared with (4) and (5), despite the difficulty of dealing with biased estimators. We
believe these results can also be extended to the two-layer problems (6) and (7), by replacing n with
m + n in Table 1. But the extensions require quite different techniques and we will address them in a
separate paper.
The rest of this paper is organized as follows. In Section 2, we introduce the CIVR method. In
Section 3, we present convergence results of CIVR for solving the composite optimization problems (1)
and (2) and the required parameter settings. Better complexities of CIVR under the gradient-dominant
and optimally strongly convex conditions are given in Section 4. In Section 5, we present numerical
experiments for solving a risk-averse portfolio optimization problem (5) on real-world datasets.

2 The composite incremental variance reduction (CIVR) method

With the notations in (3), we can write the composite stochastic optimization problem (1) as
minimize

x∈Rd

{
Φ(x) = F(x) + r(x)

}
, (11)

where F is smooth and r is convex. The proximal operator of r with parameter η is defined as

proxηr (x) := argmin
y

{
r(y) +

1
2η
‖y − x‖2

}
. (12)
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Algorithm 1: Composite Incremental Variance Reduction (CIVR)
input: initial point x1

0 , step size η > 0, number of epochs T ≥ 1, and a set of triples {τt, Bt, St }
for t = 1, . . . ,T , where τt is the epoch length and Bt and St are sample sizes in epoch t.

for t = 1, ...,T do
Sample a set Bt with size Bt from the distribution of ξ, and construct the estimates

yt0 =
1
Bt

∑
ξ ∈Bt

gξ (xt0), zt0 =
1
Bt

∑
ξ ∈Bt

g′ξ (x
t
0), (8)

Compute ∇̃F(xt0) = (z
t
0)
T f ′(yt0) and update: xt1 = proxηr

(
xt0 − η∇̃F(xt0)

)
.

for i = 1, ..., τt − 1 do
Sample a set St

i with size St from the distribution of ξ, and construct the estimates

yti = yti−1 +
1
St

∑
ξ ∈St

i

(
gξ (xti ) − gξ (x

t
i−1)

)
, (9)

zti = zti−1 +
1
St

∑
ξ ∈St

i

(
g′ξ (x

t
i ) − g

′
ξ (x

t
i−1)

)
. (10)

Compute ∇̃F(xti ) = (z
t
i )
T f ′(yti ) and update: xt

i+1 = proxηr
(
xti − η∇̃F(xti )

)
.

end
Set xt+1

0 = xtτt .
end
output: x̄ randomly chosen from

{
xti

}t=1,...,T
i=0,...,τt−1.

We assume that r is relatively simple, meaning that its proximal operator has a closed-form solution
or can be computed efficiently. The proximal gradient method [e.g., 20, 4] for solving problem (11) is

xt+1 = proxηr
(
xt − ηF ′(xt )

)
, (13)

where η is the step size. The proximal gradient mapping of Φ is defined as

Gη(x) ,
1
η

(
x − proxηr

(
x − ηF ′(x)

) )
. (14)

As a result, the proximal gradient method (13) can be written as xt+1 = xt − η G(xt ). Notice that
when r ≡ 0, proxηr (·) becomes the identity mapping and we have Gη(x) ≡ F ′(x) for any η > 0.
Suppose x̄ is generated by a randomized algorithm. We call x̄ an ε-stationary point in expectation if

E
[
‖Gη(x̄)‖2

]
≤ ε . (15)

(We assume that η is a constant that does not depend on ε .) As we mentioned in the introduction, we
measure the efficiency of an algorithm by its sample complexity of gξ and their Jacobian g′ξ , i.e., the
total number of times they need to be evaluated, in order to find a point x̄ that satisfies (15). Our goal
is to develop a randomized algorithm that has low sample complexity.
We present in Algorithm 1 the Composite Incremental Variance Reduction (CIVR) method. This
methods employs a two time-scale variance-reduced estimator for both the inner function value of
g(·) = Eξ [gξ (·)] and its Jacobian g′(·). At the beginning of each outer iteration t (each called an
epoch), we construct a relatively accurate estimate yt0 for g(x

t
0) and zt0 for g

′(xt0) respectively, using
a relatively large sample size Bt . During each inner iteration i of the tth epoch, we construct an
estimate yti for g(x

t
i ) and zti for g

′(xti ) respectively, using a smaller sample size St and incremental
corrections from the previous iterations. Note that the epoch length τt and the sample sizes Bt and St
are all adjustable for each epoch t. Therefore, besides setting a constant set of parameters, we can
also adjust them gradually in order to obtain better theoretical properties and practical performance.
This variance-reduction technique was first proposed as part of SARAH [21] where it is called
recursive variance reduction. It was also proposed in [8] in the form of a Stochastic Path-Integrated
Differential EstimatoR (Spider). Here we simply call it incremental variance reduction. A distinct
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feature of this incremental estimator is that the inner-loop estimates yti and zti are biased, i.e.,{
E[yti |x

t
i ] = g(xti ) − g(x

t
i−1) + yt

i−1 , g(xti ) ,
E[zti |x

t
i ] = g′(xti ) − g

′(xt
i−1) + zt

i−1 , g′(xti ) .
(16)

This is in contrast to two other popular variance-reduction techniques, namely, SVRG [13] and SAGA
[6], whose gradient estimators are always unbiased. Note that unbiased estimators for g(xti ) and
g′(xti ) are not essential here, because the composite estimator ∇̃F(xti ) = (z

t
i )
T f ′(yti ) is always biased.

Therefore the our main task is to control the variance and bias altogether for the proposed estimator.

3 Convergence Analysis

In this section, we present theoretical results on the convergence properties of CIVR (Algorithm 1)
when the composite function F is smooth. More specifically, we make the following assumptions.
Assumption 1. The following conditions hold concerning problems (1) and (2):

• f : Rp → R is a C1 smooth and `f -Lipschitz function and its gradient f ′ is L f -Lipschitz.

• Each gξ : Rd → Rp is a C1 smooth and `g-Lipschitz vector mapping and its Jacobian g′ξ is
Lg-Lipschtiz. Consequently, g in (3) is `g-Lipschitz and its Jacobian g′ is Lg-Lipschitz.

• r : Rd → R ∪ {∞} is a convex and lower-semicontinuous function.
• The overall objective function Φ is bounded below, i.e., Φ∗ = infx Φ(x) > −∞.

Assumption 2. For problem (1), we further assume that there exist constants σg and σg′ such that

Eξ [‖gξ (x) − g(x)‖2] ≤ σ2
g , Eξ [‖g

′
ξ (x) − g

′(x)‖2] ≤ σ2
g′ . (17)

As a result of Assumption 1, F(x) = f
(
g(x)

)
is smooth and F ′ is LF -Lipschitz continuous with

LF = `
2
gL f + `f Lg

(see proof in the supplementary materials). For convenience, we also define two constants

G0 := 2
(
`4
gL2

f + `
2
f L2

g

)
, and σ2

0 := 2
(
`2
gL2

fσ
2
g + `

2
fσ

2
g′
)
. (18)

It is important to notice that G0 = O(L2
F ), hence the step size used later is η = Θ(1/

√
G0) = Θ(1/LF ).

We are allowed to use this constant step size mainly due to the assumption that each gξ (·) is smooth,
instead of the weaker assumption that Eξ [gξ (x)] is smooth as in classical stochastic optimization.
In the next two subsections, we present complexity analysis of CIVR for solving problem (1) and (2)
respectively. Due to the space limitation, all proofs are provided in the supplementary materials.

3.1 The composite expectation case

The following results for solving problem (1) are presented with notations defined in (3), (14) and (18).
Theorem 1. Suppose Assumptions 1 and 2 hold. Given any ε > 0, we set T = d1/

√
εe and

τt = τ = d1/
√
εe, Bt = B = dσ2

0 /εe, St = S = d1/
√
εe, for t = 1, . . . ,T .

Then as long as η ≤ 4
LF+
√

L2
F+12G0

, the output x̄ of Algorithm 1 satisfies

E
[
‖Gη(x̄)‖2

]
≤

(
8
(
Φ(x1

0) − Φ
∗
)
η−1 + 6

)
· ε = O(ε). (19)

As a result, the sample complexity of obtaining an ε-approximate solution is T B + 2TτS = O
(
ε−3/2) .

Note that in the above scheme, the epoch lengths τt and all the batch sizes Bt and St are set to be
constant (depending on a pre-fixed ε) without regard of t. Intuitively, we do not need as many samples
in the early stage of the algorithm as in the later stage. In addition, it will be useful in practice to have
a variant of the algorithm that can adaptively choose τt , Bt and St throughout the epochs without
dependence on a pre-fixed precision. This is done in the following theorem.
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Theorem 2. Suppose Assumptions 1 and 2 hold. We set τt = St = dat + be and Bt = dσ
2
0 (at + b)2e

where a > 0 and b ≥ 0. Then as long as η ≤ 4
LF+
√

L2
F+12G0

, we have for any T ≥ 1,

E
[
‖Gη(x̄)‖2

]
≤

2
aT2 + (a + 2b)T

(
8
(
Φ(x1

0) − Φ
∗
)

η
+

6
a + b

+
6
a

ln
(

aT + b
a + b

))
= O

( ln T
T2

)
. (20)

As a result, obtaining an ε-approximate solution requires T = Õ(1/
√
ε) epochs and a total sample

complexity of Õ
(
ε−3/2) , where the Õ(·) notation hides logarithmic factors.

3.2 The composite finite-sum case

In this section, we consider the composite finite-sum optimization problem (2). In this case, the
random variable ξ has a uniform distribution over the finite index set {1, ..., n}. At the beginning
of each epoch in Algorithm 1, we use the full sample size Bt = {1, . . . , n} to compute yt0 and zt0.
Therefore Bt = n for all t and Equation (8) in Algorithm 1 becomes

yt0 = g(xt0) =
1
n

n∑
j=1

gj(xt0) , zt0 = g′(xt0) =
1
n

n∑
j=1

g′j(x
t
0) . (21)

Also in this case, we no longer need Assumption 2.
Theorem3. Suppose Assumptions 1 holds. Let the parameters in Algorithm 1 be set asBt = {1, . . . , n}
and τt = St = d

√
ne for all t. Then as long as η ≤ 4

LF+
√

L2
F+12G0

, we have for any T ≥ 1,

E
[
‖Gη(x̄)‖2

]
≤

8
(
Φ(x1

0) − Φ
∗
)

η
√

nT
= O

(
1
√

nT

)
, (22)

As a result, obtaining an ε-approximate solution requires T = O
(
1/(
√

nε)
)
epochs and a total sample

complexity of T B + 2TτS = O
(
n +
√

nε−1) .
Similar to the previous section, we can also choose the epoch lengths and sample sizes adaptively to
save the sampling cost in the early stage of the algorithm. However, due to the finite-sum structure of
the problem, when the batch size Bt reaches n, we will start to take the full batch at the beginning of
each epoch to get the exact g(xt0) and g′(xt0). This leads to the following theorem.
Theorem 4. Suppose Assumptions 1 holds. For some positive constants a > 0 and 0 ≤ b <

√
n,

denote T0 :=
⌈√n−b

a

⌉
= O

(√
n
)
. When t ≤ T0 we set the parameters to be τt = St =

√
Bt = dat + be;

when t > T0, we set Bt = {1, . . . , n} and τt = St =
⌈√

n
⌉
. Then as long as η ≤ 4

LF+
√

L2
F+12G0

,

E
[
‖Gη(x̄)‖2

]
≤

{
O

( lnT
T 2

)
if T ≤ T0 ,

O
( ln n√

n(T−T0+1)
)

if T > T0 .
(23)

As a result, the total sample complexity of Algorithm 1 for obtaining an ε-approximate solution is
Õ

(
min

{√
nε−1, ε−3/2}) , where Õ(·) hides logarithmic factors.

4 Fast convergence rates under stronger conditions
In this section we consider two cases where fast linear convergence can be guaranteed for CIVR.

4.1 Gradient-dominant function

The first case is when r ≡ 0 and F is ν-gradient dominant, i.e., there is some ν > 0 such that

F(x) − inf
y

F(y) ≤
ν

2
‖F ′(x)‖2, ∀ x ∈ Rd . (24)

Note that a µ-strongly convex function is (1/µ)-gradient dominant by this definition. Hence strong
convexity is a special case of the gradient dominant condition, which in turn is a special case of the
Polyak-Łojasiewicz condition with the Łojasiewicz exponent equal to 2 [see, e.g., 14].
In order to solve (1) with a pre-fixed precision ε , we use a periodic restart strategy as depicted in
Algorithm 2. For this restarted version of CIVR, we have the following results.
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Algorithm 2: Restarted CIVR
input: initial point x̄0, step size η > 0, number of restarts K , number of epochs T ≥ 1, and a

set of triples {τt, Bt, St } for t = 1, . . . ,T .
for k = 0, ...,K − 1 do

Generate x̄k+1 by Algorithm 1, with parameters T, η, {τt, Bt, St } and initial point x̄k .
end
output: x̄K .

Theorem 5. Consider (1) with r ≡ 0. Suppose Assumptions 1 and 2 hold and F is ν-gradient
dominant. For Algorithm 2, given any ε > 0, let τt = St =

⌈ 1√
ε

⌉
, Bt =

⌈ 12νσ2
0

ε

⌉
and T =

⌈ 16ν
√
ε

η

⌉
. Then

as long as η ≤ 4
LF+
√

L2
F+12G0

,

E
[
F(x̄k+1) − F∗

]
≤

1
2
(
F(x̄k) − F∗

)
+

1
2
ε . (25)

Consequently, E[F(x̄k) − F∗] converges linearly to ε with a factor of 1
2 per period. The sample

complexity for finding an ε-solution is O
( (
νε−1) ln ε−1) .

The restart strategy also applies to the finite-sum case.
Theorem 6. Consider problem (2) with r ≡ 0. Suppose Assumption 1 hold and F is ν-gradient
dominant. In Algorithm 2, if we set τt = St =

√
Bt = d

√
ne and T =

⌈ 16ν√
nη

⌉
, then as long as

η ≤ 4
LF+
√

L2
F+12G0

,

E
[
F(x̄k+1) − F∗ | x̄k

]
≤

1
2
(
F(x̄k) − F∗

)
. (26)

As a result, the sample complexity for finding an ε-solution is O
( (

n + ν
√
n
η

)
ln 1

ε

)
.

It is worth noting that for both cases, the number of epochs T ∝ η−1. When we take more conservative
values η, it will directly result in worse complexity results. This comment also applies to the optimally
strongly convex objective function case in the next section.

4.2 Optimally strongly convex function

In this part, we assume a µ-optimally strongly convex condition on the function Φ(x) = F(x) + r(x),
i.e., there exists a µ > 0 such that

Φ(x) − Φ(x∗) ≥
µ

2
‖x − x∗‖2, ∀x ∈ Rd . (27)

We have the following two results for solving problems (1) and (2) respectively.
Theorem 7. Consider problem (1). Suppose Assumptions 1 and 2 hold and Φ is µ-optimally strongly
convex. In Algorithm 2, let us set τt = St =

⌈ 1√
ε

⌉
, Bt =

⌈ 9σ2
0

2µε
⌉
and T = d 5

√
ε

µη e. Then if we choose
η < 2

LF+
√

L2
F+36G0

,

E
[
Φ(x̄k+1) − Φ∗

]
≤

1
2
(
Φ(x̄k) − Φ∗

)
+

1
2
ε . (28)

Consquently, E[Φ(x̄k) − Φ∗] converges linearly to ε . The total sample complexity for finding an
ε-solution is O

(
µ−1ε−1 ln ε−1) .

Theorem 8. Consider the finite-sum problem (2). Suppose Assumption 1 hold and Φ is µ-optimally
strongly convex. In Algorithm 2, let us set τt = St =

√
Bt = d

√
ne and T =

⌈ 5√
nµη

⌉
. Then if we choose

η < 2
LF+
√

L2
F+36G0

,

E
[
Φ(x̄k+1) − Φ∗

]
≤

1
2
(
Φ(x̄k) − Φ∗

)
. (29)

The sample complexity of finding an ε-solution is O
( (

n +
√
n

µη

)
ln 1

ε

)
.
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Figure 1: Experiments on the risk-averse portfolio optimization problem.

If we define a condition number κ = LF/µ, then since η = Θ(1/LF ), we have 1/(µη) = O(κ) and the
above complexities become O

( (
κε−1) ln ε−1) and O ( (

n + κn1/2) ln ε−1) .
For Algorithm 2 in both gradient-dominant and strongly convex cases, we have the following remarks.
Remark 1. In Algorithm 2, each run of Algorithm 1 includes a random selection of output. In average
it wastes half of the iterates. This waste can be prevented by pre-generating the “stop times” or the
output indeces. We can stop Algorithm 1 and output the last iterate whenever the method hits this time.
Remark 2. In Algorithm 2, the linear-convergence is achieved by restarting. This strategy is proposed
partly due to the epoch structure of Algorithm 1. Therefore, if we break this epoch structure by the
loopless variance reduction techniques introduced in [16], the restarts may be avoided.

5 Numerical Experiments

In this section, we present numerical experiments for a risk-averse portfolio optimization problem.
Suppose there are d assets that one can invest during n time periods labeled as {1, ..., n}. Let Ri, j

be the return or payoff per unit of asset j at time i, and Ri be the vector consists of Ri,1, . . . , Ri,d.
Let x ∈ Rd be the decision variable, where each component xj represent the amount of investment
or percentage of the total investment allocated to asset j, for j = 1, . . . , d. The same allocations
or percentages of allocations are repeated over the n time periods. We would like to maximize the
average return over the n periods, but with a penalty on the variance of the returns across the n periods
(in other words, we would like different periods to have similar returns).
This problem is formulated as a mean-variance trade-off:

maximize
x∈Rd

{
E
[
hξ (x)

]
− λVar

(
hξ (x)

)
+ r(x) ≡ E

[
hξ (x)

]
− λ

(
E
[
h2
ξ (x)

]
− E

[
hξ (x)

]2
)
+ r(x)

}
,

where the random variable ξ ∈ {1, . . . , n} takes discrete values uniformly at random and hence
makes the problem a finite-sum. The functions hi(x) = 〈Ri, x〉 for i = 1, . . . , n are the rewards. The
function r can be chosen as the indicator function of an `1 ball, or a soft `1 regularization term. We
choose the latter one in our experiments to obtain a sparse asset allocation. By using the mappings

gξ (x) : Rd → R2 =
[
hξ (x) h2

ξ (x)
]T
, f (y, z) : R2 → R = −y + λy2 − λz,

it can be further transformed into the composite finite-sum problem (2), hence readily solved by the
CIVR method. Here, the intermediate dimension is very low, i.e., p = 2. This leads to very little
overhead in computation compared with stochastic optimization without composition.
For comparison, we implement the C-SAGA algorithm [35] as a benchmark. As another benchmark,
this problem can also be formulated as a two-layer composite finite-sum problem (7), which was done
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in [11] and [19]. We solve the two-layer formulation by ASC-PG [32] and VRSC-PG [11]. Finally,
we also implemented CIVR-adp, which is the adaptive sampling variant described in Theorem 4.
We test these algorithms on three real world portfolio datasets, which contain 30, 38 and 49 industrial
portfolios respectively, from the Keneth R. French Data Library1. For the three datasets, the daily data
of the most recent 24452, 10000 and 24400 days are extracted respectively to conduct the experiments.
We set the parameter λ = 0.2 in (5) and use an `1 regularization r(x) = 0.01‖x‖1. The experiment
results are shown in Figure 1. The curves are averaged over 20 runs and are plotted against the number
of samples of the component functions (the horizontal axis).

Throughout the experiments, VRSC-PG and C-SAGA algorithms use the batch size S = dn2/3e while
CIVR uses the batch size S = d

√
ne, all dictated by their complexity theory. CIVR-adp employs

the adaptive batch size St =
⌈
min{10t + 1,

√
n}

⌉
for t = 1, ...,T . For Industrial-30 dataset, all of

VRSC-PG, C-SAGA, CIVR and CIVR-adp use the same step size η = 0.1. They are chosen from
the set η ∈ {1, 0.1, 0.01, 0.001, 0.0001} by experiments. And η = 0.1 works best for all four tested
methods simultaneously. Similarly, η = 0.001 is chosen for the Industrial-38 dataset and η = 0.0001
is chosen for the Industrial-49 dataset. For ASC-PG, we set its step size parameters αk = 0.001/k
and βk = 1/k [see details in 32]. They are hand-tuned to ensure ASC-PG converges fast among a
range of tested parameters. Overall, CIVR and CIVR-adp outperform other methods.
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Appendices

A Convergence analysis for composite expectation case

In this section, we focus on convergence analysis of CIVR for solving the stochastic composite
optimization problem (1), and prove Theorems 1 and 2.
First, we show that under Assumption 1, the composite function F(x) = f (g(x)) is smooth and F ′
has Lipschitz constant L f = `

2
gL f + `f Lg.

‖F ′(x) − F ′(y)‖ =
g′(x)T f ′(g(x)) − g′(y)T f ′(g(y))


=

g′(x)T f ′(g(x)) − g′(x)T f ′(g(y)) + g′(x)T f ′(g(y)) − g′(y)T f ′(g(y))


≤
g′(x)T f ′(g(x)) − g′(x)T f ′(g(y))

 + g′(x)T f ′(g(y)) − g′(y)T f ′(g(y))


≤ ‖g′(x)‖ ‖ f ′(g(x)) − f ′(g(y))‖ + ‖ f ′(g(y))‖ ‖g′(x) − g′(y)‖
≤ ‖g′(x)‖ · L f ‖g(x) − g(y)‖ + ‖ f ′(g(y))‖ · Lg ‖x − y‖

≤ `gL f `g ‖x − y‖ + `f Lg ‖x − y‖

=
(
`2
gL f + `f Lg

)
‖x − y‖,

where we used ‖g′(x)‖ ≤ `g and ‖ f ′(g(y))‖ ≤ `f , which are implied by the Lipschitz conditions on g
and f respectively.
Although the incremental estimators used in CIVR are biased, as shown in (16), we can still bound
their squared distances from the targets. This is given in the following lemma.
Lemma 1. Suppose Assumption 1 holds. Let yti and zti be constructed according to (8) and (9) in
Algorithm 1. For any t ≥ 1 and 1 ≤ i ≤ τt − 1, we have the following mean squared error (MSE)
bounds 

E
[
‖yti − g(x

t
i )‖

2] ≤ E
[
‖yt0 − g(x

t
0)‖

2] + i∑
r=1

`2
g

St
E

[
‖xtr − xtr−1‖

2] ,
E

[
‖zti − g

′(xti )‖
2] ≤ E

[
‖zt0 − g

′(xk0 )‖
2] + i∑

r=1

L2
g

St
E

[
‖xtr − xtr−1‖

2] . (30)

Proof. We first state a fact that allows us to decompose the MSE into a squared bias term and a
variance term, that is, for an arbitrary random vector ζ and a constant vector u, we have

E[‖ζ − u‖2] = ‖E[ζ] − u‖2 + Var(ζ), (31)

where Var(ζ) := E[‖ζ − E[ζ]‖2]. As a result,

E
[
‖yti − g(x

t
i )‖

2��xti ] = E[yti |xti ] − g(xti )2
+ Var

(
yti |x

t
i

)
.

For the bias term, we have E[yti |x
t
i ] − g(x

t
i ) = yt

i−1 − g(x
t
i−1). For the variance term, we have

Var
(
yti |x

t
i

)
= Var

(
yti−1 +

1
St

∑
ξ ∈St

i

(gξ (xti ) − gξ (x
t
i−1))

��� xti

)
=

1
St

Var
(
gξ (xti ) − gξ (x

t
i−1) | x

t
i

)
≤

1
St

E
[
‖gξ (xti ) − gξ (x

t
i−1)‖

2 |xti
]

≤
`2
g

St
‖xti − xti−1‖

2,

where the second equality is due to the fact that yt
i−1 is a constant conditioning on xti and in the last

inequality we used the `g-Lipschitz continuity of gξ . Consequently,

E
[
‖yti − g(x

t
i )‖

2] ≤ E
[
‖yti−1 − g(x

t
i−1)‖

2] + `2
g

St
E

[
‖xti − xti−1‖

2] .
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Recursively applying the above procedure yields

E
[
‖yti − g(x

t
i )‖

2] ≤ E
[
‖yt0 − g(x

t
0)‖

2] + i∑
r=1

`2
g

St
E

[
‖xtr − xtr−1‖

2] . (32)

Similarly, the bound on E
[
‖zti − g

′(xti )‖
2] can be shown by using the Lg-Lipschitz continuity

of g′ξ .

In Algorithm 1, we approximate the gradient of F(x) := f (g(x)) by ∇̃F(xti ) = (z
t
i )
T f ′(yti ). The next

lemma bounds the MSE of this estimator.
Lemma 2. Suppose Assumptions 1 and 2 hold. Then we have

E[‖∇̃F(xti ) − F ′(xti )‖
2] ≤

G0
St

i∑
r=1

E[‖xtr − xtr−1‖
2] +

σ2
0

Bt
, (33)

where
G0 := 2

(
`4
gL2

f + `
2
f L2

g

)
and σ2

0 := 2
(
`2
gL2

fσ
2
g + `

2
fσ

2
g′
)
.

Proof. Using Assumption 1, one immediately gets

E
[
‖∇̃F(xti ) − F ′(xti )‖

2]
= E

[
‖(zti )

T f ′(yti ) − (g
′(xti ))

T f ′(g(xti ))‖
2]

= E
[
‖(zti )

T f ′(yti ) − (g
′(xti ))

T f ′(yti ) + (g
′(xti ))

T f ′(yti ) − (g
′(xti ))

T f ′(g(xti ))‖
2]

≤ 2E
[
‖(zti )

T f ′(yti ) − (g
′(xti ))

T f ′(yti )‖
2] + 2E

[
‖(g′(xti ))

T f ′(yti ) − (g
′(xti ))

T f ′(g(xti ))‖
2]

≤ 2`2
f E

[
‖zti − g(x

t
i )‖

2] + 2`2
gL2

f E
[
‖yti − g

′(xti )‖
2] . (34)

Therefore, by substituting the MSE bounds provided in Lemma 1 into inequality (34), we obtain

E
[
‖∇̃F(xti ) − F ′(x)‖2

]
≤

2
(
`4
gL2

f + `
2
f L2

g

)
St

i∑
r=1

E
[
‖xtr − xtr−1‖

2]
+ 2`2

gL2
f E

[
‖yt0 − g(x

t
0)‖

2] + 2`2
f E

[
‖zt0 − g

′(xk0 )‖
2] . (35)

Under Assumption 2, we can bound the MSE of the estimates in (8) as

E
[
‖yt0 − g(x

t
0)‖

2] ≤ σ2
g

Bt
, E

[
‖zt0 − g

′(xk0 )‖
2] ≤ σ2

g′

Bt
.

Combining these MSE bounds with (35) yields the desired result.

For the proximal gradient type of algorithms, no matter deterministic or stochastic, a common metric
to quantify the optimality of xti is the norm of the so-called proximal gradient mapping

Gη(xti ) :=
1
η

(
xti − x̂ti+1

)
, (36)

where η is the step size used to produce the update
x̂ti+1 = proxηr

(
xti − ηF ′(xti )

)
.

Since we use a constant η throughout this paper, we will omit the subscript η and use G(x) to denote
the proximal gradient mapping at x.
Our goal is to find a point x with E

[
‖G(x)‖2

]
≤ ε . However, in Algorithm 1, we only have the

approximate proximal gradient mapping

G̃(xti ) :=
1
η
(xti − xti+1) , (37)

where xt
i+1 is computed using the estimated gradient ∇̃F(xti ):

xti+1 = proxηr
(
xti − η∇̃F(xti )

)
.

Hence we need to establish the connection between G(xti ) and G̃(x
t
i ), which is done in the next lemma.
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Lemma 3. For the two gradient mappings defined in (36) and (37), we have

E
[
‖G(xti )‖

2] ≤ 2E
[
‖G̃(xti )‖

2] + 2E
[
‖∇̃F(xti ) − F ′(xti )‖

2] . (38)

Proof. Using the inequality ‖xti − x̂t
i+1‖

2 ≤ 2‖xti − xt
i+1‖

2 + 2‖xt
i+1 − x̂t

i+1‖
2 and the definitions of

G(xti ) and G̃(x
t
i ), we have

E
[
‖G(xti )‖

2] ≤ 2E
[
‖G̃(xti )‖

2] + 2
η2

xti+1 − x̂ti+1
2

= 2E
[
‖G̃(xti )‖

2] + 2
η2

proxηr
(
xti − ηF ′(xti )

)
− proxηr

(
xti − η∇̃F(xti )

)2

≤ 2E
[
‖G̃(xti )‖

2] + 2
η2

xti − ηF ′(xti ) −
(
xti − η∇̃F(xti )

)2

= 2E
[
‖G̃(xti )‖

2] + 2E
[
‖∇̃F(xti ) − F ′(xti )‖

2] ,
where in the second inequality we used the non-expansive property of proximal mapping [e.g., 27,
Section 31].

The next lemma bounds the amount of expected descent per iteration in Algorithm 1.
Lemma 4. Let the sequence {xti } be generated by Algorithm 1. Then for all t ≥ 1 and 0 ≤ i ≤ τt − 1,
we have the following two inequalities

E[Φ(xti+1)] ≤ E[Φ(xti )] −
(
η

2
−

LFη
2

2

)
E

[
‖G̃(xti )‖

2] + η
2

E[‖∇̃F(xti ) − F ′(xti )‖
2], (39)

and

E[Φ(xti+1)] ≤ E[Φ(xti )] −
η

8
E[‖G(xti )‖

2] +
3η
4

E[‖∇̃F(xti ) − F ′(xti )‖
2]

−

(
1

4η
−

LF

2

)
E

[
‖xti − xti+1‖

2] . (40)

Proof. By applying the LF -Lipschitz continuity of F ′ and the optimality of the 1
η -strongly convex

subproblem, we have

Φ(xti+1) = F(xti+1) + r(xti+1)

≤ F(xti ) + 〈F
′(xti ), xti+1 − xti 〉 +

LF

2
‖xti+1 − xti ‖

2 + r(xti+1)

= F(xti ) + 〈∇̃F(xti ), xti+1 − xti 〉 +
1

2η
‖xti+1 − xti ‖

2 + r(xti+1)

+〈F ′(xti ) − ∇̃F(xti ), xti+1 − xti 〉 − (
1

2η
−

LF

2
)‖xti+1 − xti ‖

2

≤ F(xti ) + r(xti ) −
1

2η
‖xti+1 − xti ‖

2 − (
1

2η
−

LF

2
)‖xti+1 − xti ‖

2

+
η

2
‖∇̃F(xti ) − F ′(xti )‖

2 +
1

2η
‖xti+1 − xti ‖

2

= Φ(xti ) − (
1

2η
−

LF

2
)‖xti+1 − xti ‖

2 +
η

2
‖∇̃F(xti ) − F ′(xti )‖

2.

Taking the expectation on both sides completes the proof of inequality (39). By inequality (38), we
know that

−
η

4
E[‖G̃(xti )‖

2] ≤ −
η

8
E[‖G(xti )‖

2] +
η

4
E[‖∇̃F(xti ) − F ′(xti )‖

2].

Adding this inequality in to (39) yields (40).
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A.1 Proof of Theorem 1

Proof. Because all τt , Bt and St are taking their values independent of t. We denote τ = τt , B = Bt

and S = St for all t for clarity. By Lemma 4, summing up inequality (40) throughout the t-th epoch
and applying (33) gives

η

8

τ−1∑
i=0

E[‖G(xti )‖
2] ≤ E[Φ(xt0)] − E[Φ(xtτ)] −

(
1

4η
−

LF

2

) τ∑
r=1

E[‖xtr − xtr−1‖
2]

+
3G0η

4S

τ−1∑
i=1

i∑
r=1

E[‖xtr − xtr−1‖
2] +

3σ2
0η

4B
τ

≤ E[Φ(xt0)] − E[Φ(xtτ)] −
(

1
4η
−

LF

2
− τ

3G0η

4S

) τ∑
r=1

E[‖xtr − xtr−1‖
2]

+
3σ2

0η

4B
τ,

where the second inequality is due to the fact that

τ−1∑
i=1

i∑
r=1

E[‖xtr − xtr−1‖
2] ≤ τ

τ∑
r=1

E[‖xtr − xtr−1‖
2].

Whenwe choose the parameters satisfying τ ≤ S, then the coefficient 1
4η−

LF

2 −τ
3G0η

4S ≥
1

4η−
LF

2 −
3G0η

4
which depends only on the parameter η and some constant. If we choose the η according to the
theorem, then 1

4η −
LF

2 −
3G0η

4 ≥ 0, yielding that

η

8

τ−1∑
i=0

E[‖G(xti )‖
2] ≤ E[Φ(xt0)] − E[Φ(xtτ)] +

3σ2
0η

4B
τ. (41)

Summing this up throughout the epochs gives

η

8

T∑
t=1

τ−1∑
i=0

E[‖G(xti )‖
2] ≤ E[Φ(x1

0)] − E[Φ(xTτ )] +
3σ2

0η

4B
τT ≤ Φ(x1

0) − Φ
∗ +

3σ2
0η

4B
τT,

where we have applied the fact that xt0 = xt−1
τ . By the random sampling scheme for output x̄, we have

E[‖G(x̄)‖2] =
1
τT

T∑
t=1

τ−1∑
i=0

E[‖G(xti )‖
2] ≤

8(Φ(x1
0) − Φ

∗)

τTη
+

6σ2
0

B
. (42)

Substitute the values of T, τ and B gives (19).

To simplify presentation, we omit d·e on integer parameters in the following discussion.

• With η ≤ 4
LF+
√

L2
F+12G0

, and letting T = 1/
√
ε , B = σ2

0 /ε , and τ = S = 1/
√
ε , we have

E[‖G(x̄)‖2] ≤ 8
(
(Φ(x1

0) − Φ
∗)η−1 + 6

)
ε,

and the sample complexity is T(B + 2τS) = O
(
σ2

0 ε
−3/2 + ε−3/2) , as in our theorem.

• With η ≤ 4
LF+
√

L2
F+12G0

, and letting T = 1/ε , B = 1+σ2
0 /ε , and τ = S = 1, we again obtain

E[‖G(x̄)‖2] ≤ 8
(
(Φ(x1

0) − Φ
∗)η−1 + 6

)
ε,

but the sample complexity isT(B+2τS) = O
(
σ2

0 ε
−2+ε−1) , which is same as in Ghadimi and

Lan [9]. For deterministic optimization with σ0 = 0, this recovers the O(ε−1) complexity.
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A.2 Proof of Theorem 2

Proof. Note that for this set of parameters, we still have the relationship that τt = St . Therefore,
within each epoch, (41) is still true with epoch specific τt and Bt . Summing this up gives

η

8

T∑
t=1

τt−1∑
i=0

E[‖G(xti )‖
2] ≤ Φ(x1

0) − Φ
∗ +

T∑
t=1

3σ2
0η

4Bt
τt . (43)

By the random selection rule of x̄, we have

E[‖G(x̄)‖2] =
1∑T

t=1 τt

T∑
t=1

τ−1∑
i=0

E[‖G(xti )‖
2] ≤

8(Φ(x1
0) − Φ

∗)

η
∑T

t=1 τt
+ 6σ2

0 ·

∑T
t=1 τt/Bt∑T
t=1 τt

. (44)

Note that τt = dat + be and Bt = dσ
2
0 (at + b)2e .We have

T∑
t=1

τt ≥
T∑
t=1

at + b =
a
2

T(T + 1) + bT = O(T2)

and

σ2
0

T∑
t=1

τt/Bt ≤
T∑
t=1

1
at + b

≤
1

a + b
+

∫ T

1

dt
at + b

=
1

a + b
+

1
a

ln
(

aT + b
a + b

)
= O(ln T).

Substituting the above bounds into inequality (44) gives (20). As a result, the total sample complexity
is

T∑
t=1

(
Bt + 2τtSt

)
≤

T∑
t=1

(
σ2

0 (at + b)2 + 2(at + b)2
)
= O(σ2

0 T3 + T3) .

Setting T = Õ(ε−1/2) so that E[‖G‖ x̄‖2] ≤ ε , we get sample complexity Õ(σ2
0 ε
−3/2 + ε−3/2).

We can also choose a different set of parameters. With η ≤ 4
LF+
√

L2
F+12G0

, and letting B = 1+σ2
0 (at+b),

and τ = S = 1, we also have

E[‖G(x̄)‖2] ≤
8(Φ(x1

0) − Φ
∗)

ηT
+

6 ln T
T

,

but the sample complexity, by setting T = Õ(ε−1) so that the above bound is less than ε , is
T∑
t=1

(
Bt + 2τtSt

)
≤

T∑
t=1

(
σ2

0 (at + b) + 2
)
= O(σ2

0 T2 + T) = Õ(σ2
0 ε
−2 + ε−1) .

This is more close to the classical results on stochastic optimization.

B Convergence analysis for composite finite-sum case

In this section, we consider the composite finite-sum problem (2) and prove Theorems 3 and 4.
In this case, the random variable ξ uniformly takes value from the finite index set {1, ..., n}. At the
beginning of each epoch in Algorithm 1, we can choose to estimate g(xt0)

t and g′(xt0) by their exact
value rather than the approximate ones constructed by subsampling. Namely, in (8) of Algorithm 1,
we choose Bt = {1, . . . , n} for all t ≥ 1. Therefore,

yt0 = g(xt0) =
1
n

n∑
j=1

gj(xt0), zt0 = g′(xt0) =
1
n

n∑
j=1

g′j(x
t
0)

and
E

[
‖yt0 − g(x

t
0)‖

2] = 0 , E
[
‖zt0 − g

′(xk0 )‖
2] = 0 . (45)

As a result, the initial variances in Lemma 1 diminishes and (30) reduces to
E[‖yti − g(x

t
i )‖

2] ≤
i∑

r=1

`2
g

St
E[‖xtr − xtr−1‖

2],

E[‖zti − g
′(xti )‖

2] ≤
i∑

r=1

L2
g

St
E[‖xtr − xtr−1‖

2].

(46)
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In addition, combining (35) and (45), we have

E[‖∇̃F(xti ) − F ′(x)‖2] ≤
G0
St

i∑
r=1

E[‖xtr − xtr−1‖
2]. (47)

Note that Lemma 4 is still true.

B.1 Proof of Theorem 3

Proof. The proof follows similar steps as those in the proof of Theorem 1. So we only note down the
significantly different steps here.
Specifically, following the proof of Theorem 1 in Section A.1, by applying (46) instead of (30), we
get the following result instead of inequality (41),

η

8

τ−1∑
i=0

E[‖G(xti )‖
2] ≤ E[Φ(xt0)] − E[Φ(xtτ)].

Summing this up apply the random selection rule of x̄ gives

E[‖G(x̄)‖2] =
1
τT

T∑
t=1

τ−1∑
i=0

E[‖G(xti )‖
2] ≤

8(Φ(x1
0) − Φ

∗)

τTη
=

8(Φ(x1
0) − Φ

∗)
√

nTη
.

Therefore, we have to set T = O( 1√
nε
) to get an ε-solution. Note that the sample complexity per epoch

is n + τtSt = 2n, the total sample complexity will be O(n +
√

nε−1).

B.2 Proof of Theorem 4

Proof. If T ≤ T0, then the result is exactly what we proved from Theorem 2. Therefore, the first
bound in (23) is already guaranteed.
If T > T0, when 1 ≤ t ≤ T0, then everything still runs identically to that described in Theorem 2.
Consequently, the following bound is effective

η

8

T0∑
t=1

τt−1∑
i=0

E[‖G(xti )‖
2] ≤ Φ(x1

0) − E[Φ(xT0+1
0 )] +

T0∑
t=1

3σ2
0η

4Bt
τt . (48)

When T0 + 1 ≤ t ≤ T , the following bound becomes effective,
η

8

T∑
t=T0+1

τ−1∑
i=0

E[‖G(xti )‖
2] ≤ E[Φ(xT0+1

0 )] − Φ∗.

Therefore, we have

E[‖G(x̄)‖2] =
1∑T

t=1 τt

T∑
t=1

τ−1∑
i=0

E[‖G(xti )‖
2] ≤

8(Φ(x1
0) − Φ

∗)

η
∑T

t=1 τt
+ 6σ2

0 ·

∑T0
t=1 τt/Bt∑T
t=1 τt

.

Note that
T0∑
t=1

τt/Bt ≤

T0∑
t=1

1
at + b

≤
1

a + b
+

1
a

ln
(

aT0 + b
a + b

)
= O(ln n),

and
T∑
t=1

τt ≥ (T − T0)
√

n +
T0∑
t=1
(at + b) =

√
n(T − T0) +

a
2

T2
0 + (

a
2
+ b)T0 = O(

√
n(T − T0 + 1)).

With the above two bounds, we have proved the second result in (23).
For any ε > 0, if ε ≥ O(1/T2

0 ) = O(n
−1). In this case, the algorithm will spend most epochs in the

adaptive phase, whose sample complexity is Õ(ε−3/2). if ε = o(n−1), we need T > T0. By (23), we
know

√
n(T − T0 + 1) = Õ(ε−1), this means that the total sample complexity will be
T∑
t=1

(
Bt + 2τtSt

)
≤ 3

T0∑
t=1
(at + b + 1)2 + 3(T − T0)n = Õ(n3/2 +

√
nε−1) = Õ(

√
nε−1).

When ε ≥ O(n−1), we have ε−3/2 ≤
√

nε−1. When ε = o(n−1), we have ε−3/2 >
√

nε−1. Combining
the two cases together gives the sample complexity of Õ(min{

√
nε−1, ε−3/2}).
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C Convergence analysis under gradient-dominant condition

C.1 Proof of Theorem 5

Proof. For the ease of notation, let us only focus in one run of Algorithm 1. And denote the input
point as x1

0 and the output point x̄. Note that in this case Φ(x) = F(x). By (42) and (24), we have

E[F(x̄) − F∗] ≤ νE[‖F ′(x̄)‖2] ≤
8ν(F(x1

0) − F∗)

τTη
+

6νσ2
0

B

By the selection of T =
⌈ 16ν

√
ε

η

⌉
, τ = 1/

√
ε and B = 1 + 12νσ2

0 /ε , we have

E[F(x̄) − F∗] ≤
1
2
(F(x1

0) − F∗) +
1
2
ε, (49)

which is (25).
Suppose we periodically restart the Algorithm 1 after every Tepochs, and set the outputs to be x̄k ,
where k = 1, 2, ... denotes the number of restarts. We use the output of the kth period x̄k as the initial
point to start the next period, which produces x̄k+1. As a result, the above inequality translates to

E[F(x̄k+1) − F∗] ≤
1
2
(E[F(x̄k)] − F∗) +

1
2
ε .

Equivalently,
E[F(x̄k) − F∗] − ε ≤

1
2

(
E[F(x̄k−1) − F∗] − ε

)
,

which leads to
E[F(x̄k) − F∗] ≤

1
2k

(
E[F(x̄0) − F∗] − ε

)
+ ε .

Therefore, the expected optimality gap converges linearly to a ε-ball around 0.

Next we discuss the sample complexity with different parameter settings.

• If we choose τ = S = 1/
√
ε , Bt = 12νσ2

0 /ε , and T =
⌈ 16ν

√
ε

η

⌉
, then the total sample

complexity is

T(B + 2τS) ln
1
ε
=

16ν
√
ε

η

(
12νσ2

0
ε
+

1
√
ε

1
√
ε

)
ln

1
ε
= O

(
(ν2σ2

0 ε
−1/2 + νε−1/2) ln ε−1

)
However, the above derivation needs to assume 16ν

√
ε

η ≥ 1 or at least O(1), which means
ε > (η/ν)2. If this condition is not satisfied, then we have T = 1 and the complexity is

O
(
(νσ2

0 ε
−1 + ε−1) ln ε−1) .

Notice that the second term does not depend on ν or the conditions number.
• If we choose τ = S = 1, Bt = 1 + 12νσ2

0 /ε , and T =
⌈ 16ν
η

⌉
, the we also have

E[F(x̄) − F∗] ≤
1
2
(F(x1

0) − F∗) +
1
2
ε,

and the total sample complexity is

T(B + 2τS) ln
1
ε
=

16ν
η

(
12νσ2

0
ε
+ 2

)
ln

1
ε
= O

(
ν2σ2

0 ε
−1/2 + ν

)
ln ε−1

Defining the condition number κ = LFν = O(ν/η), the above complexity becomes

T(B + 2τS) ln
1
ε
= O

(
κ2σ2

0 ε
−1 + κ

)
ln ε−1

Thus when σ = 0, we have O
(
κ ln ε−1) for deterministic optimization.
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C.2 Proof of Theorem 6

The proof is very similar to the previous one. It actually becomes simpler by noticing that in the
finite-sum case, the terms involving σ2

0 disappear:

E[F(x̄) − F∗] ≤ νE[‖F ′(x̄)‖2] ≤
8ν(F(x1

0) − F∗)

τTη
.

By choosing T =
⌈ 16ν
η
√
n

⌉
, τ = S =

√
n. we again obtain (49). In this case, we have B = n and

T(B + 2τS)ε−1 =

⌈
16ν
η
√

n

⌉ (
n + 2

√
n
√

n
)

ln ε−1 = O
(
n + ν

√
n
)

ln ε−1.

D Convergence analysis under optimally strong convexity

In order to prove Theorems 7 and 8, we first state Lemma 3 in [34] in our notations.
Lemma 5 (Lemma 3 in [34]). Let Φ(x) = F(x) + r(x), where F ′(x) is LF -Lipschitz continuous, and
F(x) and r(x) are convex. For any x ∈ dom(r), and any v ∈ Rd , define

x+ := Proxηr(·)(x − ηv), G :=
1
η
(x − x+), and ∆ := v − F ′(x),

where η is a step size satisfying 0 < η ≤ 1/LF . Then for any y ∈ Rd ,

Φ(y) ≥ Φ(x+) + GT (y − x) +
η

2
‖G‖2 + ∆T (x+ − y).

D.1 Proof of Theorem 7

Proof. For the ease of notation, let us only focus in one run of Algorithm 1. And denote the input
point as x1

0 and the output point x̄. If we set x = xti , y = x∗, v = ∇̃F(xti ), x+ = xt
i+1 and G = G̃(x

t
i ),

we get the following useful inequality,

〈G̃(xti ), x∗ − xti 〉 ≤ Φ(x
∗) − Φ(xti+1) −

η

2
‖G̃(xti )‖

2 − 〈F ′(xti ) − ∇̃F(xti ), x∗ − xti+1〉.

As a result we have the following inequality,

‖xti+1 − x∗‖2

= ‖xti − x∗‖2 + η2‖G̃(xti )‖
2 + 2η〈G̃(xti ), x∗ − xti 〉

≤ ‖xti − x∗‖2 + η2‖G̃(xti )‖
2 − 2η(Φ(xti+1) − Φ(x

∗)) − η2‖G̃(xti )‖
2

−2η〈F ′(xti ) − ∇̃F(xti ), x∗ − xti+1〉

≤ ‖xti − x∗‖2 − 2η(Φ(xti+1) − Φ(x
∗)) +

2η
µ
‖F ′(xti ) − ∇̃F(xti )‖

2 +
ηµ

2
‖xti+1 − x∗‖2

≤ ‖xti − x∗‖2 − η(Φ(xti+1) − Φ(x
∗)) +

2η
µ
‖F ′(xti ) − ∇̃F(xti )‖

2. (50)

Note that the inequality (50) is originally obtained in [35]. Adding 2µ·(50) to (39), we get

2µηE[Φ(xti+1) − Φ
∗] ≤ E[Φ(xti ) + 2µ‖xti − x∗‖2] − E[Φ(xti+1) + 2µ‖xti+1 − x∗‖2]

−(
1

2η
−

LF

2
)E[‖xti+1 − xti ‖

2] +
9
2
ηE[‖∇̃F(xti ) − F ′(xti )‖

2]. (51)

By (51) and (33), we have

2µη
τt−1∑
i=0

E[Φ(xti+1) − Φ
∗] ≤ E[Φ(xtτt ) + 2µ‖xtτt − x∗‖2] − E[Φ(xt0) + 2µ‖xt0 − x∗‖2]

−(
1

2η
−

LF

2
− τt

9G0η

2St
)

τt∑
r=1

E[‖xtr − xtr−1‖
2] + τt

9σ2
0η

2Bt
.
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According to the selection of τt, St, Bt and η, we know that the coefficient ( 1
2η −

LF

2 − τt
9G0η
2St ) ≥ 0.

Consequently,

2µη
τt−1∑
i=0

E[Φ(xti+1) − Φ
∗] ≤ E[Φ(xtτt ) + 2µ‖xtτt − x∗‖2] − E[Φ(xt0) + 2µ‖xt0 − x∗‖2] + τt

9σ2
0η

2Bt
.

Summing this up and apply the random selection rule of x̄ gives

E[Φ(x̄) − Φ∗] ≤
1

2µητT
E[Φ(x1

0) − Φ
∗ + 2µ‖x1

0 − x∗‖2] +
9σ2

0
4µBt

≤
5

2µητT
E[Φ(x1

0) − Φ
∗] +

9σ2
0

4µBt
.

If we choose T = d 5
√
ε

µη e, τ = S = 1√
ε
and Bt = 1 + 9σ2

0
2µε , then

5
2µητT ≤

1
2 and we obtain

E[Φ(x̄) − Φ∗] ≤
1
2

E[Φ(x1
0) − Φ

∗] +
1
2
ε .

This proves the inequality (28). The rest of the proof will mimic that of Theorem 5.

Discussions on sample complexity:

• If we choose τ = S = 1/
√
ε , Bt = 1 + 9σ2

0
2µε , and T = d 5

√
ε

µη e, then the sample complexity is

T(B + 2τS) ln
1
ε
=

5
√
ε

µη

(
9σ2

0
2µε
+

1
√
ε

1
√
ε

)
ln

1
ε
= O

(
(µ−2σ2

0 ε
−1/2 + µ−1ε−1/2) ln ε−1

)
.

The above derivation needs to assume 5
√
ε

µη ≥ 1 or at least O(1), which means ε > (ηµ)2. If
this condition is not satisfied, then we have T = 1 and the complexity is

O
(
(µ−1σ2

0 ε
−1 + ε−1) ln ε−1) .

• If we choose τ = S = 1, Bt = 1 + 9σ2
0

µε , and T =
⌈ 5
µη

⌉
, the we also have

E[F(x̄) − F∗] ≤
1
2
(F(x1

0) − F∗) +
1
2
ε,

and the total sample complexity is

T(B + 2τS) ln
1
ε
=

5
µη

(
9σ2

0
µε
+ 2

)
ln

1
ε
= O

(
µ−2σ2

0 ε
−1 + µ−1

)
ln ε−1

Defining the condition number κ = LFν = O(1/(µη)), the above complexity becomes

T(B + 2τS) ln
1
ε
= O

(
κ2σ2

0 ε
−1 + κ

)
ln ε−1

Thus when σ = 0, we have O
(
κ ln ε−1) for deterministic optimization.

D.2 Proof of Theorem 8

The proof is very similar to the previous one. It actually becomes simpler by noticing that in the
finite-sum case, the terms involving σ2

0 disappear.
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Figure 2: Experiments on policy evaluation for MDP for cases with S = 10, S = 100 and S = 500.

E Numerical experiments on policy evaluation for MDP

Here we provide additional numerical experiments on the policy evaluation problem for MDP.
Let S = {1, ..., S} be the state space of some Markov decision process. Suppose a reward of Ri, j is
received after transitioning from state i to state j. Let Pπ ∈ RS×S be the transition probability matrix
under some fixed policy π. Then the evaluation of the value function Vπ : S → R under such policy
is equivalent to solving the following Bellman equation:

Vπ(i) =
S∑
j=1

Pπi, j(Ri, j + γVπ( j)) = Ej |i[Ri, j + γVπ( j)].

Following the suggestion of [5, 32], we apply the linear function approximation Vπ(i) ≈ 〈Ψi,w
∗〉

for a given set of feature vectors Ψi . and would like to compute the optimal vector w∗. This can be
formulated as the following problem

minimize
w

F(w) ,
S∑
i=1

(
〈Ψi,w〉 −

S∑
j=1

Pπi, j(Ri, j + γ〈Ψj,w〉)

)2
.

Let’s denote

qπi (w) ,
S∑
j=1

Pπi, j(Ri, j + γ〈Ψj,w〉) = Ej |i[Ri, j + γ〈Ψj,w〉].

Then by defining
g(w) =

[
〈Ψ1,w〉, ..., 〈ΨS,w〉, qπi (w), ..., q

π
S (w)

]T
and

f (y1, ..., yS, z1, ..., zS) = ‖y − z‖2 =
S∑
i=1
(yi − zi)2,

the Least squares problem is transformed into the form of (2).
For this problem, we test the SCGD [31], the ASCGD [31], the ASC-PG [32], the VRSC-PG [11],
C-SAGA [35] and our CIVR algorithms. In Section 5, we already tested the algorithms under their
standard batch sizes, e.g. dn2/3e and d

√
ne. However, small constant batch sizes are often preferred in

practice. Therefore, we would like to set the batch size to s = 1 for all algorithms. For this special
case, we denote the CIVR as the CIVR-b1. To balance the sample complexity between the initial
full batch sampling and the later subsampling with s = 1, we set the epoch length for VRSC-PG and
CIVR-b1 to be S.
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Note that the last S components of g are all independent expectations, therefore the variance reduction
technique of VRSC-PG [11], C-SAGA [35] and CIVR-b1 applied to each of these components. In the
experiments, Pπ , Φ and Rπ are generated randomly.
Similar to the experiments performed in Section 5, the step sizes are chosen from
{0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001} by experiments for VRSC-PG, C-SAGA as well as for
CIVR-b1. For S = 10, η = 0.1 works best for both C-SAGA and CIVR-b1, while η = 0.01 works best
for VRSC-PG; For S = 100, η = 0.001 works best for both C-SAGA and CIVR-b1, while η = 0.0001
works best for VRSC-PG. For S = 500, η = 0.0001 works best for all three of them.
When S = 10 and S = 100, we choose αk = 0.01k−3/4 and βk = 0.1k−1/2 for SCGD, αk = 0.01k−5/7

and βk = 0.1k−4/7 for ASCGD and αk = 0.01k−1/2 and βk = 0.1k−1 for ASC-PG. When S = 500,
we choose αk = 0.0001k−3/4 and βk = 0.001k−1/2 for SCGD while ASCGD and ASC-PG fail to
converge under various trials of parameters. The meaning of these step size parameters can be found
in [32] and [31].
Figure 2 shows three experiments with sizes S = 10, S = 100 and S = 500 respectively. We can see
that both C-SAGA and CIVR-b1 preform much better than other algorithms in our setting. CIVR-b1
has more smooth and stable trajectory than C-SAGA.
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