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Abstract

Line search methods are very effective in practice for speeding up first-order methods
for minimizing smooth functions. The step size found by a line-search procedure during
each iteration can be regarded as the reciprocal of a local Lipschitz constant. We show that
the convergence speed of first-order methods equipped with a simple line-search procedure
depends on the harmonic mean of the local Lipschitz constants.

1 Introduction
We consider optimization problems of the form

minimize
x∈Rn

F(x) := f (x) + Ψ(x) , (1)

where Ψ : Rd → R ∪ {+∞} is convex and lower semi-continuous, and f is differentiable on an
open set containing domΨ. In addition, we assume that the gradient of f is Lipschitz continuous,
i.e., there exists a constant L f > 0 such that

‖∇ f (x) − ∇ f (y)‖ ≤ L f ‖x − y‖ , ∀ x, y ∈ domΨ, (2)

where ‖ · ‖ denotes the standard Euclidean norm. We call L f the global Lipschitz constant of ∇ f .
Given an initial point x0 ∈ domΨ, the proximal gradient method computes a sequence of

iterates x1, x2, . . . as follows:

xk+1 = argmin
x∈Rn

{
f (xk) + 〈∇ f (xk), x − xk〉 +

Lk

2
‖x − xk ‖

2 + Ψ(x)
}
, (3)

where Lk > 0 is a parameter to be chosen at each iteration (see, e.g., [Nes13, Bec17]). This method
is often written in the more compact form

xk+1 = prox 1
Lk
Ψ

(
xk −

1
Lk
∇ f (xk)

)
,
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where the proximal operator is defined as

proxΨ(y) = argmin
x

{
Ψ(x) +

1
2
‖x − y‖2

}
.

With the definition of the gradient mapping [Nes13]

gL(x) := L
(
x − prox 1

LΨ

(
x −

1
L
∇ f (x)

))
, (4)

the proximal gradient method can also be written as

xk+1 = xk −
1
Lk

gLk
(xk). (5)

Notice that if Ψ(x) = 0, then gLk
(xk) = ∇ f (xk) for any Lk > 0. Here it is clear that 1/Lk

corresponds to the step size.
The proximal gradient method is guaranteed to converge if we choose Lk ≥ L f for all k. In

practice, however, it is almost always beneficial to find Lk using a line search procedure during each
iteration, even if the global Lipschitz constant L f is known a priori. A typical line search procedure
starts with a relatively small estimate of Lk (a large step size 1/Lk) and gradually increases it
(decreases the step size) until some exit condition is satisfied (see, e.g., [Nes13]). One obvious
choice for the exit condition is

f (xk+1) ≤ f (xk) + 〈∇ f (xk), xk+1 − xk〉 +
Lk

2
‖xk+1 − xk ‖

2. (6)

We call Lk a local Lipschitz constant if it satisfies (6). Under the assumption (2), any Lk ≥ L f
would satisfy (6). But Lk often can be much smaller than L f , which corresponds to a much larger
step size 1/Lk and faster convergence.

We will show that the convergence speed of the proximal gradient method depends on the
harmonic mean of L0, L1, . . . , Lk . In other words, we can replace L f in the standard convergence
rate results by the harmonic mean L̃k , which is defined through

1
L̃k
=

1
k + 1

k∑
i=0

1
Li
. (7)

Since the harmonic mean is smaller than the geometric mean and can be much smaller than the
arithmetic mean, we obtain tighter bounds on the convergence speed.

2 Non-convex case
Without assuming convexity of f , we measure the quality of the iterates xk by ‖gLk

(xk)‖
2, which

is the same as ‖∇ f (xk)‖
2 when Ψ ≡ 0. It is shown in [Nes13, Theorem 3] that for all i ≥ 0,

1
2Li
‖gLi (xi)‖

2 ≤ F(xi) − F(xi+1) . (8)
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Summing up these inequalities for i = 0, . . . , k, we obtain

k∑
i=0

1
2Li
‖gLi (xi)‖

2 ≤ F(x0) − F(xk+1).

Assuming F is bounded below by F? and using the definition of L̃k in (7), we get

min
i∈{0,...,k}

‖gLi (xi)‖
2 ≤

2L̃k(F(x0) − F?)
k + 1

.

3 Convex case
If the function f is convex, then [XZ14, Lemma 3.7] implies that for any y ∈ domΨ and any k ≥ 0,

F(y) ≥ F(xk+1) + 〈gLk
(xk), y − xk〉 +

1
2Lk
‖gLk
(xk)‖

2 +
µ f

2
‖y − xk ‖

2 +
µΨ
2
‖y − xk+1‖

2. (9)

where µ f and µΨ are the convexity parameters of f and Ψ respectively. In this section, we do not
assume strong convexity, therefore µ f = µΨ = 0. Suppose x? is a solution to (1), i.e.,

x? ∈ Argmin
x

{
f (x) + Ψ(x)

}
.

Then setting y = x? in the inequality (9) with µ f = µΨ = 0 and rearranging terms, we obtain

F(xk+1) − F(x?) ≤ 〈gLk
(xk), xk − x?〉 −

1
2Lk
‖gLk
(xk)‖

2

=
Lk

2

(
‖xk − x?‖2 −

xk −
1
Lk

gLk
(xk) − x?

2
)

=
Lk

2

(
‖xk − x?‖2 − ‖xk+1 − x?‖2

)
,

where the last equality is due to (5). Summing up the above inequality for i = 0, 1, . . . , k, we get

k∑
i=0

1
Li

(
F(xi+1 − F(x?)

)
≤

1
2
‖x0 − x?‖2 −

1
2
‖xk+1 − x?‖2 ≤

1
2
‖x0 − x?‖2.

From (8), we conclude that {F(xk)} is a decreasing sequence. Therefore,(
F(xk+1 − F(x?)

) k∑
i=0

1
Li
≤

k∑
i=0

1
Li

(
F(xi+1 − F(x?)

)
≤

1
2
‖x0 − x?‖2,

which, combined with the definition of L̃k in (7), yields

F(xk+1) − F(x?) ≤
L̃k ‖x0 − x?‖2

2(k + 1)
.
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4 Strongly convex case
In this section, we assume µ f + µΨ > 0 in (9), i.e., at leas one of f and Ψ is strongly convex. In
this case, let x? be the unique solution to (1). Using the update formula (5), we have

1
2
‖xk+1 − x?‖2 =

1
2

xk −
1
Lk

gLk
(xk) − x?

2

=
1
2
‖xk − x?‖2 −

1
Lk

〈
gLk
(xk), xk − x?

〉
+

1
2L2

k

‖gLk
(xk)‖

2.

Meanwhile, setting y = x? in (9) yields

−〈gLk
(xk), xk − x?〉 +

1
2Lk
‖gLk
(xk)‖

2 ≤ F(x?) − F(xk+1) −
µ f

2
‖xk − x?‖2 −

µΨ
2
‖xk+1 − x?‖2.

Combining the two inequalities above, we obtain
1
2
‖xk+1 − x?‖2 ≤

1
2
‖xk − x?‖2 +

F(x?) − F(xk+1)

Lk
−

µ f

2Lk
‖xk − x?‖2 −

µΨ
2Lk
‖xk+1 − x?‖2.

Multiplying both sides by Lk and rearranging terms, we get

F(xk+1) − F(x?) +
Lk + µΨ

2
‖xk+1 − x?‖2 ≤

Lk − µ f

2
‖xk − x?‖2.

Since F(xk+1) − F(x?) ≥ 0, we have for all k ≥ 0,

‖xk+1 − x?‖2 ≤
Lk − µ f

Lk + µΨ
‖xk − x?‖2 =

(
k∏

i=0

Li − µ f

Li + µΨ

)
‖x0 − x?‖2.

From the two inequalities above, we obtain

F(xk+1) − F(x?) ≤
Lk + µΨ

2
·

Lk − µ f

Lk + µΨ
‖xk − x?‖2 ≤

Lk + µΨ
2

(
k∏

i=0

Li − µ f

Li + µΨ

)
‖x0 − x?‖2.

Using the arithmetic-geometric means inequality, we get

k∏
i=0

Li − µ f

Li + µΨ
=

k∏
i=0

(
1 −

µ f + µΨ

Li + µΨ

)
≤

(
1 −

1
k + 1

k∑
i=0

µ f + µΨ

Li + µΨ

) k+1

Finally, by defining the shifted harmonic mean L̂k through the equality

1
L̂k + µΨ

=
1

k + 1

k∑
i=0

1
Li + µΨ

,

we have

F(xk) − F(x?) ≤

(
1 −

µ f + µΨ

L̂k + µΨ

) k
L f + µΨ

2
‖x0 − x?‖2.

Notice that L̂k ≥ L̃k and the equality holds if µΨ = 0. In any case, it can be much smaller than L f .
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5 Accelerated proximal gradient methods
When f is smooth and convex, we can apply the results of [HRX18, Theorem 5] (which considers
the more general setting of relative smoothness) to the Euclidean case, and obtain the following
accelerated convergence rate,

F(xk + 1) − F(x?) ≤
1
Ak

‖x0 − x?‖2

2
,

where Ak satisfies

A1/2
k ≥

k∑
i=1

1
2L1/2

i

+
1

L1/2
0

=
1
2

(
k∑

i=1

1
L1/2

i

+
1

L1/2
0

+
1

L1/2
0

)
=

1
2

k∑
i=−1

1
L1/2

i

,

where we used the definition L−1 = L0. Let L̃1/2
k be the harmonic mean of L1/2

−1 , L1/2
0 , . . . , L1/2

k , i.e.,

1

L̃1/2
k

=
1

k + 2

k∑
i=−1

1
L1/2

i

.

Then we obtain

F(xk+1) − F(x?) ≤
4
(
L̃1/2

k

)2

(k + 2)2
‖x0 − x?‖2

2
. (10)

Notice that
(
L̃1/2

k

)2
is smaller than the geometric and arithmetic means of L−1, L0, . . . , Lk , i.e.,(

L̃1/2
k

)2
≤

(
k∏

i=−1
Li

)1/(k+2)

≤
1

k + 2

k∑
i=−1

Li ≤ L f .

Therefore, the convergence rate in (10) is slightly tighter than the result of [HRX18, Theorem 5],
which used the geometric mean.

When f is also strongly convex, similar improvement of accelerated linear convergence rate
can also be established. Here we omit the details.
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