Efficiency of Line Search in Proximal Gradient Methods

Lin Xiao*

November 1, 2019

Abstract

Line search methods are very effective in practice for speeding up first-order methods for minimizing smooth functions. The step size found by a line-search procedure during each iteration can be regarded as the reciprocal of a local Lipschitz constant. We show that the convergence speed of first-order methods equipped with a simple line-search procedure depends on the harmonic mean of the local Lipschitz constants.

1 Introduction

We consider optimization problems of the form

$$
\begin{equation*}
\underset{x \in \mathbf{R}^{n}}{\operatorname{minimize}} F(x):=f(x)+\Psi(x), \tag{1}
\end{equation*}
$$

where $\Psi: \mathbf{R}^{d} \rightarrow \mathbf{R} \cup\{+\infty\}$ is convex and lower semi-continuous, and f is differentiable on an open set containing dom Ψ. In addition, we assume that the gradient of f is Lipschitz continuous, i.e., there exists a constant $L_{f}>0$ such that

$$
\begin{equation*}
\|\nabla f(x)-\nabla f(y)\| \leq L_{f}\|x-y\|, \quad \forall x, y \in \operatorname{dom} \Psi \tag{2}
\end{equation*}
$$

where $\|\cdot\|$ denotes the standard Euclidean norm. We call L_{f} the global Lipschitz constant of ∇f.
Given an initial point $x_{0} \in \operatorname{dom} \Psi$, the proximal gradient method computes a sequence of iterates x_{1}, x_{2}, \ldots as follows:

$$
\begin{equation*}
x_{k+1}=\underset{x \in \mathbf{R}^{n}}{\arg \min }\left\{f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{L_{k}}{2}\left\|x-x_{k}\right\|^{2}+\Psi(x)\right\}, \tag{3}
\end{equation*}
$$

where $L_{k}>0$ is a parameter to be chosen at each iteration (see, e.g., [Nes13, Bec17]). This method is often written in the more compact form

$$
x_{k+1}=\operatorname{prox}_{\frac{1}{L_{k}} \Psi}\left(x_{k}-\frac{1}{L_{k}} \nabla f\left(x_{k}\right)\right),
$$

[^0]where the proximal operator is defined as
$$
\operatorname{prox}_{\Psi}(y)=\underset{x}{\arg \min }\left\{\Psi(x)+\frac{1}{2}\|x-y\|^{2}\right\} .
$$

With the definition of the gradient mapping [Nes13]

$$
\begin{equation*}
g_{L}(x):=L\left(x-\operatorname{prox}_{\frac{1}{L} \Psi}\left(x-\frac{1}{L} \nabla f(x)\right)\right), \tag{4}
\end{equation*}
$$

the proximal gradient method can also be written as

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{1}{L_{k}} g_{L_{k}}\left(x_{k}\right) \tag{5}
\end{equation*}
$$

Notice that if $\Psi(x)=0$, then $g_{L_{k}}\left(x_{k}\right)=\nabla f\left(x_{k}\right)$ for any $L_{k}>0$. Here it is clear that $1 / L_{k}$ corresponds to the step size.

The proximal gradient method is guaranteed to converge if we choose $L_{k} \geq L_{f}$ for all k. In practice, however, it is almost always beneficial to find L_{k} using a line search procedure during each iteration, even if the global Lipschitz constant L_{f} is known a priori. A typical line search procedure starts with a relatively small estimate of L_{k} (a large step size $1 / L_{k}$) and gradually increases it (decreases the step size) until some exit condition is satisfied (see, e.g., [Nes13]). One obvious choice for the exit condition is

$$
\begin{equation*}
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\frac{L_{k}}{2}\left\|x_{k+1}-x_{k}\right\|^{2} . \tag{6}
\end{equation*}
$$

We call L_{k} a local Lipschitz constant if it satisfies (6). Under the assumption (2), any $L_{k} \geq L_{f}$ would satisfy (6). But L_{k} often can be much smaller than L_{f}, which corresponds to a much larger step size $1 / L_{k}$ and faster convergence.

We will show that the convergence speed of the proximal gradient method depends on the harmonic mean of $L_{0}, L_{1}, \ldots, L_{k}$. In other words, we can replace L_{f} in the standard convergence rate results by the harmonic mean \widetilde{L}_{k}, which is defined through

$$
\begin{equation*}
\frac{1}{\widetilde{L}_{k}}=\frac{1}{k+1} \sum_{i=0}^{k} \frac{1}{L_{i}} \tag{7}
\end{equation*}
$$

Since the harmonic mean is smaller than the geometric mean and can be much smaller than the arithmetic mean, we obtain tighter bounds on the convergence speed.

2 Non-convex case

Without assuming convexity of f, we measure the quality of the iterates x_{k} by $\left\|g_{L_{k}}\left(x_{k}\right)\right\|^{2}$, which is the same as $\left\|\nabla f\left(x_{k}\right)\right\|^{2}$ when $\Psi \equiv 0$. It is shown in [Nes13, Theorem 3] that for all $i \geq 0$,

$$
\begin{equation*}
\frac{1}{2 L_{i}}\left\|g_{L_{i}}\left(x_{i}\right)\right\|^{2} \leq F\left(x_{i}\right)-F\left(x_{i+1}\right) . \tag{8}
\end{equation*}
$$

Summing up these inequalities for $i=0, \ldots, k$, we obtain

$$
\sum_{i=0}^{k} \frac{1}{2 L_{i}}\left\|g_{L_{i}}\left(x_{i}\right)\right\|^{2} \leq F\left(x_{0}\right)-F\left(x_{k+1}\right)
$$

Assuming F is bounded below by F_{\star} and using the definition of \widetilde{L}_{k} in (7), we get

$$
\min _{i \in\{0, \ldots, k\}}\left\|g_{L_{i}}\left(x_{i}\right)\right\|^{2} \leq \frac{2 \widetilde{L}_{k}\left(F\left(x_{0}\right)-F_{\star}\right)}{k+1} .
$$

3 Convex case

If the function f is convex, then [XZ14, Lemma 3.7] implies that for any $y \in \operatorname{dom} \Psi$ and any $k \geq 0$,

$$
\begin{equation*}
F(y) \geq F\left(x_{k+1}\right)+\left\langle g_{L_{k}}\left(x_{k}\right), y-x_{k}\right\rangle+\frac{1}{2 L_{k}}\left\|g_{L_{k}}\left(x_{k}\right)\right\|^{2}+\frac{\mu_{f}}{2}\left\|y-x_{k}\right\|^{2}+\frac{\mu_{\Psi}}{2}\left\|y-x_{k+1}\right\|^{2} . \tag{9}
\end{equation*}
$$

where μ_{f} and μ_{Ψ} are the convexity parameters of f and Ψ respectively. In this section, we do not assume strong convexity, therefore $\mu_{f}=\mu_{\Psi}=0$. Suppose x_{\star} is a solution to (1), i.e.,

$$
x_{\star} \in \underset{x}{\operatorname{Arg} \min }\{f(x)+\Psi(x)\} .
$$

Then setting $y=x_{\star}$ in the inequality (9) with $\mu_{f}=\mu_{\Psi}=0$ and rearranging terms, we obtain

$$
\begin{aligned}
F\left(x_{k+1}\right)-F\left(x_{\star}\right) & \leq\left\langle g_{L_{k}}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle-\frac{1}{2 L_{k}}\left\|g_{L_{k}}\left(x_{k}\right)\right\|^{2} \\
& =\frac{L_{k}}{2}\left(\left\|x_{k}-x_{\star}\right\|^{2}-\left\|x_{k}-\frac{1}{L_{k}} g_{L_{k}}\left(x_{k}\right)-x_{\star}\right\|^{2}\right) \\
& =\frac{L_{k}}{2}\left(\left\|x_{k}-x_{\star}\right\|^{2}-\left\|x_{k+1}-x_{\star}\right\|^{2}\right),
\end{aligned}
$$

where the last equality is due to (5). Summing up the above inequality for $i=0,1, \ldots, k$, we get

$$
\sum_{i=0}^{k} \frac{1}{L_{i}}\left(F\left(x_{i+1}-F\left(x_{\star}\right)\right) \leq \frac{1}{2}\left\|x_{0}-x_{\star}\right\|^{2}-\frac{1}{2}\left\|x_{k+1}-x_{\star}\right\|^{2} \leq \frac{1}{2}\left\|x_{0}-x_{\star}\right\|^{2}\right.
$$

From (8), we conclude that $\left\{F\left(x_{k}\right)\right\}$ is a decreasing sequence. Therefore,

$$
\left(F\left(x_{k+1}-F\left(x_{\star}\right)\right) \sum_{i=0}^{k} \frac{1}{L_{i}} \leq \sum_{i=0}^{k} \frac{1}{L_{i}}\left(F\left(x_{i+1}-F\left(x_{\star}\right)\right) \leq \frac{1}{2}\left\|x_{0}-x_{\star}\right\|^{2},\right.\right.
$$

which, combined with the definition of \widetilde{L}_{k} in (7), yields

$$
F\left(x_{k+1}\right)-F\left(x_{\star}\right) \leq \frac{\widetilde{L}_{k}\left\|x_{0}-x_{\star}\right\|^{2}}{2(k+1)}
$$

4 Strongly convex case

In this section, we assume $\mu_{f}+\mu_{\Psi}>0$ in (9), i.e., at leas one of f and Ψ is strongly convex. In this case, let x_{\star} be the unique solution to (1). Using the update formula (5), we have

$$
\begin{aligned}
\frac{1}{2}\left\|x_{k+1}-x_{\star}\right\|^{2} & =\frac{1}{2}\left\|x_{k}-\frac{1}{L_{k}} g_{L_{k}}\left(x_{k}\right)-x_{\star}\right\|^{2} \\
& =\frac{1}{2}\left\|x_{k}-x_{\star}\right\|^{2}-\frac{1}{L_{k}}\left\langle g_{L_{k}}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+\frac{1}{2 L_{k}^{2}}\left\|g_{L_{k}}\left(x_{k}\right)\right\|^{2}
\end{aligned}
$$

Meanwhile, setting $y=x_{\star}$ in (9) yields

$$
-\left\langle g_{L_{k}}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+\frac{1}{2 L_{k}}\left\|g_{L_{k}}\left(x_{k}\right)\right\|^{2} \leq F\left(x_{\star}\right)-F\left(x_{k+1}\right)-\frac{\mu_{f}}{2}\left\|x_{k}-x_{\star}\right\|^{2}-\frac{\mu_{\Psi}}{2}\left\|x_{k+1}-x_{\star}\right\|^{2} .
$$

Combining the two inequalities above, we obtain

$$
\frac{1}{2}\left\|x_{k+1}-x_{\star}\right\|^{2} \leq \frac{1}{2}\left\|x_{k}-x_{\star}\right\|^{2}+\frac{F\left(x_{\star}\right)-F\left(x_{k+1}\right)}{L_{k}}-\frac{\mu_{f}}{2 L_{k}}\left\|x_{k}-x_{\star}\right\|^{2}-\frac{\mu_{\Psi}}{2 L_{k}}\left\|x_{k+1}-x_{\star}\right\|^{2} .
$$

Multiplying both sides by L_{k} and rearranging terms, we get

$$
F\left(x_{k+1}\right)-F\left(x_{\star}\right)+\frac{L_{k}+\mu_{\Psi}}{2}\left\|x_{k+1}-x_{\star}\right\|^{2} \leq \frac{L_{k}-\mu_{f}}{2}\left\|x_{k}-x_{\star}\right\|^{2}
$$

Since $F\left(x_{k+1}\right)-F\left(x_{\star}\right) \geq 0$, we have for all $k \geq 0$,

$$
\left\|x_{k+1}-x_{\star}\right\|^{2} \leq \frac{L_{k}-\mu_{f}}{L_{k}+\mu_{\Psi}}\left\|x_{k}-x_{\star}\right\|^{2}=\left(\prod_{i=0}^{k} \frac{L_{i}-\mu_{f}}{L_{i}+\mu_{\Psi}}\right)\left\|x_{0}-x_{\star}\right\|^{2} .
$$

From the two inequalities above, we obtain

$$
F\left(x_{k+1}\right)-F\left(x_{\star}\right) \leq \frac{L_{k}+\mu_{\Psi}}{2} \cdot \frac{L_{k}-\mu_{f}}{L_{k}+\mu_{\Psi}}\left\|x_{k}-x_{\star}\right\|^{2} \leq \frac{L_{k}+\mu_{\Psi}}{2}\left(\prod_{i=0}^{k} \frac{L_{i}-\mu_{f}}{L_{i}+\mu_{\Psi}}\right)\left\|x_{0}-x_{\star}\right\|^{2} .
$$

Using the arithmetic-geometric means inequality, we get

$$
\prod_{i=0}^{k} \frac{L_{i}-\mu_{f}}{L_{i}+\mu_{\Psi}}=\prod_{i=0}^{k}\left(1-\frac{\mu_{f}+\mu_{\Psi}}{L_{i}+\mu_{\Psi}}\right) \leq\left(1-\frac{1}{k+1} \sum_{i=0}^{k} \frac{\mu_{f}+\mu_{\Psi}}{L_{i}+\mu_{\Psi}}\right)^{k+1}
$$

Finally, by defining the shifted harmonic mean \widehat{L}_{k} through the equality

$$
\frac{1}{\widehat{L}_{k}+\mu_{\Psi}}=\frac{1}{k+1} \sum_{i=0}^{k} \frac{1}{L_{i}+\mu_{\Psi}},
$$

we have

$$
F\left(x_{k}\right)-F\left(x_{\star}\right) \leq\left(1-\frac{\mu_{f}+\mu_{\Psi}}{\widehat{L}_{k}+\mu_{\Psi}}\right)^{k} \frac{L_{f}+\mu_{\Psi}}{2}\left\|x_{0}-x_{\star}\right\|^{2} .
$$

Notice that $\widehat{L}_{k} \geq \widetilde{L}_{k}$ and the equality holds if $\mu_{\Psi}=0$. In any case, it can be much smaller than L_{f}.

5 Accelerated proximal gradient methods

When f is smooth and convex, we can apply the results of [HRX18, Theorem 5] (which considers the more general setting of relative smoothness) to the Euclidean case, and obtain the following accelerated convergence rate,

$$
F\left(x_{k}+1\right)-F\left(x_{\star}\right) \leq \frac{1}{A_{k}} \frac{\left\|x_{0}-x_{\star}\right\|^{2}}{2},
$$

where A_{k} satisfies

$$
A_{k}^{1 / 2} \geq \sum_{i=1}^{k} \frac{1}{2 L_{i}^{1 / 2}}+\frac{1}{L_{0}^{1 / 2}}=\frac{1}{2}\left(\sum_{i=1}^{k} \frac{1}{L_{i}^{1 / 2}}+\frac{1}{L_{0}^{1 / 2}}+\frac{1}{L_{0}^{1 / 2}}\right)=\frac{1}{2} \sum_{i=-1}^{k} \frac{1}{L_{i}^{1 / 2}}
$$

where we used the definition $L_{-1}=L_{0}$. Let $\widetilde{L_{k}^{1 / 2}}$ be the harmonic mean of $L_{-1}^{1 / 2}, L_{0}^{1 / 2}, \ldots, L_{k}^{1 / 2}$, i.e.,

$$
\frac{1}{\widetilde{L_{k}^{1 / 2}}}=\frac{1}{k+2} \sum_{i=-1}^{k} \frac{1}{L_{i}^{1 / 2}}
$$

Then we obtain

$$
\begin{equation*}
F\left(x_{k+1}\right)-F\left(x_{\star}\right) \leq \frac{4\left(\widetilde{L_{k}^{1 / 2}}\right)^{2}}{(k+2)^{2}} \frac{\left\|x_{0}-x_{\star}\right\|^{2}}{2} \tag{10}
\end{equation*}
$$

Notice that $\left(\widetilde{L_{k}^{1 / 2}}\right)^{2}$ is smaller than the geometric and arithmetic means of $L_{-1}, L_{0}, \ldots, L_{k}$, i.e.,

$$
\left(\widetilde{L_{k}^{1 / 2}}\right)^{2} \leq\left(\prod_{i=-1}^{k} L_{i}\right)^{1 /(k+2)} \leq \frac{1}{k+2} \sum_{i=-1}^{k} L_{i} \leq L_{f}
$$

Therefore, the convergence rate in (10) is slightly tighter than the result of [HRX18, Theorem 5], which used the geometric mean.

When f is also strongly convex, similar improvement of accelerated linear convergence rate can also be established. Here we omit the details.

References

[Bec 17] Amir Beck. First-Order Methods in Optimization. MOS-SIAM Series on Optimization. SIAM, 2017.
[HRX18] Filip Hanzely, Peter Richtárik, and Lin Xiao. Accelerated Bregman proximal gradient methods for relatively smooth convex optimization. arXiv:1808.03045, 2018.
[Nes13] Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140(1):125-161, 2013.
[XZ14] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4):2057-2075, 2014.

[^0]: *Microsoft Research, Redmond, WA 98004, USA. Email: lin.xiao@microsoft.com.

