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Abstract
Given a table of multi-dimensional data, what analyses would
human create to extract information from it? From scientific
exploration to business intelligence (BI), this is a key prob-
lem to solve towards automation of knowledge discovery and
decision making. In this paper, we propose Table2Analysis
to learn commonly conducted analysis patterns from large
amount of (table, analysis) pairs, and recommend analyses for
any given table even not seen before. Multi-dimensional data
as input challenges existing model architectures and train-
ing techniques to fulfill the task. Based on deep Q-learning
with heuristic search, Table2Analysis does table to sequence
generation, with each sequence encoding an analysis. Ta-
ble2Analysis has 0.78 recall at top-5 and 0.65 recall at top-1
in our evaluation against a large scale spreadsheet corpus on
the PivotTable recommendation task.

1 Introduction
For data analysis and information sharing, people create Piv-
otTables, charts (Figure 1), and other various types of visuals
using analytics tools such as spreadsheets and other BI soft-
ware. Non-trivial interactions and skills are often required to
operate them, which could be difficult and time consuming.

Opportunities exist for enabling automatic recommenda-
tion of data analyses (Milo and Somech 2018; Ding et al.
2019) to mitigate this productivity issue. There are large
amount of data analysis artifacts providing both source
dataset and result visuals, e.g. Excel spreadsheets or Power
BI reports. Such artifacts embed commonly conducted anal-
ysis patterns across users, denoted as Common Analysis,
including patterns of typical combinations of data seman-
tics (e.g., “sum of sales by quarter” or “average price per
month by region”) and patterns about data characteristics
(e.g., without bucketing, a data-field with continuous float
numbers in [0, 1] is rarely used as breakdown dimension).
These opportunities motivate us to devise a technology for
learning and recommending Common Analysis patterns.

First, an abstraction is needed to encode the essential anal-
ysis components that are invariant to interested visual types.
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For this purpose in §2 we design an analysis language that
encodes analysis process into a sequence of action tokens.
Each token is either a predefined analysis operation or a
reference to a data-field from the given multi-dimensional
dataset. (E.g., “sum of sales by quarter” could be represented
as the sequence [ANA] [Sales] [SEP] [Quarter] [Sum].)
The analysis language enables a structured representation of
various analyses against which learning will be conducted.

Based on such an analysis language, each table is a set of
data-field tokens and each analysis is a sequence of opera-
tion/reference tokens. We propose Table2Analysis (§3) as a
set-to-sequence framework. At learning stage, it learns from
large amount of (table, analysis) pairs. At recommendation
stage, it generates top-k sequences of analyses for a given
table. The key is language modeling (§2.2) that can be trans-
formed into an action value (Q-value) function that models
the next-action score based on the current state of a given
input set and already generated prefix. However, following
facts challenge the learning of such a Q-value function:
• It is an open-vocabulary problem while the tokens are not

discrete nor enumerable. A reference token can refer to
any data field of any given table, consisting of a combina-
tion of header text and data values. It challenges conven-
tional techniques in typical NLP scenarios.

• The exposure bias (see §3.4) cannot be mitigated by di-
rectly applying conventional techniques due to different
success metric. At inference stage, when a prefix deviates
from ground truth distribution, it implies the analysis is
already broken. Instead of optimizing next- (and all sub-
sequent) action generation to remedy some BLEU score-
like target, the model training should optimize the chance
of switching to a more promising search branch.

Therefore, in §3.2 we design an input layer of neural network
models to embed semantics of unlimited data-fields from ta-
bles. In §3.4 we run multiple agents using the customized
beam searching with the model itself to collect samples to
bridge the gap between training and inference.

We verify the effectiveness of Table2Analysis on Pivot-
Table recommendation. As shown in Figure 1b, PivotTable
(see §4.1) is a widely used type of analysis. We collect over
121,000 tables from 74,000 real world Excel files. For rec-
ommendation, we achieve over 65% recall at top 1 and 78%



(a) Raw Table and a Common Analysis. (b) Corresponding PivotTable.

Figure 1: Example of a Commonly Performed Analysis.

at top 5 using ∼0.5 seconds for each table. Given the gen-
erality of our problem formulation, similar effectiveness on
PivotTable can be expected against other analysis types.

This paper has the following major contributions:
• The novel Common Analysis task is proposed. It requires

learning of common wisdom for structured prediction and
recommendation in data analytics domain.

• We design a language-based Table2Analysis framework
to learn and generate Common Analyses. To our knowl-
edge, for analysis recommendation, our approach is the
first to automatically learn desirable semantic combina-
tions by utilizing unstructured texts from tables.

• We collect a large scale dataset for the PivotTable rec-
ommendation task and conduct systematic evaluations to
verify the effectiveness of the proposed techniques.

2 Problem
For a multi-dimensional dataset such as a spreadsheet table,
its data fields fall into the following two categories.
• Dimension, a categorical attribute that can be used for

grouping the records with the same value on this field;
• Measure, a numerical attribute that can be used for mea-

suring a group of records by aggregation1.
Given a dataset (Figure 1a left), a user typically constructs
an analysis (Figure 1a right or the same PivotTable in Fig-
ure 1b) step-by-step: The measure “Sales” is first selected
as the most cared; then ”Sales” is grouped by a dimension
“SalesRep” and further by “Region”; finally Sum is selected
as the most proper aggregation function.

Among the various types of data analyses against multi-
dimensional data, their shared essential analysis semantics
can be abstracted as the combination in the 3-tuple:
〈dimension(s), measure(s), aggregation function(s)〉

In this paper, we focus on building machine learning mod-
els that can mimic the human paradigm at a lower level and
recommend Common Analyses at a higher level. The two
levels of recommendation are as follows.

1. (Higher level) Complete analyses: A recommendation en-
gine gives user a ranked list of data analysis candidates,
each being a complete analysis as shown in Figure 1a.

2. (Lower level) Next-step analysis action: At each step of
user constructing an analysis, a recommendation engine
suggests next action candidates.
1The most commonly used aggregation functions in Excel Piv-

otTables (see Figure 3) are Sum, Count, Average.

2.1 Analysis Language
In this section, we define the grammar of analysis language
which captures the essential components of an analysis and
the human process of constructing it.
Definition 2.1 (Source Field). A n-dimensional dataset D
consists of n source fields FD = (fD1 , ..., f

D
n ). Each source

field f ∈ FD is an attribute with its corresponding values
of all data records. (E.g., a column in the table of Figure 1a
is a field.) It consists of two parts: 1) Field name, such as
the header title describing the table column; 2) Data values,
such as the values of records under the header title.
Definition 2.2 (Analysis Language). An analysis token a ∈
AD corresponds to an action to take in the analysis construc-
tion process for dataset D. There are three types of actions
in AD: 1) select a source field f ∈ FD; 2) change from se-
lecting one component to another, indicated by tokens from
E = {[ANA],[SEP]}, where [ANA] means starting the
analysis by selecting a measure and [SEP] means start-
ing to select a series of dimension field(s) which leads to
a breakdown hierarchy of groups; 3) apply an aggregation
function from G = {[Sum],[Count],[Average], ...}
for the preceding measure field and breakdown dimensions.
Then in Backus-Naur form we propose the following analy-
sis language for generating sequence of analysis tokens.

〈analysis〉 |= [ANA]〈field〉[SEP]〈dim(s)〉〈func〉
〈dim(s)〉 |= 〈field(s)〉 | 〈field(s)〉[SEP]〈dim(s)〉
〈field(s)〉 |= λ | 〈field〉〈field(s)〉
〈field〉 |= a field ∈ FD
〈func〉 |= an aggregation function ∈ G

The number of breakdown hierarchies (〈field(s)〉 sepa-
rated by [SEP] in 〈dim(s)〉) varies for different analysis
types. In this paper, we focus on basic analyses with only
one measure and only aggregation calculations. But the pro-
posed techniques are general when applied to analyses with
multiple measures and other types of calculation operators.
Definition 2.3 (Complete, Partial and Target Sequences).
An analysis sequence s ∈

⋃∞
l=1AD

l is complete if it fol-
lows the analysis language grammar and there are no dupli-
cate fields in its dimensions2. For a datasetD, we denote the
set of all the complete sequences as CD, the set of all the pre-
fixes of all the sequences in CD as S+D , and call the sequences

2Although duplicated dimension fields do not violate the anal-
ysis grammar, in reality such kind of duplication is mostly useless
and leads to redundancy or regression in results.



in set SD = S+D \ CD as partial sequences. The user-created
or adopted sequences GD ⊆ CD are called target sequences.
T +
D is the set of all the prefixes of all the targets in GD. Then

we call TD = T +
D \ GD the set of partial targets.

It is worth noting that |S+D | is exponentially larger than
|FD| since the number of legal combinations explodes as the
number of fields grows. This makes it very hard to correctly
generate the rare targets GD from S+D .
Example 2.1 (Analysis Sequence Example). The analysis
sequence for both the chart in Figure 1a and the PivotTable
in Figure 1b is: [ANA] [Sales] [SEP] [SalesRep] [SEP]
[Region] [Sum], where [Sales] is the measure, [SalesRep]
is the first dimension and [Region] is the second dimen-
sion (separated in two breakdowns by [SEP] since they are
the left and top headers (axes) in Figure 1b respectively).
[Sum] is applied to [Sales] as the aggregation (sum of sales)
for each sales representative and region.

2.2 Language Modelling Task
Based on the above definitions, the two recommendation
tasks (discussed at the beginning of §2) can be transformed
into the following language modelling tasks.

1. Complete analyses: Generate a top-k recommendation list
of synthesized complete analysis sequences (s1, ..., sk),
ranked by P(s ∈ GD | D) – the probability s being a
Common Analysis for a given dataset D.

2. Next-step action: Given a partial sequence s ∈ SD and
next action a ∈ AD, predict how likely sa is the prefix of
a Common Analysis based on P(sa ∈ T +

D | s,D).
As long as the structure of interested analyses could be

represented in some analysis language with sequential gram-
mar such as the one in §2.1, the above tasks are applicable.
With these tasks in mind, in the next section we propose the
Table2Analysis framework to recommend complete analy-
ses by learning an analysis language model from existing
(and sometimes growing) analysis corpus.

3 Table2Analysis
The two recommendation tasks mentioned in §2.2 are highly
correlated. We transform the complete analyses recommen-
dation task (for a datasetD) into a search (and rank) problem
on the state space S+D based on P(s ∈ GD | D). The search
process will be guided by a heuristic function that approxi-
mates the language model P(sa ∈ T +

D | s,D). Let’s start by
the Markov decision process (MDP) for token-by-token se-
quence generation, and show how its corresponding action-
value function represents the analysis language model.

3.1 Token-by-Token Markov Decision Process
Definition 3.1 (Data Analysis MDP). For an n-dimensional
dataset D, we adopt the definitions in §2.1 to describe the
next-token analysis sequence generation MDP:
• State space is S+D , which can be viewed as a tree with
[ANA] as its root node (initial state).

• Action spaceAD: The legal actions for a given state s are
AD(s) = {a | sa ∈ S+D ,∀a ∈ AD}.

• State transition is deterministic. The transition probability
from s to s′ by taking action a ∈ AD(s) is:

PD(s, a, s′) =
{
1 if s′ = sa,

0 otherwise.

• Reward function RD is designed to reflect if a target se-
quence is successfully synthesized:

RD(s, a, s′) =
{
1 if s′ = sa and s′ ∈ GD,
0 otherwise.

• Discount rate γ = 1 so that the length of an analysis se-
quence has no impact on its rewards.
According to Bellman optimality equation, one can easily

find the optimal action-value function3

q∗(s, a) = RD(s, a, sa) + γ max
a′∈AD(sa)

q∗(sa, a
′)

=

{
1 if s′ = sa and s′ ∈ T +

D ,

0 otherwise.

In other words, q∗(s, a) equals to 1 if and only if sa is a pre-
fix of a target sequence. Now it is not difficult to realize the
connection between the optimal action-value function and
next-token language model: q∗(s, a) is the learning target
for P(sa ∈ T +

D | s,D).
Two more discussions: First, for simplicity, in the notation

q∗(s, a) there is no D, but actually the action-value function
should take D into account. Second, the expected return is
determined since we are learning from a corpus with known
simple rewards (of target analysis). More complex reward is
possible but should be designed w.r.t. the strict structure de-
fined by analysis language grammar, which is quite different
from flexible NLP ones. To keep our framework directly ap-
plicable to languages of other potential analysis types, in this
paper we adopt the above universal reward design.

3.2 Action Value Approximator via DQN
For the following reasons, deep neural networks (DNNs) are
chosen as q∗(s, a) approximator. First, DNN is well-known
for its ability to generalize from an observed corpus to un-
seen inputs. Second, the length of an analysis sequence is
dynamic. Lots of DNN structures could handle varying in-
put lengths. Third, to incorporate semantic info, one ideal
approach is to adopt semantic embedding for the free texts
in field name. Such embedding is also best suited for DNN.

As shown in Figure 2a, our DQN (deep Q-network)
Q(s,AD) takes a state s and the whole action space AD
as its input, and calculates the estimated action values (rang-
ing from 0 to 1) for all a ∈ AD at the same time (the output
for invalid actions in AD \ AD(s) are just ignored). The ac-
tion space sequence4 contains the source fields (in the order
defined by the dataset D, if any; also represents the whole
context), [SEP], and all the aggregation functions (in the
order of usage frequency, if any).

3Optimal action-value function is defined by the expected dis-
counted return for the optimal policy (Sutton and Barto 2018).

4[ANA] is the initial state, thus not included in the action space.



(a) Layer-wise Connected Transformer Model. (b) Input Embedding Part.

Figure 2: q∗(s, a) Approximator: DQN Model Architecture.

Figure 2a is a layer-wise connected variation (He et al.
2018) of Transformer encoder-decoder (Vaswani et al. 2017)
architecture, modified by us for a different purpose than tra-
ditional NMT (neural machine translation). Keys and values
of each encoder layer (left half of Figure 2a) are passed di-
rectly to the corresponding decoder layer (right half of Fig-
ure 2a). Unlike the typical NMT architecture which utilizes
the decoder part to generate the next word one-by-one, the
“generation” of an analysis sequence is based on Q(s,AD)
and leads to a growing state sequence. Meanwhile, the action
space – the input to “decoder” part of the DQN – remains the
same token set for the same table.

One major challenge in Table2Analysis is how to repre-
sent action tokens as feature vector inputs to the DQN. Dif-
ferent from the fixed vocabulary of tokens in typical NLP
tasks, analysis language has infinite possibilities of field to-
kens. Fortunately |FD| (the number of fields in D) is usu-
ally quite small, which means |AD| is also small. So instead
of the typical NLP approach of representing each token as
its global vocabulary index, we design an input embedding
network (see Figure 2b) to convert the rich features of each
analysis token into an embedding vector. This input embed-
ding is shared across both state sequence and action space
inputs. Three kinds of token features5 are fused together:
• Semantic embedding: Any composition result such as the

embedding of field name could be taken as an input. It
will be resized by a linear layer to the length dembed.

• Categories: Each categorical feature will also be mapped
to a dembed-size embedding through a trainable lookup ta-
ble. Token type and aggregation function type are two cat-
egorical features defined by the analysis language. Corpus
specific features such as data value types (e.g., string, dec-
imal, etc.) are also included.
5To provide position and order info, positional embedding same

as the trigonometric one in (Vaswani et al. 2017) is added.

• Data features: ddata features are directly appended to
the token embedding by concatenation. They capture the
statistic and distribution info of a field’s data values.

Besides Transformer architecture, RNN is also widely
used in seq2seq problems. However, plain seq2seq encoder-
decoder does not work in Table2Analysis case because its
output values have fixed length of the global vocabulary
size, which is infinite in our case. One future work is to
try complicated modifications on the existing RNN imple-
mentations, including varying-size vocabulary and reference
mechanism such as pointing or copying (Gu et al. 2016).

3.3 Heuristic Beam Searching
To generate multiple sequences for analysis recommenda-
tion, Table2Analysis use the DQN as heuristic function for
beam searching. In order to balance performance and effi-
ciency, we focus on a class of drill-down beam searching al-
gorithms which combines breadth and depth-first searching.
They take the following steps to search a state space S+D :

1. Initially, the search frontier only contains the state [ANA]

2. For each round, take at mostBeamSize top scored partial
sequences out from the frontier:

(a) For each state in the beam, greedily drill down (choose
a with highest Q(s, a) to append) until a complete se-
quence is generated. Each non-optimal state sa from
each expansion (evaluation of Q(s,AD) for all a ∈
AD(s)) is put into the frontier withQ(s, a) as its score.

(b) Stop if #expansions exceeds ExpandLimit.

For the customized bream searching, the action value esti-
mations could be directly used as scores for ranking reached
states of different lengths. This is one reason why in §2.2 we
did not adopt the classical maximum likelihood definitions
which only give scores for local comparison.



3.4 DQN Training
The DQNQ(s,AD) could be trained by widely used teacher
forcing (Williams and Zipser 1989) where only next action
values of the target prefixes TD (of all D from corpus) are
considered. Since much of the large state space S+D remains
untouched, teacher forcing could be done quickly.

However, teacher forcing would lead to the exposure bias
issue (Ranzato et al. 2015) in sequence generation. During
training a DQN is only exposed to the ground truth states
(target prefixes) while at inference the DQN has only access
to its own predictions. As a result, during generation it can
potentially deviate quite far from the actual sequence to be
generated. Thus only seeing the partial targets would lead
to a biased estimation. To train a better DQN, more explo-
rations are needed on the rest of the state space SD \ TD.

In order to bridge the gap between training and inference,
we generate samples using the customized beam searching
with the DQN itself as heuristic function. By iterations of
updating the DQN with samples generated from itself, the
exposure bias will gradually eliminated by distribution shift.
In this Search Sampling process, we adopt several tech-
niques from reinforcement learning (Ranzato et al. 2015):
• Replay memory: During search we put encountered states

into a replay memory after each expansion in step 2a; The
estimator Q(s,AD) is trained periodically by randomly
generating a batch of sample states from the memory.

• OU noise: As the source of exploration randomness, di-
minishing6 Ornstein-Uhlenbeck noises (Lillicrap et al.
2016) are added to the Q(s,AD) estimation results.

• Multiple agents: Searching for multiple tables to acceler-
ate sampling and fill the memory with diverse samples.

• Pretrain: Teacher forcing could help avoid the cold start
problem by first train Q(s,AD) under the supervision of
the most informative part of the state space – TD.

As discussed in §3.1, we already know the precise optimal
action value q∗(s, a) for each state a ∈ AD. Thus Search
Sampling is actually a supervised learning7 process.

In §4.5 we will discuss in more details why previous tech-
niques (Bengio et al. 2015; Ranzato et al. 2015) for expo-
sure bias in NL sequence generation does not work in our
scenario of analysis sequence generation.

4 Experiments
We build our PivotTable corpus for training and evaluat-
ing of Table2Analysis framework. Multiple experiments for
tuning hyper-parameters and testing are run on the Azure
Cloud using Standard NCv3 (24 CPUs, 448 GB memory, 4
NVIDIA Tesla V100 16G-memory GPUs) VM nodes.

6Intuitively, at an early training stage the action-value estimator
is less accurate and less trustable, so there needs a larger chance
to take exploring actions other than the model estimated “optimal”
action; while when the model is well trained, the action-value esti-
mator is more accurate and trustable, so there needs a larger chance
to stick to exploiting actions suggested by the model.

7Temporal-difference methods and its improvements such as
double DQN, soft update, etc. from RL are not used here since
we already know q∗(s, a) is 1 or 0 by whether sa is a target prefix.

Figure 3: Usage Distribution of Aggregation Functions.

4.1 PivotTable Corpus
PivotTable (Alexander and Jelen 2001) represents a large
class of analyses covered by the analysis language. It fol-
lows Definition 2.2, and adds one more constraint: There
are exactly two dimension segments in the 〈dim(s)〉 part of
〈analysis〉. In other words, there is exactly one [SEP] in
〈dim(s)〉, which splits dimensions into two segments, each
leads to one breakdown hierarchy. In the terminology in Ex-
cel PivotTables, one of the segment is called “row field(s)”
and another is called “column field(s)”. The measure field is
also called “value field” in Excel.

Our PivotTable corpus contains 74, 299 unique English
Excel spreadsheet files (with PivotTables) that are crawled
from public Web. We utilize OpenXML to extract source
datasets and their PivotTables. After excluding rare (< 1%)
datasets with extreme sizes (i.e., > 128 fields) and incom-
plete PivotTables (i.e., 0 measure), there remain 121, 593
datasets with 186, 169 PivotTables in the corpus. We further
split the PivotTables that have multiple measures into mul-
tiple PivotTables, each having a single measure. The Excel
files are allocated for training, validation, and testing in the
ratio of 7 : 1 : 2. Hyper-parameter experiments are based on
the validation set, while overall accuracy and effectiveness
comparisons against the baseline methods use the testing set.

4.2 Token Features
As mentioned in Figure 2b, each field of a dataset has three
kinds of input features: semantic embedding, categorical
features and data statistics. These features are concretely de-
signed based on our domain knowledge of PivotTables.

Semantic embedding is calculated from the name of a to-
ken (e.g., header title string of a field or description text of
a function) using the averaged output of all token embed-
ding vectors (768d) from BERT model (Devlin et al. 2018).
Besides the two default categorical features (token type and
aggregation function type) in §3.2, field type and token seg-
ment type are also included. As shown in Figure 3, there are
11 predefined aggregation functions in Excel PivotTables.

Data statistic features are listed in Table 1. We designed
16 features trying to capture the important statistics that
could be informational for common analysis recommenda-
tion. All features are calculated for the numeric fields while
applicable ones are calculated for the string fields.



Table 1: Data Statistic Features.

Feature Meaning Numeric String
AggrPercentFormatted Proportion of cells having percent format X

Aggr01Ranged Proportion of values ranged in 0-1 X

Aggr0100Ranged Proportion of values ranged in 0-100 X

AggrIntegers Proportion of integer values X

AggrNegative Proportion of negative values X

CommonPrefix Proportion of most common prefix digit / char X X

CommonSuffix Proportion of most common suffix digit / char X X

KeyEntropy Entropy by values X X

CharEntropy Entropy by digits / chars X X

ChangeRate Proportion of different adjacent values X X

PartialOrdered Maximum proportion of increasing or decreasing adjacent values X

Cardinality Proportion of distinct values X

Spread Cardinality divided by range X X

Major Proportion of the most frequent value X X

Benford Distance of the first digit distribution to real-life average X

OrderedConfidence Indicator of sequentiality X

4.3 DQN Hyper-parameters
The first series of experiments run as the variations of the
DQN pre-training (teacher forcing) discussed in §3.4. Since
the range of the optimal action value q∗(s, a) is {0, 1}, we
choose DQN hyper-parameters by comparing the precision,
recall and F1 scores of binary classification on each valid
(s, a) pair for all s ∈ TD. As shown in Table 2, the following
important variations are controlled for comparisons:
• Three feature ablations: Using all features, without data

statistic features, and without semantic embeddings.
• Two DQN size hyper-parameters8: The “small” one (with
∼0.81M parameters) where N = 4, h = 8, dff = 192
and dmodel = 96; The “large” one (∼4.60M parameters)
where N = 6, h = 12, dff = 384 and dmodel = 192.

• Four class weight settings of the negative log-likelihood
loss function: (1, 1), (0.8, 1), (0.2, 1) and (0.08, 1) for the
zero and one action value classes from q∗(s, a).

Other hyper-parameters such as dropout rate (= 0.1) and
epoch rounds (= 30) are derived from the above ones or fixed
for all the pretrain experiments. From Table 2 we observe:
• Our input embedding layer (designed for the open vocab-

ulary of analysis language in §3.2) works well even with
feature ablation. Meanwhile, semantic embeddings have
higher feature importance than data statistics.

• Class weight of the loss function balances precision and
recall with trade-off. (0.8, 1) is a sweet spot with highest
F1 score. Thus we use the corresponding pretrain models
for further experiments in upcoming sections.

8DQN size hyper-parameters include: The number of layers N ,
the number of attention heads h and the size of the feed forward
layer dff as shown in Figure 2a; Hidden embedding size dmodel

(divisible by h) as shown in Figure 2b.

4.4 Search Sampling Hyper-parameters
The second series of experiments are the variations of the
search and sampling process discussed in §3.4. Here the ex-
ploration of non-target prefixes is guided by both the search
algorithm and its DQN heuristic function. The following
configurations are considered for comparisons:
• Effectiveness of starting Search Sampling with a pre-

trained model against randomly initialized model.
• Trade-off between computational cost (large and small

model sizes) and accuracy (recall at top-k).
• The same loss function class weight options as the pre-

training experiments in §4.3, except (0.08, 1).
• The explore strategies during training affects sampling

distribution. For the drill-down Step 2a in §3.4, the default
choice is to add OU noise to Q(s,AD), which will put
into replay memory samples that are currently favored by
Q during search. For comparison, another “blind explore”
choice is to force Q(s, a) = 1 if sa ∈ T +

D and rand(0, 1)
otherwise. This will put all positive and random negative
samples into the memory.

Other hyper-parameters for searching and sampling are de-
termined by the above ones or fixed. E.g., (ExpandLimit,
BeamSize) = (100, 4). For OU noises, we set θ = 0.15,
σ = 0.2, µ = ~0, and diminish the scale of noise as the epoch
number grows (scaling factor starts at 0.9, and ends at 0.001
by multiplying 0.8 after each epoch).

The evaluation metric for the DQN trained after Search
Sampling is recall at top k (R@k, k = {1, 3, 5}), which
is widely used in evaluations of recommendation systems.
DQN heuristic q(s,AD) and the drill-down beam search is
applied to each different table in the validation set to gener-
ate a list of analysis recommendations. R@k means the ratio
over the tables that the list covers a target analysis sequence.



Table 2: Validations of DQN Hyper-parameters.

Ablation All Features No Data Stat. No Semantic

Weight 1.0 0.8 0.2 0.08 0.8 0.8

Size large small large small large small large small large small large small

Precision 0.9238 0.9064 0.9099 0.8918 0.7825 0.7170 0.7016 0.5643 0.9057 0.8945 0.8804 0.8413
Recall 0.8639 0.7727 0.8785 0.7965 0.9411 0.8969 0.9540 0.9465 0.8713 0.7708 0.8278 0.7358

F1 0.8928 0.8342 0.8939 0.8415 0.8545 0.7970 0.8086 0.7070 0.8882 0.8280 0.8533 0.7850

Figure 4: R@k on Validation Set over 30 Epochs of Search Sampling with Settings in §4.4.

Figure 4 shows R@k validations after each of the 30
epochs for 6 hyper-parameter settings. Each setting varies
at one configuration from the “1) Default” setting that starts
from pre-trained large model with weight (0.8, 1) and ex-
plores with OU noise. We have the following observations:
• The clear increasing lines of R@k indicates Searching

Sampling could relieve the exposure bias issue for anal-
ysis sequence generation we discussed in §3.4.

• The techniques adopted in Searching Sampling improve
the learning process. E.g., OU noise is better than blind
explore when comparing 1) and 2), which indicates that
diminishing noise may better regularize against the distri-
bution shift. Effectiveness of using pre-trained model is
also verified in the comparison between 1) and 3).

• Large model remarkably outperforms small model (1 vs.
4). 0.2 is a sweet spot of class weight (1 vs. 5, 6).

4.5 Baseline Comparisons and Overall Accuracy
After comparing hyper-parameters in §4.3 and §4.4 on the
validation set, in this section we evaluate baseline methods
and different variations of Table2Analysis on the testing set.

Scheduled Sampling Existing sampling methods such as
DAD (Venkatraman, Hebert, and Bagnell 2015) and MIXER
(Ranzato et al. 2015) were proposed to tackle the exposure
bias issue in natural language generation problems. At each
time step and with a certain probability, DAD takes as input
either the prediction from the model at the previous time
step or the ground truth data. MIXER (Ranzato et al. 2015)
borrows ideas from DAD and train with both token level loss
and sequence loss. MIXER utilizes a annealing schedule to
control the trade-off between the two levels of losses.

However, neither DAD nor MIXER can be directly ap-
plied in Table2Analysis due to different success metrics and
analysis grammar restriction. Both DAD and MIXER use
scheduled sampling to avoid yielding errors that can accu-
mulate quickly along the generated sequence. Based on re-
laxed metrics such as BLEU score, they both assume that
after a wrongly predicted token in the sequence, upcoming
predictions should still match the remaining ground truth.
This assumption is totally wrong in Table2Analysis. As dis-
cussed in §3.1, action value is 1 iff it leads to a prefix of
target sequences, which means once a wrong prediction is
taken, all upcoming action values are always 0. In addi-
tion, the analysis grammar restriction also conflicts with
the assumption. For example, when the target PivotTable is
[ANA] [Sales] [SEP] [Region] [SEP] [Sum], if a wrong
prefix [ANA] [Sales] [SEP] [SEP] is generated, then
DAD and MIXER will assume [SEP] is the next correct
token (5th token in the target), which violates the PivotTable
grammar of exactly two dimension breakdowns. (As intro-
duced in §4.1, the number of [SEP] in a PivotTable should
be exactly two, representing two dimension breakdowns.)

We still try to modify DAD and MIXER and propose a
baseline scheduled sampling algorithm for DQN training.
With the pre-trained DQN as starting point, it further trains
the DQN with an annealing schedule to sample either ground
truth or model generated states. More Specifically, at each
epoch, ground truth states are taken for the first l steps, and
the model generated states (sampled with the estimated val-
ues as weights) are taken for the rest of steps. l is peri-
odically decreased so that as the training progresses, more
model generated states are sampled. This allows the model
to be more aware of how it will be used during inference.



Table 3: Test Highlights.

1) 4) Scheduled Pretrain Random

R@1 0.6518 0.5177 0.0302 0.3108 0.0016

R@3 0.7471 0.6195 0.0667 0.4258 0.0109

R@5 0.7802 0.6612 0.0817 0.4823 0.0121

Comparisons on Test Set In Table 3, model 1) 4) from
epoch 30 of Figure 4 are evaluated on the testing set (see
§4.1), together with three baselines: the DQN with the
baseline scheduled sampling9, the pre-trained large DQN
(teacher forcing with no Search Sampling), and a randomly
initialized large DQN. The test is run on 1 node and on aver-
age takes < 0.5s for a dataset (∼1,500s for ∼23,700 testing
datasets). The best model 1) achieves R@1= 0.652, R@3=
0.747 and R@5= 0.780, much higher than the pretrain-only
model, which means it successfully relieve the exposure bias
issue. Meanwhile, the baseline scheduled sampling leads to
recall numbers lower than the pretrain model, which means
traditional scheduled sampling techniques fails to tackle the
exposure bias issue for Table2Analysis.

Empirical Study To facilitate more intuitive understand-
ing of the recommendation results, below we list the top-5
recommendations by model 1) for the running example of
the sales table in Figure 1a.
• [ANA] [Sales] [SEP] [Regions] [SEP] [Sum]

• [ANA] [Sales] [SEP] [SalesRep] [SEP] [Sum]

• [ANA] [Sales] [SEP] [Data] [SEP] [Region] [Sum]

• [ANA] [Sales] [SEP] [SalesRep] [SEP] [Region] [Sum]

• [ANA] [Sales] [SEP] [Date] [SEP] [Sum]

Impressively, Table 2 and 3 are also (partly) in the top
recommendations by model 1) based on raw experimental
records, which shows that Table2Analysis models recom-
mend semantic meaningful analyses.

5 Related Work
Analysis Recommendation For data analysis and insight
recommendation, collaborative filtering or statistical signifi-
cance are usually used in existing systems.

Traditional collaborative filtering approaches (Marcel and
Negre 2011; Milo and Somech 2018) are applicable to sce-
narios where recommendations are made based on user his-
tory on the exact same table or small number of tables with
aligned schema. However, such scenarios are different from
that in our paper where neither user profile / history data
nor global schema is available. Therefore, those traditional
approaches do not work for such tasks. From another per-
spective, Table2Analysis framework could be viewed as a
new approach of collaborative filtering by learning the com-
mon wisdom and implicitly matching the common schema
among large amount of different tables through neural nets.

9For scheduled sampling, we set l = 15 (which covers > 99%
of the PivotTable sequences) and decrease it by 1 every 2 epochs.

Statistical significance methods have been verified as ef-
fective in previous work such as (Tang et al. 2017) and (Ding
et al. 2019). However, statistical significance should not be
the only criterion for insights discovery and analysis rec-
ommendation. Semantic meaningfulness of analysis is quite
important from human perspective. Existing work did not
well use the semantic information presented in tables trough
free text from humans. It is crucial to incorporate both un-
structured free texts and structured values from a table to
guide the structured learning and generation of data analy-
sis. From this perspective, Table2Analysis technique aims to
complement the existing techniques by adding the aspect of
semantic meaningfulness.

Structured Learning and Prediction Learning and gen-
erating structures (BakIr et al. 2007) has many applications
and lots of them are related to natural language processing.
Some related examples are: Data to Text (Generating differ-
ent kinds of text and documents from structured data (Liu et
al. 2018; Wiseman, Shieber, and Rush 2017).), Text to SQL
(Generating queries from natural language (Zhong, Xiong,
and Socher 2017; Yu et al. 2018).) and Program Synthesis
(Generating programs to meet the clear rules and example
input/output pairs. Such as DeepCoder (Balog et al. 2017)
and NGDS (Kalyan et al. 2018).).

Behind these work are some common model architec-
tures widely adopted, such as the attention based mod-
els (Vaswani et al. 2017; Devlin et al. 2018; He et al. 2018;
Yang et al. 2019) which greatly inspired our DQN model
design. Unfortunately, most existing implementations of
seq2seq encoder-decoder architectures are based on a fixed
vocabulary assumption, which is natural for NLP but does
not fit the input and output requirements in Table2Analysis
framework. As discussed in §3.2, we have to design and im-
plement specific model architectures for the table input.

The exposure bias of sequence generation is discussed in
(Bengio et al. 2015; Ranzato et al. 2015; Lamb et al. 2016).
As we have discussed in §3.4 and §4.5, the existing tech-
niques were designed for natural language generation and
does not apply to analysis sequence generation. Thus we de-
sign our Search Sampling method for Table2Analysis.

Deep Reinforcement learning Some terms (such as ac-
tion value, exploration vs. exploitation) and techniques (such
as replay memory, OU noise) we use in Table2Analysis
comes from the reinforcement learning literature, especially
the value-based model-free deep RL which was first success-
fully applied in gaming environments (Mnih et al. 2015).
Our Search Sampling process is greatly inspired by RL work
such as (Mnih et al. 2015) and (Lillicrap et al. 2016).

6 Conclusion
In this paper, we propose the Table2Analysis framework to
learn and recommend Common Analysis patterns. The pro-
posed techniques can generate multiple Common Analysis
sequences for a given dataset, thus greatly boost the produc-
tivity of data analysis tasks. It also enables future improve-
ments on downstream tasks such as insights recommenda-
tion and natural language query generation.
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