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1 Introduction

Machine learning (ML) has achieved a tremendous success in making break-
throughs in various real-life problems from areas such as medicine, finances or
social sciences, to mention a few. It has created a lucrative business model called
Machine-Learning-as-a-Service (MLaaS), where big technological companies pro-
vide artificial intelligence (AI) services to customers. One of the functions of the
MLaaS platform allows customers to purchase an ML model on demand. In the
foreseeable future, we think that the market of trading ML models is going to
grow significantly, and the security and privacy of the trade and the ML models
will be crucial [7].

Let us illustrate this with an example. Suppose a car company B is interested
in adding autonomous driving technology to its self-driving cars. B would like
to buy a computer vision model, a pre-trained ML model, from an AI technolog-
ical company A. For instance, Mobileye, an advanced driver-assistance system
(ADAS) provider, sells computer vision models installed on chips to automo-
bile companies such as Hyundai or Nissan. In this scenario, B must have the ML
model available without the need to go online: the system might lose the internet
connection by accident or have no connection at all.

In another similar situation, imagine that a pharmaceutical company A has
an ML model trained on the medical profiles of its patients. An IoT company
B builds medical devices for its end-users. At some point, the end-users want to
know whether they are prone to a specific disease through the medical device.
B has neither the model nor the training data to provide such a service to its
end-users, and it probably cannot share their private data due to privacy issues.
B cannot use homomorphic encryption (HE) or multi-party computation (MPC)
as privacy-preserving ML solutions offered previously because of computational
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resource requirements of the ML task. Therefore, B might be interested in pur-
chasing the ML model from A and install it on the medical devices, so that the
end-users can check their medical status.

During the trade of ML models, some particular interactions between two
parties, e.g. a seller company A and a buyer company B, need to be done before
the final transaction. For instance, A wants to ensure that once the model is
given to B, B will buy it. In addition, B needs to confirm that the model is
valid and accurate for its purposes before purchasing it. We propose an HE-
based protocol, which will secure the transaction for both parties, allowing A
to sell its ML algorithm to B keeping the model secret, and at the same time
protecting B from a possible bad ML model before buying it.

There are two benchmarks of ML models to be tested before a transaction:
accuracy and efficiency. Whereas the timing result is independent of the input
data (characteristic that ML models share with traditional software services),
the accuracy of ML models depends excessively on training and test datasets.
In this work we will focus on guaranteeing the accuracy of the ML models and
leaving the efficiency issue on the background.

This report is organized as follows. In Section 2, we present the situation de-
scribed above and propose some possible non-cryptographic solutions that turn
out to be problematic. In Section 3, we recommend our HE-based solution and
describe possible improvements to the protocol to make the overall transaction
more efficient and secure. In Section 4, we start by discussing the feasibility of
our HE-based solution, we then compare it to other potential existing crypto-
graphic solutions, and we finish by considering a dual scenario: trading datasets
instead of the ML models.

2 Non-cryptographic Approaches and their Drawbacks

In this section, we describe some non-cryptographic approaches (and their asso-
ciated problems) to enable a company A to sell a pre-trained machine learning
model to a customer B. The situation is as follows: A is a company that owns a
pre-trained ML model that a costumer B would like to purchase. In this simple
situation, on can think of (at least) three different approaches that do not make
use of any cryptographic measures, and the consequent problems that might
arise.

Approach I: The first approach is simple, but naive: B makes the payment
before getting any service from A. After the payment, A sends the pre-trained
model to B. The potential problem in this situation is that B has no idea
about the model quality before the payment, as training and test accuracies
or generalization ability cannot be tested beforehand. The model may not be
powerful enough to deploy on the client’s side due to poor hyperparameters
or model selection. A may not even send a trained model at all.

Approach II: In the second approach, when a client B wants to try the model,
A sends the pre-trained model to B. If the model fits well on B’s test dataset,
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B can make the payment for the model. The problem arising here is that B
can deploy the model without making any payment, claiming that the model
does not fit its needs, but keeping the model.

Approach III: The third approach provides a test session before the contract
to try to avoid the previous situations. Before any compromise between A
and B, B sends a test dataset to A. A evaluates the trained model using
B’s dataset and sends the results back. If the results are satisfying enough
for B, the payment is made to A. The problem here is that B cannot know
whether the predicted results are obtained from a well-trained ML model or,
for instance, by hand. For example, a computer vision task may be manually
achieved by crowdsourcing.

3 Our HE-based Cryptographic Solution

In this section, we propose a potential solution for trading ML models that
overcomes all the problems stated before. This solution is based on HE. After
presenting the protocol, we continue by describing possible improvements to
make the protocol more efficient. We then demonstrate some possible attacks
to our protocol and suggest possible defenses. Finally, we summarize which ML
model would be compatible with the proposed protocol while satisfying suitable
efficiency and security.

3.1 The Protocol

Fig. 1. Our HE-based Solution

The steps of the proposed protocol are as follows.

1. First A runs Setup to obtain the public HE parameters (base cyclotomic ring,
modulus, number of levels, etc.). Note that B cannot run Setup if we use
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SHE since B does not know the model and the required depth accordingly.
If we use FHE, B can run Setup. 5

2. A sends the HE parameters to B. A also sends a data encoding method to B.
Agreement on the encoding method is essential since the encoding method
considerably affects the performance, and A cannot manipulate the received
ciphertexts easily.

3. B runs KeyGen after checking that the security level of the received HE
parameters is sufficient.

4. B sends the test data m in encrypted form, i.e. sends Enc(m), with evaluation
keys evk.

5. A performs homomorphic inference on Enc(m) using the evaluation keys, i.e.
computes Enc(f(m)), and sends it back to B.

6. B decrypts the received ciphertext and gets f(m), and checks if the algorithm
works as expected.

7. If B decides to buy the model f(·), B proceeds to do the payment to A.
8. A sends the model f ′(·) to B.
9. B checks if f(m) is equal to f ′(m). If not, B now has the evidence that A

did not send the proper model.

Our HE-based protocol shows substantial advantages over the other non-
cryptographic approaches presented in Section 2. As the protocol is built on
homomorphic encryption, B can have a test session without even knowing A’s
model before the contract. The security of the HE scheme ensures that A cannot
cheat during the test session as in the non-cryptographic Approach III, because
A does not see the test data m. The received message f(m) in step 6 ensures
the commitment by allowing B to notice in step 9 if A cheats by not sending a
proper model in step 8.

3.2 Efficiency of the Protocol

In general, the main drawback of HE in practical usage is its slow speed. One
attractive feature of our solution as an application of HE is that, in our setting,
latency issues are more acceptable, since no real-time computation is neces-
sary. Depending on the importance of the ML model transaction, a seller and a
buyer may take their time for securing the trade. However, requiring an excessive
amount of inference time would cause inconvenience. In this section, we discuss
possible optimizations for our solution.

Optimization methods for general HE applications are also applicable to our
solution. For example, a buyer can batch several test data into a ciphertext, and
then the seller can evaluate the ML model only once for multiple test data. One
would probably want to use the CKKS scheme for approximate homomorphic
computations, and approximate the ML model into an HE-friendly version, i.e.
into multivariate polynomials. Since these may cause other errors to the output,

5 SHE stands for somewhat homomorphic encryption. FHE stands for fully homomor-
phic encryption
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one should carefully consider this trade-off between accuracy and efficiency. In
this case, the buyer should keep in mind that a new glitch has occurred, and the
original model will be slightly more precise than the homomorphically evaluated
results. However, since many ML algorithms are robust to errors in general, this
might not cause a big problem.

Another possible optimization is to use HE parameters with a reduced se-
curity level, rather than HE parameters with conventional security level (e.g.,
128-bit security). Since we need the security of ciphertexts only until the agree-
ment of the contract is made, we can use more efficient parameters.

3.3 Towards the Perfect Model Protection

Even though HE provides strong security in our scenario, there are still some
remaining issues that need to be considered due to the nature of the ML model
trading situation and the lack of circuit privacy in concurrent HE schemes. In
this section, we consider possible attacks and suggest defenses for these attacks.

To begin with, a malicious buyer may perform numerous test queries to
obtain nontrivial information about the ML model (e.g., a model extraction at-
tack [8]). To prevent a model extraction attack, the seller must limit the number
of trials that a buyer can query. This can be done both explicitly and implicitly.
Explicitly, a seller can regulate the amount of queries. Implicitly, a seller can
require costs to a buyer for each query. This cost works as a client puzzle: for
a small number of queries, the prices are negligible; but for a large number of
queries to perform the model extraction attack, the costs are infeasible to pay.

Another natural concern on the ML model trading scenario is malicious re-
distribution. That is, once an ML model is sold, the buyer can illegally resell
or redistribute it. In this respect, a possible solution is to use neural network
watermarking [1, 4].

A third concern is the circuit privacy of HE schemes: since concurrent HE
schemes do not provide circuit privacy, there exists a possibility of information
leakage of ML models from the output of homomorphic computations. How-
ever, there are well-known countermeasures such as noise-flooding or bootstrap-
ping [2].

3.4 Compatible ML models

In terms of security and efficiency, the following properties of an ML model need
to be taken into account in order to work with the proposed protocol.

Criteria 1: The ML model needs to be complex enough so that it can resist a
model extraction attack.

Criteria 2: The homomorphically encrypted ML model should have plausible
inference time to evaluate the test dataset.

For binary and multi-class logistic regression models, the size of the feature
vector should be much greater than k + 1 and c (k + 1) respectively, where k is
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the number of allowed queries and c is the number of classes. Neural networks
like DNN, CNN, RNN, etc., should have network parameters much larger than
k (e.g., more than 100 k regarding the experimental results of [8]).

4 Discussions

In this section, we first discuss the plausibility of our trading ML models scenario.
We then consider possible alternative cryptographic solutions to the problem
like multiparty computation or zero-knowledge arguments. We end the section
by considering a dual situation: trading datasets instead of ML models.

4.1 Plausibility of Trading ML Models

Machine learning-based solutions have become a rather conventional way of tack-
ling many problems. However, training ML models requires a substantial amount
of computational power and a vast amount of training data. Therefore, selling
such trained ML models can be seen as a rosy business model, since MLaaS mar-
ket is growing fast. Many companies in this area propose to train and tune the
models of a customer at a reasonable price (compared to the cost of computing
resources and massive datasets required if the customer were to train the model
by itself).

One may ask why the company should sell the model itself instead of pro-
viding online access and sell subscriptions. We are going to answer this question
from various perspectives. First of all, there are several ML applications where
the service needs to work also when the system goes offline (e.g., driverless car).
Another disadvantage is the privacy issue. A customer has to send always its
private data to the service provider if this only offers a subscription. Of course,
we can use HE or MPC to solve this privacy issue via PPML. However, this
PPML approach suffers from slow speed and there are some ML applications
where such latency cannot be tolerated (e.g., driverless car).

Another point is that a customer might want to train the model further to
improve its performance for new data points using online learning, or the model
can be used in multitask learning [3]. Without trading the model itself, this
would not be possible for a customer. We also note that trading ML models is a
one-time sale, but the company can retrain the model with up-to-date datasets
after a while and sell updates.

4.2 Alternative Cryptographic Solutions

Secure multiparty computations (MPC) can be used as an alternative solution
to our HE-based approach for the safe ML model trading scenario. When using
MPC, one can hide the model weights, but it is a non-trivial task to protect the
whole ML model, including its hyperparameters. That is, a seller and a buyer
would share the ML model structure and perform secure multiparty compu-
tations on it, without revealing the model weights and the test data to each
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other. This leads to the solution being more susceptible to model extraction at-
tacks. Moreover, the selection of suitable neural network architectures for a given
problem and dataset is often difficult and resource-consuming [5], meaning that
sharing the structure of the ML model might already be a substantial loss of
intellectual property for the seller.

Another issue for an MPC-based solution is communication overhead. The
communication cost between the buyer and the seller becomes more significant as
the ML model becomes more complex, and the two parties should remain online
during the computation. This might be a minor problem if two large companies
do the transaction, but might be an essential issue if a customer is an individual
with low computing power.

One might also consider zero-knowledge arguments (e.g., zk-SNARK) for
another possible solution to the model trading scenario. In particular, when
test data is given, the seller can use zk-SNARK to prove that it has the ML
model, which outputs one specific result without revealing the parameters (zero-
knowledge). However, in this case, the buyer has to disclose its test data to
the seller, leading to the same problems as the non-cryptographic Approach III
described in Section 2.

4.3 Dual Scenario: Trading Datasets

One interesting point of view about our solution is that one can also consider
its dual scenario. In the original situation, the seller has a function (e.g. a ML
model), and the buyer wants to check the output of the function on particular
data before the transaction. On the other hand, in the dual scenario, the seller
has a dataset, and the buyer wants to check the output of a particular function
on the dataset before the transaction. Thus, the roles of functions and data are
switched. We can directly apply our protocol, which is designed for the original
scenario, to the dual situation by just interchanging the roles of function and
data. Our HE-based solution for the dual scenario is summarized in Figure 2.

Fig. 2. Our HE-based solution for the dual scenario.
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However, in this case, our solution seems to have a less significant advantage
over an existing MPC-based solution [6]. This is because, unlike the original
solution, an ML model is being sent over a homomorphically encrypted chan-
nel. In this scenario, we probably want to encrypt only the model weights and
biases and send the model hyperparameters unencrypted. This invalidates the
first advantage of the HE-based solution over the MPC-based solution, which
is described above. If not, we can homomorphically encrypt the whole circuit
description. However, this approach does not look practically sound again.
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