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ABSTRACT
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1 Introduction

The residential sector accounts for 20% of all energy consumed in the United States.1 To

reduce the fuel, capital, and environmental costs required to supply this energy, policy-

makers have long sought to increase the energy efficiency of the housing stock. While much

of the focus has been on ensuring that newly constructed homes meet some minimum level

of energy efficiency (e.g., state-level building codes and federal appliance standards), the

effect of these minimum standards is limited by the fact that existing older homes, and

the appliances in them, are incredibly durable.2

To reduce the amount of energy consumed in the stock of older homes, a substantial

amount of money is poured into programs encouraging investment in energy efficiency

upgrades. Much of this support comes from customer incentive programs offered by energy

utilities.3 Estimates from the utilities themselves suggest that the energy savings achieved

by these programs are quite large. For example, electric utilities estimate that the $2.9

billion they spent on energy efficiency programs and incentives during 2017 alone will

provide lifetime electricity savings of 137,298 GWh.4

However, a growing body of academic research casts doubt on these lofty savings

estimates. For one, ex post empirical estimates find consistent evidence that the energy

savings achieved by energy efficiency upgrades are smaller than ex ante predictions (Fowlie,

Greenstone and Wolfram (2018), Burlig et al. (2017), Allcott and Greenstone (2017), and

Metcalf and Hassett (1999)). Perhaps even more importantly, however, the energy savings

achieved by energy efficiency incentives are often far less than predicted due to the fact

1See https://www.eia.gov/energyexplained/index.php?page=us_energy_use.
2Over half of the current U.S. housing stock was built prior to 1980 – before any state-level building

codes established minimum energy efficiency requirements. For information on the age distribution of the
housing stock, see https://www.census.gov/programs-surveys/ahs.html.

3These programs provide both financial incentives – e.g., rebates and subsidies for energy efficiency
investments – as well as informational interventions – e.g., home energy audits. From 2013 through 2017,
U.S. electric utilities alone spent $7.5 billion on residential energy efficiency programs. Similar types
of financial support also come from the federal government (e.g., tax credits for home improvements; the
Weatherization Assistance Program). From 2013 through 2017, the federal government spent $2.2 billion on
tax credits for homeowners making energy efficiency improvements to existing homes and another $1 billion
to upgrade low-income homes through the Weatherization Assistance Program. For information on fed-
eral tax expenditures, see https://home.treasury.gov/policy-issues/tax-policy/tax-expenditures.
Utility expenditures on energy efficiency are reported in the EIA’s Electric Power Industry Report (EIA-
861), https://www.eia.gov/electricity/data/eia861/.

4For a comparison, total U.S. residential electricity consumption during 2018 was 1.46 million GWh.
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that they suffer from poor additionality (Joskow and Marron (1992), Boomhower and

Davis (2014)). That is, many of the subsidized energy efficiency upgrades would have

occurred without any direct financial support.5

In this paper, we highlight that poor additionality of energy efficiency subsidies is an

incomplete representation of the subsidies’ inefficiency. Introducing a theoretical model

of a household’s decision to invest in energy efficiency upgrades, we demonstrate that an

additional inefficiency can arise due to the fact that there is uncertainty surrounding the

benefits achieved by performing the upgrades. Specifically, many installing households

don’t know how much money will be saved or how much comfort will be increased at

time of upgrade. In this setting, a subset of households will make irreversible investment

“mistakes” – they will invest in energy efficiency upgrades that would prove to be inefficient

under full information. Using our theoretical model, we demonstrate that, in the presence

of a program subsidizing energy efficiency, not only will a large share of participating

households be inframarginal (i.e. “non-additional”), many of the “additional” participants

will not be economically efficient participants.

To explore how investments in energy efficiency are affected by financial incentives, we

begin by modeling a household’s decision to participate in an energy efficiency program

when the household faces uncertainty about its average energy bill. Consistent with typical

energy efficiency programs offered by energy utilities, we model this decision as a two-step

process. In the first stage, a household must decide whether to receive a potentially

subsidized in-home energy audit (IHEA). Through an audit, homeowners receive expert

advice regarding what types of energy efficiency upgrades could be performed on their

home as well as estimates of the potential energy savings. Importantly, while the expert

advice will reduce the uncertainty surrounding the magnitude of the potential benefits,

households will still not know the true returns. In the second stage, homeowners must

then decide which, if any, of the subsidized energy efficiency improvements to make.

While a number of studies explore households’ decisions to participate in similar en-

ergy efficiency programs (e.g., Holladay et al. (2019), Allcott and Greenstone (2017), and

5Low levels of additionality have also be highlighted in a variety of other settings where subsidies are
provided to encourage investment in energy saving technologies – e.g., subsidies for residential solar PV
(Hughes and Podolefsky (2015)) as well as subsidies for hybrid vehicles (Chandra, Gulati and Kandlikar
(2010)).
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Palmer and Walls (2015)), our analysis differs in an important dimension. Rather than

focusing solely on whether or not a household participates in an energy efficiency program,

we seek to understand the timing of households’ participation decision. That is, when do

households receive audits and make energy efficiency upgrades? The timing of participa-

tion is potentially important given that households may have very different information

based on how long they have lived in their homes. When new owners first move into a

home, they will likely have a great deal of uncertainty surrounding how much future energy

they will consume as well as what the resulting comfort level will be (i.e. will their home

be drafty in the winter or too hot in the summer). Consequently, new homeowners will

have the least certainty surrounding the benefits that would be achieved by making energy

efficiency upgrades. In contrast, homeowners that have resided in their homes for a great

deal of time will have a far more precise understanding of the benefits energy efficiency

upgrades would provide.

To explore how uncertainty affects the homeowners’ decisions to perform energy effi-

ciency upgrades, we model bayesian households that form priors about a home’s energy

usage based on the observable characteristics of the home (e.g., the age and visible con-

dition of the home) when they first move in. The households then update their priors

with each new energy bill. In this context, our model identifies four different types of

households: (1) households that correctly make energy efficiency upgrades, (2) households

that correctly choose not to make upgrades, (3) households that delay making upgrades

that would be economically efficient, and (4) households that make upgrades which are

inefficient and don’t pass a full information benefit-cost test. Our model suggest that the

likelihood of making a mistake (type 3 or 4) is the greatest when uncertainty is the largest

– right when households move into a home. Paradoxically, this is also precisely when

our model suggests households are most likely to participate in energy audit and subsidy

programs.

To explore whether the predictions from our model are borne out in practice, we

examine the participation decisions of households residing in a medium-sized MSA which

subsidized energy audits as well as subsequent energy efficiency upgrades. To perform

the empirical analysis, we combine three unique datasets: one with monthly, household-

level electricity and gas usage, one with audit and install information, and one with home
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characteristics. Using the data, we examine how the likelihood of participating in the audit

program and making subsequent upgrades varies with characteristics of the premise (e.g.,

the age of the home) as well as with the time the homeowners have spent living in the home.

Consistent with the prediction from our theoretical model, we first document that there is

a dramatic increase in the likelihood of receiving an audit immediately after a household

moves into a home. Moreover, consistent with new homeowners using observable premise

characteristics to inform their beliefs about the potential benefits of energy efficiency

upgrades, the likelihood of an audit immediately after moving in is higher in older homes.

In line with the predictions from the theoretical model, the likelihood of an audit occurring

falls precipitously with each additional month a household resides in their home. Moreover,

the likelihood of an audit occurring is no longer a function of observables like home age

once the homeowners have resided in the premise for several months. This final finding

is consistent with the homeowners using the information they receive from actually living

in the home (e.g., a series of energy bills; the temperature and draftiness of the home) –

as opposed to simple observable premise characteristics – to inform their beliefs about the

potential benefits of making energy efficiency upgrades.

With the empirical evidence supporting our theoretical model, we return to the bayesian

model to explore how households’ decisions are affected by policies subsidizing energy ef-

ficiency upgrades versus audits. Focusing first on the impact of subsidies for performing

upgrades, our model demonstrates that, while many of the participating households are

“infra-marginal”, increasing the size of the subsidies will indeed cause more households to

invest in upgrades. To understand the social returns provided by these new participants,

we separate the marginal households into three groups. First, there is a set of households

that are truly additional and efficient participants. The increase in the subsidy incentivizes

these households to invest in upgrades that provide positive social returns. Second, there

is a set of households whose investments are “pulled forward” in time.6 While these house-

holds would have eventually chosen to make investments in energy efficiency upgrades in

the future, the increased subsidy incentivizes them to perform the upgrades sooner. While

6Evidence of agents actions being pulled-forward in time has also been demonstrated in the case of
subsidies for vehicle scrapping (Mian and Sufi (2012)) as well as for solar PV adoption (Hughes and
Podolefsky (2015)).
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pulling these investments forward provides social benefits, the returns are far smaller than

the gains provided by the first group of truly additional households. Third, there is a set of

marginal households that are incentivized to invest in energy efficiency upgrades that are

not socially optimal. That is, the subsidy simply encourages more investment mistakes.

Turning our attention to the impact of subsidizing energy audits, we find an unfortu-

nately similar result. By reducing the private cost of audits, additional households will

certainly be encouraged to pay for audits. However, among the recent movers that do not

yet know what their typical energy consumption levels will be, performing an audit will

not be able to remove all of the uncertainty surrounding the benefits of making energy

efficiency improvements. While we find that the increase in the audit-uptake does lead to

more investment in energy efficiency improvements, many of the additional upgrades are

again merely pulled forward in time while others are economically inefficient upgrades –

i.e. the costs again exceed the true benefits.

The findings from our theoretical analysis first suggest that the social benefits provided

by subsidizing energy efficiency upgrades may be smaller than previously thought. Existing

studies demonstrate that only a fraction of subsidized energy efficiency upgrades represent

additional investments (e.g., less than 50% in the setting explored by Boomhower and

Davis (2014)). Our analysis highlights that many of these additional investments are not

truly additional, but rather simply pulled forward in time. Even more troubling, given

the existence of uncertainty in the decision making process, we highlight that many of the

additional participants may be making inefficient investments – i.e. upgrades with costs

larger than the stream of social benefits they will provide.

More generally, our analysis contributes to a growing literature examining how the pro-

vision of information affects consumers’ investments in energy-related durables.7 When

purchasing an energy-consuming durable good (e.g., a vehicle, an appliance, or even a

house), consumers face a trade-off between the upfront purchase price and the future

stream of energy payments required to operate the durable good. Acknowledging that

7A related literature (e.g., Hausman et al. (1979) and Dubin and McFadden (1984)) explores whether
consumers behave myopically when purchasing an energy-consuming durable good. That is, do consumers
undervalue the future operating costs relative to the upfront cost? If the answer is yes, then this could
be driven in part by downwardly biased beliefs about the savings provided by energy efficiency. Recent
evidence focusing on vehicle purchases finds little (e.g., Busse, Knittel and Zettelmeyer (2013)) to no
(Allcott and Wozny (2014)) systematic undervaluation of fuel efficiency.
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inefficient investment decisions will occur without complete information regarding these

future operating costs, policymakers have long focused on mandating the provision of in-

formation.8 Recent work demonstrates that the provision of this information can meaning-

fully alter consumers’ appliance purchase decisions (Houde (2018), Allcott and Taubinsky

(2015), and Newell and Siikamäki (2014)). Moreover, providing more precise signals about

savings can result in more efficient investment decisions (Davis and Metcalf (2016)). Our

paper is somewhat different in that we investigate learning about the state of the world

through multiple information draws rather than more precise signals.9 This distinction is

vital in our context since a new homeowner’s information changes over time with each new

bill that makes the timing of their investment decision important. The model permits us

to highlight the policy importance of this distinction.

Our analysis suggests that, in the case of households investing in upgrades to their

homes, meaningful welfare gains could be achieved if the uncertainty surrounding the

benefits from improving a home’s energy efficiency could be eliminated. In particular,

a key contribution of this study is highlighting that this information would be the most

valuable when provided to households at the time they move into their homes – when the

likelihood of performing inefficient energy efficiency upgrades peaks.10 At first glance, this

mover margin appears to have a great deal of scope. Roughly 7% of existing U.S. homes

are sold each year, suggesting that nearly half of the existing homes will turnover within a

10 year time period.11 However, our results suggest the need for a great deal of caution for

targeting home sales. Households will have the most uncertainty surrounding the benefits

8For example, the U.S. Environmental Protection Agency requires that new cars and trucks for sale
have fuel economy “window stickers” prominently displayed. Similarly, the Federal Trade Commission
requires manufacturers of major household appliances (e.g., refrigerators, water heaters, etc.) to display
EnergyGuide labels.

9The distinction is important in both the investment under uncertainty literature (e.g.,Dixit, Dixit and
Pindyck (1994)) and stochastic control problems with uncertainty. When learning the value of a parameter
in a stochastic system, the task is easier when stochasticity decreases (the signal is more precise as in Davis
and Metcalf (2016)). We investigate a scenario where the decision maker faces the same level of precision
but can choose to wait to observe multiple signals before exercising an investment opportunity.

10The idea of targeting energy efficiency programs is not a new concept. For example, the fed-
eral government’s energy efficiency mortgage program targets homeowners seeking to perform up-
grades at the point of sale. For information on the energy efficiency financing options available,
see https://www.energy.gov/energysaver/incentives-and-financing-energy-efficient-homes/

financing-energy-efficient-homes.
11The St. Louis Federal Reserve reports the annual number of owner occupied housing units sold. During

each of 2016, 2017, and 2018, 7% of the existing stock was sold.
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from making energy efficiency upgrades immediately after moving in. If a traditional audit

does not remove this uncertainty, then targeting energy efficiency programs at movers may

simply induce a deceptively large uptake effect, which creates the appearance of an effective

program. However, if many of the participants are simply pulled-forward or encouraged

to make inefficient investments, much of the program spending will be largely wasteful.

These insights suggests that policy makers should focus resources instead on alternative

audit designs that work with households to study how their behavior interacts with their

home characteristics to better estimate and predict their own usage.

In section two we introduce the theoretical model used to examine household-level

investment decisions in the face of uncertainty. In section three and four we describe

the empirical setting and data used to examine the testable implications from the theory.

Sections five and six discuss the insights and conclusions our theoretical model provides

with regards to subsidizing energy efficiency upgrades and home energy audits.

2 Theoretical Model

2.1 Model Framework

Our model focuses on two sources of uncertainty in the decision to receive an in home

energy audit and install energy efficiency upgrades. First, households are uncertain about

their home’s true mean energy use µ, but can learn it over time by observing energy bills.

Second, households are uncertain about the energy savings from making an install. The

only way to learn about install savings is by performing an audit. Expected benefits of an

install are the product of mean energy bills and savings from an install.

Households are endowed with an exogenous level of wealth w in each period which must

be allocated between exogenous energy usage (et) and consumption of a numeraire good

(ct). We assume risk neutral utility with a constant, exogenous price of energy (p) such

that: u(ct) = w−pet. Energy consumption in any time period t is an i.i.d. random variable

with a distribution f(e) ∼ N(µ, τ) and associated CDF F (e). We define this distribution

in terms of precision τ rather than variance to simplify notation for the Bayesian updating

process below (i.e. τ = 1
σ2 ).

To make the subsequent analysis as transparent as possible, we have imposed several
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restrictive modeling assumptions. However, we highlight that these assumptions are in-

nocuous in our setting. In particular, we discuss below that linear utility does not impact

the sign of our comparative statics but facilitates closed form solutions.12 In addition,

receiving no direct utility from energy means that consumption decisions are not strategic

with respect to updating and learning. We view this as likely in our scenario – households

are not likely to strategically use energy upon moving into a new home in order to learn

about their mean energy use in that home.

Time in our model is defined relative to the date a household moves into a home. In the

initial time period, a household moves into a home and forms priors over average energy

usage associated with that home. We assume priors over mean energy use µ are a function

of a set of characteristics (e.g., the age of home, size of the home, etc.) households observe

when they move into a home. We represent these home characteristics with a scalar θ –

which then feeds into the household’s prior estimate for mean energy usage, m(θ). Home

characteristics vary across dwelling types such that initial priors also vary in the population

according to an atomless distribution m(θ) ∼M(m(θ)).

For an individual household moving into a specific home type θ, we assume their

priors are unbiased estimates of their true mean. More precisely, we assume that any

individual household’s true mean is distributed according to µ ∼ N(m(θ), r) = h(µ) with

associated CDF H(µ) and prior precision r. If prior precision r is higher, then observable

characteristics of the home tightly predict subsequent energy usage, and vice-versa. Both

µ(θ) and m(θ) are increasing in θ (e.g., average energy use is greater in older or larger

homes, ceteris paribus). To summarize, a household moving into a particular dwelling

type θ forms a prior estimate m(θ) about mean energy use, which is an unbiased estimate

of their true mean µ(θ), around which energy use in each period et is distributed.

Households update their prior with each new observation of an energy bill as Bayesians.

After t periods, assuming normal energy usage and normally distributed priors gives the

following closed form posterior belief about mean energy:

mt(θ)|e1,...,et ∼ N
(
τm(θ) + tre

τ + tr
, τ + tr

)
(1)

12For a summary fo the literature exploring how uncertainty and risk aversion may affect the decision
to make energy efficiency investments, see Gillingham and Palmer (2014).
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where e is the average observed energy use over the t periods. The household’s belief

about their mean use becomes more heavily weighted towards their observed historical

sample average with less weight on their initial prior. In addition, the precision increases

over time so that a homeowner who has only recently moved in to their home will have

more uncertainty about their mean energy use than a homeowner who has been there for

a number of months or years. We denote the household’s posterior distribution for the

mean at time t as Ht(µ).

Energy efficiency installs are available at a fixed cost F , which reduce energy bills by

(1 − α)% for some α ∈ (0, 1). After making an install, the household has energy bills

of αpet and utility U = w − αpet. We assume α is unknown unless a household has an

audit. Consistent with most audit programs, households can schedule an audit at any

time for a fixed cost of A. We assume that households have beliefs about α according to

the distribution G(α). We assume G(α) is shared across all households.

2.1.1 Model Extensions

The assumption of a common G(α) is somewhat restrictive. An extension would be to

allow some homes to have a higher α than others. However, different mean install savings

(1 − α) might be correlated with observable characteristics of a home and thus expected

mean energy use (m(θ)). For example, older homes have a higher mean energy use and

higher percentage savings from an install. We discuss briefly below that allowing correla-

tion between (1 − α) and m(θ) would not impact the qualitative findings so long as the

correlation is positive.

We’ve assumed that fixed costs for making an install are fixed over time. Previous

studies present evidence that a sizable portion of the fixed causes of participating in

energy efficiency programs are hidden, non-pecuniary costs (e.g. Fowlie, Greenstone and

Wolfram (2015) and Allcott and Greenstone (2017)). In practice, the non-pecuniary fixed

cost of making an energy efficiency installation may increase with the time spent in a home

after the move-in date. For example, some energy efficiency upgrades, such as installing

new attic insulation, are easier to perform before all of one’s belongings are moved in.

We also discuss the implications of allowing the fixed cost of making an energy efficiency

installation to vary over time spent in a home Ft below.
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2.1.2 Model Timing

Figure 1 shows the timing of the model. Initially, we assume a household must get an

audit before making an install. This reflects the structure of the audit program we study

empirically in the subsequent sections. In section 5, we explore the impacts of allowing

households to make subsidized installs without first receiving an audit.

Figure 1: No audit, audit and install decision tree for each time period.

In each time step, a household can get an audit (A) or not. If a household doesn’t get

an audit in the current period, they can get an audit in the next period, represented by the

curved dotted arrow. Conditional on getting an audit, the household can either make an

install (I) or not make an install (N). For simplicity we assume households make a “yes” or

“no” install decision in the same time step as when they get an audit. A household makes

an install if the expected net present value (NPV) of doing so is positive. A household

gets an audit if the expected value of doing so, incorporating the probability that it may

lead to an install, is larger than the expected value of not doing so. Thus, expectations

over savings from making an install matter for the household’s audit decision. Finally, we

assume that households passively update their information; in other words, households do

not consider how future updating may alter today’s audit and install decisions.13

13An alternative would be to fully model audits and installs as an exercise in option value. Given our
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2.2 Analysis

We proceed by comparing expected value functions at each node in the decision tree shown

in Figure 1. We start with the decision to make an install post-audit. We then backward

induct to the audit decision.

Once the household has paid A for an audit and learned the install savings (1− α)%,

they compare their expected value following an install against their expected value of

doing nothing. Formally, the expected value of each option is:

Et[V |A, I] = −F +
∞∑

s=0

δs
∫
w − αpes dF (e(µ)) dHt(µ) = −F +

w − αpmt(θ)

1− δ (2)

Et[V |A,N ] =

∞∑

s=0

δs
∫
w − pes dF (e(µ)) dHt(µ) =

w − pmt(θ)

1− δ (3)

Recall, F (e(µ)) is the CDF governing energy bills and H(µ) is the CDF of the household’s

priors about the mean of their energy bills µ. The term δ is the time discount factor.

Et[V |A, I] is the household’s expected value function with an install, conditional on having

had an audit and knowing the value of α. The household pays the install cost F up front

but saves (1 − α) in every period. The subscript t indexes the information available at

time t about the distribution of energy bills. Et[V |A,N ] is the household’s expected value

function if they do not make an install, conditional on having had an audit.

The expression for Et[V |A, I] reveals there is a critical value of α – which we define as

ᾱ(mt) – such that the household is indifferent between making an install and not, given

their beliefs.

Et[V |A, I] = Et[V |A,N ] =⇒ ᾱ(mt) = 1−
(
F

p

)(
1− δ
mt

)
(4)

Thus, households make an install if α ≤ ᾱ(mt).

Equivalently, there is a critical belief threshold about mean energy use that a household

would need to exceed in order to justify making an install for any given combination of

assumption of unbiased priors over mean energy use and linear utility, the gains of modeling fully forward
looking households are low.
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install cost (F ) and install savings (1 − α). Once an audit is performed and α is known,

rearranging the expression in (4) provides the ex post usage threshold :

m̄ =

(
F

p

)(
1− δ
1− α

)
,

such that it is rational to make an install if mt(θ) ≥ m̄.14 In sum, these modeling

assumptions have the intuitive implication that households are more likely to make installs

if the share of energy saved by making them, (1− α), is larger for a given average bill, or

their expected average bills are larger for a given percentage savings.

Stepping backward to the audit decision, there are two possible outcomes following an

audit: make an install or not (realized α is below or above the critical value). Combining

equations (2) and (3), the expected value function with an audit is:

E[Vt(audit)] = −A+
(

1−G(ᾱ)
)∫

e

w − pe
1− δ dF (e(µ))dHt(µ)

︸ ︷︷ ︸
Probability-weighted value with no installation

+

∫ ᾱ

0

∫

e

[w − αpe
1− δ − F

]
dF (e(µ))dHt(µ)dG(α)

︸ ︷︷ ︸
Expected value with installation over range of savings

. (5)

Equation (5) shows that the expected value of getting an audit includes the value if no

install is made, weighted by the probability that α is above the critical level (1 − G(ᾱ)),

plus the value with install savings integrated over the support of α’s in which an install is

made. For convenience we define the mean α conditional that an install would be made

as α̂ = E(α|α ≤ ᾱ) =
∫ ᾱ

0
α

G(ᾱ)dG(α). Then (5) can be simplified to

E[Vt(audit)] =
w

1− δ −A− F ·G(ᾱ)−
(

1−G(ᾱ)(1− α̂)

)
pmt

1− δ . (6)

14If an audit was not required in order to make an install, households may make install decisions with
uncertainty over α. In this case, we could define an ex ante usage threshold at which they would expect
to make an install based on the distribution of α, G(α). This ex ante usage threshold is

̂̄m = E(m̄) =

∫ 1

0

F

p

1− δ
1− αdG(α).
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This is the present value of income, less the fixed audit cost, less the expected fixed

install cost, less the expected energy bills. These expected energy bills incorporate the

probability of making an install and the expected savings if an install is made. Note that

if the probability of making an install, G(ᾱ), is equal to one, then the expected energy

bills are just the post-savings energy bills α̂pmt
1−δ , where in that case α̂ would be equal to

the mean of the α distribution.

At the beginning of each time period, the household can choose to get an audit and

receive E[Vt(audit)] in equation (6), or delay one period and face the same choice again.

The household takes the action with the highest expected value based on their priors of

both α and µ. We therefore need to characterize the household’s expected value if they

delay one period and compare it to equation (6).

If the household delays the decision one period, they get the expected bill based on

their current prior, plus the discounted ex ante expected value function:

E[Vt(delay)] = w − pmt + δE[Vt+1],

where E[Vt+1] is the household’s ex ante expected value function, looking forward to node

1 in the subsequent period before the t + 1 prior has been updated or the t + 1 audit

decision has been made. The node 1 decision depends on the distribution of the uncertain

mean µ, Ht+1(µ).

Households will choose a costly audit if they think µ is large enough and α small

enough to make an ex post install likely. This implies an ex ante critical belief about

mean energy use at which the household is just indifferent between choosing the audit this

period versus delaying the audit decision. We define this critical belief implicitly below,

and denote it m̃. To conserve notation, define µ̂H = E(µ|µ ≥ m̃) =
∫∞
m̃

µ
1−H(m̃)dH(µ) as

the expected use conditional on use being above the cutoff to induce an audit. Similarly

define µ̂L = E(µ|µ < m̃) =
∫ m̃
−∞

µ
H(m̃)dH(µ) as the expected use conditional on use being

below the cutoff.

Using this notation, we show in appendix A.1 that the ex ante value function for t+ 1
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is given by

E[Vt+1] =
w

1− δ︸ ︷︷ ︸
present value of wealth

− A ·
(

1−H(m̃)
)

︸ ︷︷ ︸
ex ante expected audit cost

− F ·G(ᾱ)
(

1−H(m̃)
)

︸ ︷︷ ︸
ex ante expected install cost

− p

1− δ

(
1−G(ᾱ) · (1− α̂)

)
(1−H(m̃))µ̂H

︸ ︷︷ ︸
expected bills if audit, given uncertainty over install

− p

1− δH(m̃)µ̂L
︸ ︷︷ ︸

expected bills if don’t audit

. (7)

This is the present value of wealth net of what may happen with audits, installs,

and energy bills after updating occurs. The second term (ex ante expected audit cost)

accounts for the possibility that updated posterior beliefs about energy usage may induce

an audit. The third term (ex ante expected install cost) accounts for the possibility of

making an install if the updated belief does induce an audit. The last two terms provide

the weighted average present value of bills, given that the updated posterior belief may

be above or below the audit threshold.

Our empirical predictions about audit decisions therefore depend on the sign of the

following expression:

E[Vt(audit)]− E[Vt(delay)] R 0 =⇒
δ

1− δ
[ (

1−G(ᾱ) · (1− α̂)
)

(1−H(m̃))pµ̂H +H(m̃)pµ̂L
︸ ︷︷ ︸
Expected future bills if delay, potentially audit and install later

−
(

1−G(ᾱ) · (1− α̂)
)
pmt

︸ ︷︷ ︸
Expected future bills if audit now

]

+ G(ᾱ)(1− α̂) · pmt︸ ︷︷ ︸
Expected savings this period

−
(
A+ F ·G(ᾱ)

)
·
(

1− δ
(

1−H(m̃)
))

︸ ︷︷ ︸
Expected change in fixed costs

R 0. (8)

Noting that ᾱ and α̂ are functions of the current belief mt, equation (8) implicitly defines

the critical belief m̃. For beliefs above m̃, the household audits in the current period. For

beliefs below m̃, the household delays and waits for more information.

Equation (8) also shows the household must account for the possibility of auditing

and installing in the future when evaluating the expected costs and benefits of auditing

now versus delaying one period. If the household delays, they will update their prior

with their new energy bill. By the assumption of unbiased priors, their best expectation

of tomorrow’s updated prior is today’s prior, mt. However, the household assigns some
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probability (1 − H(m̃)) to a state of the world in which their updated future prior will

induce an audit in the future, which will potentially result in an energy efficiency install.

Likewise, the household attaches probability H(m̃) to a state of the world in which their

updated future prior does not induce an audit. The household is more likely to audit in

the present if expected current savings are large, if expected future bills are larger if delay

rather than audit is chosen, and if the expected savings in fixed costs are low because the

probability of eventually auditing in the future is high.

Thus, in the model, a household accounts for the various outcomes which can occur in

addition to the possibility of making future audits. A household compares expected future

bills to the expected bills if the household audits now and applies expected savings given

their current prior mt in all future periods. The household then compares expected future

gains or losses to the expected savings in the current period from receiving an audit (and

potential install). In addition, the household accounts for the fixed costs from auditing

now with certainty and making an energy efficiency installation with probability G(ᾱ)

versus potentially auditing and installing in the next period with probability (1−H(m̃)).

Equation (8) has several empirically testable implications, especially for households

with more uncertainty in the beliefs over energy bills like recent movers. First, we show

that audits are more likely soon after moving into a home; the updating and learning

process leads to a declining share of households requesting audits as time passes from the

move-in date.

Proposition 1 The share of households receiving an audit in period t, rather than delay-

ing one period, is declining in t.

Two intuitive features drive Proposition 1 (a proof is in appendix A.2). First, recent

movers have wide priors over their mean energy bills. As beliefs become increasingly precise

over time, if a household has not audited yet because their belief is below the critical value

then it is increasingly likely that their true mean is below the critical value. Second, there

is attrition in unaudited households; at t = 0 all households with initial priors above the

cutoff request an audit, and the share of households that subsequently updates their priors

above the cutoff declines over time. As time passes, beliefs mt converge to the true mean

µ for each household, and an increasing share of households whose true µ > m̃ will have

already audited earlier. Empirically, Proposition 1 indicates that we should observe the

16



percentage of households receiving audits to be highest among recent movers and declining

in time since the move.

Note that there are other possible models which give the prediction of recent movers

auditing at high rates. One is that the cost of making an install decreases over time after

moving. For example, it is easier to work on a house before being completely moved in.

However, our other predictions below cannot be explained by time variable installation

costs.

We are also interested in how households use observable information (i.e. home char-

acteristics and recent energy bills) to make inferences about mean energy use over time,

which ultimately affects audit and installation decisions. Observable building character-

istics (θ) such as home age and size as well as large recent bill shocks et can influence

the decision to audit rather then delay. An implication of Proposition 1 is that for every

unaudited household as of time t, the probability that they will receive an energy bill large

enough to update their posterior above the critical belief declines as t increases.

We can also make closely related predictions about the marginal impact of information

used to form beliefs, i.e. dwelling characteristics and recent bills, on the probability of

receiving an audit or making an installation as t grows. The marginal influence of this

information should decrease the more observations a household has about their mean

energy use. In our model, each of these factors increases the household’s prior estimate

of mean use mt, which in turn affects whether the prior is above or below the ex ante

usage threshold for an audit m̃ or the ex post usage threshold for an installation m̄. Priors

with larger mean energy use make it more likely that the household will audit and install.

However, the effect of θ and et on the prior at time t dampens as t grows. As the precision

of the prior increases over time, θ and individual observations of et have smaller marginal

effects on the household’s estimate of mt. In other words, the information contained in

θ, and a particular et, has the biggest effect on expectations when the household is least

certain about its average bills.

This is stated below as Lemma (2) (a proof is in appendix A.3):

Lemma 2 Priors of mean energy use are increasing in home characteristics θ (e.g., age)

and recent energy bills et, but at a decreasing rate across time:

• ∂mt(θ)
∂θ = m′t,θ > 0,
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• ∂mt(θ)
∂et

= m′t,et > 0,

• m′t,θ and m′t,et are declining in t.

The longer a household delays an audit, the more precise their priors become and the

less important observable characteristics of the home (θ) and any individual bill become

in the updating process.

We can derive precise relationships on how the value of waiting changes by differen-

tiating (8) with respect to θ or et.
15 We will focus our attention on the derivative with

respect to θ because et operates on mt in an analogous way, as shown in Lemma (2). In

appendix A.4, we show that the partial derivative of (8) with respect to θ is given by

∂E[Vt(audit)]− E[Vt(delay)]

∂θ
=

[
p

1− δG(ᾱ)(1−α̂)
(

1−δ+δH(m̃)
)

+δh(m̃)(τ+tr)A

]
m′t,θ

+
δp

1− δ

[
h(m̃)(τ+tr)G(ᾱ)

(
(1−ᾱ)mt−(1−α̂)m̃

)
+g(ᾱ)

∂ᾱ

∂mt
(1−ᾱ)(1−H(m̃))(mt−µ̂H)

]
m′t,θ.

(9)

Equation (9) highlights that there are two competing effects dictating how the value of

waiting changes based upon characteristics of a home. The first term is the direct effect

of an increase in the prior on the likelihood of making an install if the household receives

an audit. The first term has a positive effect on auditing in the current period rather than

delaying. The second term is the indirect effect of an increase in the prior on the benefit

of delaying in order to gain more information about the decision through updating. The

second effect is negative. The negative effect is only large if the prior is far below the

mean use at which making an install would be worth it. More precisely, if mt is far below

m̃ or µ̂H then the second term is large in magnitude.

An example is useful to gain intuition. Assume a household is unlikely to make an

install because their prior mean is too low to justify it. In that case, a marginal increase

in the prior mean makes the household more likely to delay in order to receive more

15In order to show rigorously how a longer history of bills impacts the audit versus delay decision, we
must account for the effect of a change in beliefs about mean energy bills (mt) on two parameters. The
first is the installation savings threshold required to make an install (ᾱ). The second is the conditional
mean of energy bills if beliefs are sufficiently high to justify an install.
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information rather than incur an irreversible fixed audit or install cost. If the household’s

prior is already in the neighborhood of the level that would induce an audit, however, a

marginal increase in the prior mean is likely to induce an audit in the current period rather

than a delay. In other words, increases in the prior decrease the likelihood of delaying for

those who are marginal to the decision, and increase the likelihood of delaying for those

who were already predisposed to delay.

These two competing effects give rise to testable empirical predictions. The marginal

effect of θ or et on the likelihood of auditing in the current period declines the longer the

household has lived in the home.16 Intuitively, the more time the household has lived in

the home, the more precise their estimate of mean use. The characteristics that inform

their original priors, as well as individual bill shocks, become less decision-relevant the less

uncertainty the household has over its true mean. We state these results as a Remark:

Remark 3 An increase in the prior estimate of mean use due to bill shocks et or home

energy use characteristics θ

• increases the likelihood of auditing in the current period for households that are

marginal to the decision;

• decreases the likelihood of auditing in the current period for households who already

had a low audit likelihood;

• has a declining impact on audit likelihood as t grows.

The model also makes empirical predictions about energy efficiency install behavior,

conditional on an audit. Information from home characteristics θ and recent bill shocks et

is also more relevant to the install decision the more uncertain the household is about its

mean usage. Information has a larger marginal impact on the formation of the posterior

if there are fewer historical observations from which to infer the mean, leading to the

following Proposition:

Proposition 4 Conditional on having received an audit, an increase in the prior estimate

of mean use due to bill shocks et or home energy use characteristics θ

16As shown in Lemma 2, both terms in equation (9) are multiplied by m′t,θ, which decline over time.
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1. increases the likelihood of making an installation following the audit;

2. has a declining impact on installation likelihood as t grows.

Proposition 4 follows immediately from Lemma 2 (a proof is in appendix A.5). The

testable implications are, first, homes with observable characteristics implying high energy

use will make installs after an audit with higher probability than other homes, conditional

on time in the home. Second, this difference in install rates will decrease over time in

home.

In sum, there are several testable implications from the theoretical model that we can

empirically investigate. The first set of predictions has to do with audit behavior and

the second set of predictions analogously deals with install decisions. Each set of predic-

tions relates to how incentives to audit and install change as households have different

information about their home or a longer time series of information about their home.

3 Data

To explore whether the predictions stemming from our theoretical model are borne out

in practice, we examine the energy efficiency investment decisions of households residing

in a medium-sized MSA. During our study window (2011-2013), the local electric and gas

utility provided residential customers with the opportunity to participate in a subsidized

energy efficiency program. Specifically, households could pay a subsidized rate of $50,

rather than a retail rate of $150, and receive an energy audit. Households that scheduled

an audit had an expert with specialized training and equipment visit their home and

received advice on which, if any, investments could be made to meaningfully improve the

energy efficiency of their homes. Households choosing to make energy efficiency upgrades

based upon that advice received up to $500 from local power providers in rebates. To

receive the installation rebate, a household must have first had an audit.

To test the predictions from the theoretical model, we examine how the likelihood

of participating in the audit program and making subsequent energy efficiency upgrades

varies with the characteristics of a home and the time spent living in the house. To do so,

we combine three unique datasets. The first dataset we use records the addresses of every

household that scheduled an audit from 2011-2013. The dataset also includes all install
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decisions. For both audits and installs, the dataset records the date of the audit and the

installation.17 The second dataset is county assessor data at the address level. This data

includes characteristics of each home such as square footage, year built, type of heating,

number of stories, etc. We leverage this data to determine how audit probability varies

with home characteristics. For premises that were sold at any point during our sample

period, we also observe the date of sale.18 The third and final dataset is address-level,

monthly electricity and natural gas billing data spanning 2011-2013. The data includes

aggregate household electricity and gas consumption as well as the billing period start and

end dates.19

In total, there are 150,658 unique premises in our billing data sample. Ideally, we would

be able to focus exclusively on the owner-occupied premises in our sample. Unfortunately,

that information is not available. In order to exclude premises that are highly likely to be

rental units, we drop each premise that has “Unit” or “Apt” in the address.20 Ultimately,

this leaves us with a final sample of 88,791 unique premises. Consistent with other audit

studies, we observe low take-up rate of audits: 2,573 audits over three years.

Table 1 summarizes the premises in our sample. The homes are divided into those

that do not receive an audit during 2011-2013 and those that do receive an audit. The

summary statistics highlight that the audited homes are, on average, older and larger. The

mover indicator is equal to one if a premise is ever sold to a new owner during the 2011-

2013 period. Importantly, Table 1 highlights that there is a positive correlation between

a premise being purchased and audited. In particular, during the period spanning 2011-

2013, 8% of the premises were sold. Among these premises, 4% received an audit during

our sample period – compared to only 2% among the homes that were not sold during our

17The data was shared under a privacy agreement directly by the auditing agency.
18This data was publicly available from the county assessor in our study footprint.
19The frequency of household billing data is remarkably stable with a billing period every 30 or 31 days

for all households. The exceptions are often very short bills followed by a gap then another bill over a
short period. In conversations with the utility, these are almost always billing interruptions due to the sale
of homes or changes in the renter of rental units. Exploratory analysis comparing the bill dates to the sale
dates in county assessor data confirms this. This data was also shared under a privacy agreement directly
by the utility.

20Combining the program participation data with the assessor data requires matching the premises based
on their addresses. In some cases, the form in which the addresses enter differ across the assessors data
and the utility data. In cases where an address match does not exist, we use a text matching algorithm to
match premises across the two datasets. Ultimately, we error on the conservative side and drop premises
which do not have a clear address match across the two samples.
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sample period.21 In the following section, we explore this pattern in much greater depth.

In particular, we first explore what affects if, and when, households elect to receive an

audit. Next, we explore what impacts households’ subsequent decisions to make energy

efficiency upgrades to their homes.

Recall from the theoretical model, our key assumption is that households do not know

how much energy they will consume in a home prior to living in it for an extended period of

time. While we do not have anyway to observe or measure peoples’ beliefs, we do present

evidence in Appendix B highlighting that energy use varies dramatically across premises,

even after conditioning on observable characteristics. Again, this opens the door to the

possibility that some homeowners could move into homes that appear to be “energy hogs”

based upon observables and make an install based upon expected savings only to discover

the home was actually energy efficient and the install was a mistake – a possibility that

we will explore in greater depth following the empirical tests of the theoretical model.

4 Testing Theoretical Predictions

4.1 Are Audits More Likely Immediately After Sales?

Recall, our model predicts that a household will choose a costly audit if they think their

mean energy usage (µ) is large enough, and the share of energy consumption that would

remain after investing in energy efficiency upgrades (α) is small enough, to make it likely

that upgrades would ultimately be beneficial. However, both µ and α are unknown pa-

rameters. When a household moves into a home, their expectation of their mean energy

usage is a function solely of observable characteristics (e.g., the home’s age, condition).

This prior is updated as the household spends time in their new home (e.g., receiving

monthly energy bills and experiencing the comfort levels during the winter and summer).

From this simple framework, there are several predictions surrounding if and when

households elect to receive energy audits. First, immediately after moving into a home,

we would expect to see a mass of households select to receive an IHEA. This mass would

be comprised of the households that had initial priors for µ that were sufficiently high to

21Data restrictions prevent us from observing whether homes had received audits prior to our sample
period.
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justify an immediate audit. Therefore, empirically, the first question is, do we see this

mass of “immediate auditors”?

Focusing on the premises that were audited and sold at some point during our 3-year

sample period, we calculate the number of days between the recorded sales date and the

date the IHEA was scheduled. Figure 2 displays the histogram of the number of months

between the audit date and the sale date. Consistent with our theoretical model, there is

a clear spike up in audits occurring during the first month following the home sale.22
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Figure 2: Histogram of number of Audits relative to move date for homes where an audit
occurs and the home is sold between 2011 and 2013.

Our model also suggests that the premises audited immediately will have different

household observables (e.g., home age) relative non-auditing households. Households opt-

ing to receive audits immediately after moving should have high initial priors for their

premises’ mean energy usage (µ) relative non-auditing movers. Given that the new home-

owners have no experience in their homes, their initial expectations of µ are based solely on

observed characteristics. One potentially relevant characteristic – that we as researchers

22To ensure that we observe a full year pre and post-sale date during our sample period, Figure A3
recreates the same histogram focusing on the audited premises that were sold during the middle year of
our sample (2012). Again, there is a large spike in audits immediately following the sale. Similarly, A4
displays the probability (frequency) a home is audited during a given month after moving in, conditional
on not being audited in the prior months. Again, the figure displays the probability of being audited falls
with time.
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can also readily observe – is the year the home was constructed. In general, older homes

are expected to be less energy efficient. In part, homes depreciate with age (e.g., insu-

lation becomes less effective over time; as homes settle, cracks and air leaks develop).

Moreover, as building codes become stricter and technology improves, energy efficiency

typically increases across vintages.

To explore whether homes audited immediately after being sold have different ob-

servable characteristics than homes audited later, we compare the observables for homes

audited within 30 days of being purchased to the homes that are purchased and audited

more than 30 days after being audited. Table 2 displays the summary statistics for these

two subsets of sold and audited permises. Focusing on the year of construction, we see

that among the 48 premises that were audited during the first month post-sale, the aver-

age (median) year of construction was 1964 (1963). In contrast, among the 183 premises

that were audited more than 30 days after the sale date, the average (median) year of

construction was 1968 (1967). Given the fairly limited sample size, these differences in

means are not statistically significant. However, the pattern is consistent with the predic-

tion that the premises audited immediately are older, and would therefore plausibly come

with higher initial expectations for µ.

4.2 What Explains the Delayed Audits?

It is important to note that there are potential alternative explanations that could result

in a similar mass of immediate auditors. One notable possibility is that there may be

convenience costs incurred by having an audit, and subsequent energy efficiency upgrades,

performed. It is certainly possible that these convenience costs could discontinuously

increase after the first several weeks following a home sale. For example, onces new

homeowners move their belongings into their new home, it may become more challenging

to have and inspection and upgrades performed on the home.23

However, a simple discontinuous increase in the private costs incurred by having an

audit or upgrades performed would not be able to explain the slow decay in the frequency of

audits several months after a premise is sold (i.e. the fat right tail of Figure 2). Instead, the

23This assumption could be included in our model framework simply as a discontinuous increase in the
fixed audit and upgrade costs, A and F , following the first period.
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steady decline in audit frequency post-sale is potentially consistent with another prediction

stemming from our theoretical model. In particular, new homeowners that do not elect

to receive an IHEA immediately after purchasing their home begin to receive information

that results in updates to their expectation of µ. If this new information results in them

updating their expectation of µ upwards over time, then we would expect to see additional

households select to receive audits. Importantly, our model predicts that, over time the

households’ expectation of µ become more precise. As a result, the initial information (e.g.,

the first few energy bills) will be the most influential in terms of moving the households’

priors surrounding the mean energy usage. Therefore, consistent with Figure 2’s steadily

declining right tail, we would expect to see fewer and fewer homes electing to receive audits

as the months post-sale increase and meaningful movements in E[µ] become rare.

To explore whether there is evidence that households are updating their expectations

of µ over time, and subsequently deciding to receive audits, we explore whether the timing

of the audits that occur beyond one month after the sale date coincide with periods of high

energy consumption. To do so, we focus on the set of households that receive an audit at

least one month after purchasing their home. Using the recorded monthly electricity and

natural gas consumption from each individual household, we are able to explore how the

likelihood of receiving an IHEA during a given month responds to the contemporaneous

and lagged energy consumption using the following linear probability model:24

Auditi,t = αi + γm + β1 · Eleci,t + β2 ·Gasi,t + θ1 · Eleci,t−1 + θ2 ·Gasi,t−1 + εi,t. (10)

In the model specified by Eq. 10 above, Auditi,t is an indicator variable which equals

one during the month t in which household i receives an energy audit.25 Eleci,t and

Gasi,t represent the average daily electricity (kWh) and natural gas (therms) consumed

by household i during month t’s billing cycle.26 Eleci,t−1 and Gasi,t−1 are the average daily

24For this exercise, it is important to include the households’ monthly electricity and natural gas con-
sumption. While electricity use typically peaks in the summer in the study region, natural gas consumption
tends to peak in the winter. Suppose, for example, households were driven to receive audits following high
gas bills. If we focused exclusively on how the likelihood of an audit responds to electricity use, then we
would find audits are more likely to occur during low electricity consumption months. By restricting our
sample to households that have observed electricity and gas consumption and receive an audit beyond one
month after the sale date, we are left with 86 households.

25Once a household is audited, we drop the remaining monthly observations from the household.
26The billing cycle start and end dates vary across households, and therefore, do not necessarily coincide
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consumption levels during the preceding bill cycle. Household fixed effects are included to

control for the fact that there is substantial heterogeneity in energy use across households.

In addition, we estimate the model with and without monthly fixed effects.27

The key coefficients of interest from Eq. 10 are {β1, β2} and {θ1, θ2}. If households

update their expectations of µ as they receive energy bills, then we would expect to see an

increase (decrease) in the likelihood of an audit occurring during a month preceded by high

(low) levels of electricity or natural gas consumption. This would imply that θ1 and θ2 are

positive. An alternative possibility is that households elect to receive an audit during a

month in which their energy consumption is abnormally high – perhaps due to a real-time

awareness of their energy usage or perhaps due to uncomfortable living conditions. In this

case, β1 and β2 would be positive.

Table 3 presents estimates from the general model specified by Eq. 10. The first two

columns present estimates in which we restrict θ1 and θ2 – the coefficients on the lagged

energy consumption – to be zero. Column one and two report the estimates of β1 and

β2 without and with monthly fixed effects, respectively. Across both specifications, we

see there are positive point estimates for both coefficients – suggesting that audits are

more likely during months with high energy consumption. In columns three and four,

the estimates of Eq. 10 are presented with the lagged energy consumption included in the

model. Across both specifications (i.e. with and without monthly fixed effects), there is

clear evidence that the likelihood of a household choosing to receive an audit increases

during a month that follows a period of high electricity or natural gas consumption. This

suggests that households indeed display evidence of updating behavior consistent with our

theoretical model. Specifically, among the households that do not immediately receive

audits after moving into their new premises, high realizations of energy consumption can

subsequently nudge them towards receiving an audit.

Again, our theoretical model predicts that, over time, as households observe a longer

series of bills, their expectations of their mean energy usage µ becomes more precise.

with the calendar months. To create the monthly fixed effects, we assign each billing cycle to the calendar
month in which the majority of the cycle’s days occurred.

27While including the monthly FE will control for seasonal patterns in audit likelihood that are not
driven by energy consumption, they may simply end up sweeping away the seasonal variation in energy
consumption that may explain the audit take-up.
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While observations of high or low energy bills in the months after a household moves into

a new home may meaningfully move their prior surrounding the mean energy consumption,

observed bills would have little impact on the expectation of µ once the household has

resided in the home for a longer period of time. Therefore, our theoretical model predicts

that, among the households that have not recently moved into their homes, contempora-

neous or lagged energy bills will not meaningfully predict whether the household elects to

receive an audit. To test whether this is observed in our setting, we reestimate the model

specified by Eq. 10, this time focusing exclusively on the households that are audited but

had moved into their homes prior to 2011, before our sample period begins. Columns five

and six of Table 3 present the estimates of Eq. 10 without the lagged electricity and gas

consumption – once without monthly fixed effects and then again with. Columns seven

and eight present the estimates with the lagged energy usage included. In contrast to

the estimates from Columns one through four, there is no consistent evidence that past

energy consumption meaningfully impacts the likelihood of receiving an audit among the

non-movers.

4.3 Differences Between Audited and Non-Audited Premises

There are also testable implications from the theoretical model surrounding not just when,

but if a given household will elect to receive an audit. Recall, our model predicts that an

audit occurs if a household’s expectation of the mean energy use, µ, is sufficiently high.

As we noted earlier, the expectation of µ will be, in part, a function of the premise’s

observable characteristics – such as the year the home was constructed. Consistent with

the theory that observables can affect the likelihood of an audit, Table 1 highlights that,

across the full set of premises in our sample, homes that were audited during our three

year sample are indeed significantly older.

Importantly, the theoretical model predicts a more nuanced relationship between a

home’s age and the likelihood of it being audited. While an observable characteristic

like the year of construction can play an important role in determining the E[µ] among

households that recently moved into a premise, households that have resided in their homes

for many years will have formed fairly precise expectations of µ based on past consumption

as opposed to simple observables such as age. This suggests that the relationship between
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the likelihood of an audit occurring during our sample and the age of a home should be

much stronger among households that have recently moved as opposed to those that have

been in their homes for multiple years.

To explore whether the relationship between audit likelihood and year of construction

vary across movers and non-movers, we focus on all of the premises in our sample con-

structed between 1950 and 2000.28 We classify a household as a mover if an audit was

received anytime after the move-in date during our three year sample. Figure 3 plots

locally smoothed polynomials displaying the relationship between the likelihood of an au-

dit occurring and the year of construction for movers and non-movers. Consistent with

the theoretical model’s prediction, there is a clear negative relationship between year of

construction and audit likelihood among movers. This relationship effectively disappears

among the non-movers.
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Figure 3: Likelihood of audit by home construction year conditional on a home being sold
(Movers) versus not sold (Non-Movers) in our sample.

Of course, a number of factors may be correlated with home age. Therefore, the

negative correlation between year built and audit likelihood among recent movers could

28Prior to 1950, the year of construction variable is coarsely aggregated by decade – without any infor-
mation on whether the year of construction is rounded up or down. Therefore, we do not include premises
with year of construction reported prior to 1950. In addition, audits, and subsequently upgrades, are quite
rare among the premises that are less than 10 years old. Therefore, we do not focus on newly constructed
homes.
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instead be caused by a link between audit likelihood and, say, the income levels of the

neighborhoods with homes of different vintages. To further test whether the year of

construction indeed affects the probability of a household electing to receive an audit –

and whether this relationship differs across movers and non-movers – we examine how the

probability of an audit varies with the year of construction while controlling for a wide

range of other observable premise characteristics. To do so, we estimate the following

linear probability model:

Auditi = α+ β ·Yeari + θ ·Yeari ·Moveri + φ ·Xi + εi. (11)

In the model specified by Eq. 11, Auditi is an indicator variable which equals one for

each premise i that is audited at any point during our three year sample.29 Similarly,

Moveri is an indicator variable which equals one for each premise that is sold during our

three year sample. Yeari is equal to the year the home was constructed. Finally, to control

for other characteristics that may be correlated with the year of construction, the vector

Xi includes a fully saturated set of 260 indicator variables separating houses into groups

based on the Moveri indicator, the number of bedrooms (1, 2, ..., 5+), whether the house is

single versus multi-story, and the square footage (thirteen bins ranging from < 800 square

feet to > 3, 200 square feet). In addition, to control for unobserved differences across

neighborhoods, we include a set of 35 postal code fixed effects as well as the interaction

between the postal code effects and the mover indicator.

In Eq. 11, β captures how the likelihood of an audit occurring at non-mover premises

changes, on average, if the home were one year newer (i.e. the year of construction increases

by one year). Similarly, β + θ represents how the audit likelihood changes, strictly among

the homes that are sold, as the premise age falls. Table 4 presents the point estimates of β

and θ. The first column does not include the observable controls (Xi). The second column

includes only the premise characteristics. Finally, column three includes controls for the

premise characteristics as well as the zip code fixed effects. Across each specification, a

clear pattern emerges. As our theory model predicts, among the homes that are sold during

29Note, in contrast to the model specified by Eq. 10, which explored the timing of audits, the audit
indicator now only varies across premises, not across time.
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our sample period, the likelihood of an audit occurring falls as the year of construction

increases (i.e. as the age of the home falls). The point estimates suggest that the likelihood

of observing a premise sold and subsequently audited during our sample period falls by

approximately 1 percentage point if the age were to fall by 10 years, all else equal. In

contrast, among households that resided in the same premise through the full three-year

sample period, the likelihood of observing an audit only falls by 0.1 percentage points if

the age of a home fell by 10 years.

Consistent with our theoretical model’s prediction, the above results provide suggestive

evidence that new homeowners use observable home characteristics (e.g., home age) to

inform their decision on whether to receive an audit or not. Our theory model also predicts

that this relationship should weaken over time. That is, as homeowners spend more time

in their new homes and gain more information surrounding their home’s true energy

requirements, the importance of observables (e.g., home age) in determining whether to

receive an audit or not should decline. To explore whether this prediction holds true in the

data, we explore how the likelihood of an audit varies with a home’s age among different

subsets of movers. Figure ?? again plots a locally smoothed polynomial (the upper solid

line) displaying the relationship between the likelihood of an audit occurring and the year

of construction for all movers. In addition, the figure also displays the same relationship

among the movers that do not receive an audit within the first two months of residing in

the home and among those that are not audited with in the first four months of residing

in their new home. Consistent with the theory model, the slope declines with time since

move-in.

To test whether the relationship between home age and audit-likelihood indeed decays

over time, we re-estimate the model specified by Eq. 11 excluding the homes that are

audited within the first two months of moving (results reported in column four of Table

4). Consistent with Figure ??, the impact of the year of construction on the likelihood of

audits among the movers that do not audit immediately declines (the coefficient on Year

Built×Mover falls to -0.004).
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Figure 4: Notes

4.4 Installation Decision

The final set of testable predictions from the theoretical model focus on households’ deci-

sions to make energy efficiency upgrades following the receipt of an IHEA. Recall from the

model, after a household opts to receive an audit, they will be fully informed about α – the

share of energy consumption that would remain if they were to make the recommended

upgrades. Armed with the knowledge of α, a household must then decide whether to

perform the energy efficiency upgrades. If the household’s expectation of µ – their mean

energy usage absent performing any upgrades – is sufficiently high, then they would opt

to perform the upgrades. However, if E[µ] is not large enough given the realization of α,

then no upgrades would be performed.

Therefore, the first installation-related question is the following – do we observe house-

holds electing not to make energy efficiency upgrades after receiving an audit? Table A1

summarizes the frequency with which different types of energy efficiency upgrades were

performed following the audit. The frequencies are reported separately for audits that

occurred among premises sold during our sample period (i.e. movers) as well as those that

were not sold during out sample. The table highlights that energy efficiency upgrades

were ultimately performed in 63% of the 308 homes that were sold and audited. Similarly,

upgrades were performed in 62% of the audited homes that were not sold during our three

31



year sample. Consistent with the theoretical model, just over one third of the audited

homes elect not to perform any upgrades. Interestingly, this share does differ significantly

across movers and non-movers in our sample. This suggests that individuals’ beliefs over

their mean levels of energy use do not systematically differ across movers and non-movers.

For this to be the case, households that recently move, and therefore base their expected

energy use heavily off the observed characteristics of the home, must be forming unbiased

priors of their mean energy usage.

Beyond simply suggesting that some audited households would not perform energy

efficiency upgrades, the theoretical model also predicts that the likelihood of post-audit

upgrades being performed would be a function of observable premise characteristics. In

particular, premise characteristics that imply a higher level of expected energy use (e.g.,

an older home) can affect the install decision for households who have recently moved into

a home and are still basing their beliefs about µ on these observables as opposed to a long

time series of information gained through energy bills. In contrast, among households that

have resided in their homes for longer periods of time, observable characteristics may have

little impact on the likelihood of energy efficiency upgrades being performed post-audit.

To explore whether the likelihood of energy efficiency upgrades occurring varies with

the age of a home, we explore how the installation frequency varies among audited homes

constructed between 1950 and 2000. Figure 5 plots locally smoothed polynomials dis-

playing the relationship between the frequency of any upgrade occurring and the year of

construction for movers and non-movers. Consistent with the theoretical model’s predic-

tion, there is a negative relationship between the likelihood of an upgrade being performed

and the age of the premise among homes sold during our sample period. This negative

relationship, while still visible, is weaker among the audited homes that are not sold

during our sample period. Figure A5 in the appendix displays similar locally smoothed

polynomials comparing the likelihood of different types of energy efficiency upgrades be-

ing performed and home vintage. The same patterns emerge – premise age appears to

have a stronger positive impact on the likelihood of upgrades being performed among the

premises that are recently sold.

Again, the year of construction can certainly be correlated with other characteristics

that may affect the likelihood of upgrades being performed. To further test how premise
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Figure 5: Install likelihood conditional on having an audit for home that are sold (Movers)
versus not sold (Non-Movers) by year of construction. The Figure shows movers are much
less likely to make installations in newer homes conditional on having an audit and more
likely to make installs in older homes.

age and upgrade frequencies are related, we estimate the following linear probability model

focusing exclusively on the premises that are audited during our sample period:

Installi = α+ β ·Yeari + φ ·Xi + εi. (12)

In the model specified by Eq. 12, Installi is an indicator variable which equals one for each

premise i that performs any energy efficiency upgrade following their IHEA. Yeari is again

equal to the year the home was constructed. Finally, to control for other characteristics

that may be correlated with the year of construction, the vector Xi includes indicator

variables reflecting the number of bedrooms (1, 2, ..., 5+), whether the house is single versus

multi-story, and the square footage (thirteen bins ranging from < 800 square feet to >

3, 200 square feet). In addition, to control for unobserved differences across neighborhoods,

we include a set of 35 postal code fixed effects.

The model specified by Eq. 12 is estimated separately for the 243 audited homes that

are sold during our sample period (i.e. Movers) and for the 1,387 audited premises that

are not sold during our sample (i.e. Non-Movers). Columns one through four of Table

12 present the point estimates of β with and without the observable controls. Consistent
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with the pattern displayed in Figure 5, the likelihood of upgrades occurring falls more

rapidly with the year of construction among the Movers compared to the Non-Movers.

Indeed, with the full set of premise characteristic and zip code controls included, the

relationship between year of construction and upgrade likelihood is insignificant among

the Non-Mover and negative and statistically significant among the Movers. Columns five

and six of Table 5 include point estimates of the difference between β from Eq. 12 for

Movers and Non-Movers. While the difference between the Movers’ and Non-Movers’ β’s

are not found to be statistically different, the pattern is consistent with the theoretical

prediction. Specifically, recent movers’ decisions to perform upgrades appears to be more

heavily influenced by observables such as home age.

5 Investment Mistakes and Policy Implications

The preceding analysis reveals that the predictions stemming from the theoretical model

are largely borne out in the data. In this section, we return to the theoretical model to

garner insights surrounding the efficacy of programs subsidizing energy efficiency audits

and upgrades. We first highlight that, given the uncertainty surrounding the true payoffs

from investing in energy efficiency, households may make an install even though they

should not. We then demonstrate that these investment “mistakes” can be exacerbated

by typical energy efficiency audit and install subsidy programs. While it is well known

that in this type of setting, a large share of participating households may be inframarginal

or “non-additional” to the program, our analysis shows that even the households that are

technically “additional” to the program may not be economically efficient participants.

From the theoretical model, we can begin by dividing households into four categories:

(1) households that correctly make energy efficiency upgrades, (2) households that cor-

rectly choose not to make upgrades, (3) households that delay making upgrades that would

be economically efficient, and (4) households that make upgrades which are inefficient and

don’t pass a full information benefit-cost test. Which group a given household falls into

depends crucially on their prior beliefs about their energy usage and the true mean usage.

Figure 6 plots an example compound distribution of prior beliefs and true mean usage.

The solid black lines represent a given m̄, the ex post usage threshold, which is the cutoff

mean usage above which making an install is efficient if the household knows the true
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savings α and their true mean µ. If the true mean is above the threshold, the household

should make an install. However, because of uncertainty in the true mean, households will

only make an install if their prior belief (mt) about their mean is above this threshold.

From Figure 6, we can characterize four types of install decisions at any given time,

and discuss how an install subsidy or an audit program alters the probability of falling

into each category:

1. µ > m̄, mt > m̄, optimal to install: the household invests in energy efficiency and it

is efficient to do so. This is represented in Figure 6 by the area under the compound

distribution in the dark grey box in the upper right corner labeled “Correctly Install”.

2. µ < m̄, mt < m̄, optimal not to install: the household does not invest in energy

efficiency, which is economically efficient. This is represented in Figure 6 by the

unshaded region in the lower left.

3. µ > m̄, mt < m̄, delay mistake: the household does not yet invest in energy efficiency

when it should. This is represented in Figure 6 by the medium gray rectangle in

the upper left labeled “Don’t Install, But Should”. In our model, learning over time

causes the prior to converge to the true mean so that as these households update

their priors they will eventually move in to the dark gray “Correctly Install” region.

In Figure 6 this means that eventually the mass of the compound distribution is

concentrated on the 45 degree line as uncertainty about the true mean usage declines.

4. µ < m̄, mt > m̄, investment mistake: the household invests in energy efficiency when

it should not. The households that fall into the light gray box in the lower right of

Figure 6 make this irreversible investment mistake. They make an install right away

because their prior belief is above the threshold. Yet as their beliefs are updated

over time and converge to their true mean usage, these households eventually learn

that their investment was inefficient for them.30

30One could more specifically quantify how the share of households in each category responds to policy
by parameterizing a particular functional form for the compound distribution. The probability that a
household makes a mistake (household type 4) is given by the joint probability

Pr(µ < m̄, mt > m̄) =

∫ m̄

−∞
h(µ|m)dµ

∫ ∞

m̄

dM
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Figure 6: Notes: This figure delineates four categories of households. The share of house-
holds that install are those with a prior above the cutoff, given by the area under the
compound distribution to the right of the vertical black line (“Install, But Should Not”
and “Correctly Install”). The share of households that should install are those with a true
mean usage above the cutoff, given by the area under the compound distribution above
the horizontal solid black line (“Don’t Install, But Should” and “Correctly Install”). The
unshaded area in the bottom left are those who make an optimal decision not to install.

To begin, we focus on how the decision to make an installation is affected by an

upgrade subsidy. To do so, we focus on the case where the savings parameter (α) is known

– i.e. we assume an audit has already occurred. By reducing the private cost of making an

installation, the upgrade subsidy reduces the installation threshold m̄, which we depict in

Figure 7 as a reduction in the installation threshold from m̄0 to m̄1. Consequently, a subset

where the expression is derived using Bayes Rule. Comparative statics or numerical sensitivities using this
expression can be calculated in a straightforward way in order to characterize how an audit mediates or
moderates the effects of an install subsidy, or show that as uncertainty in µ declines the share of households
making mistakes also declines.
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of the type (2) households, for whom it was optimal not to install without the subsidy,

now make an installation. Of these, only the households in the thickly cross-hatched area

labeled “Target Additionality” become type (1) households for whom it is now optimal

to install. These are the households the program intends to target. Models without

uncertainty and learning typically have these households in mind as being marginal or

additional to the program.

Figure 7: Notes: A subsidy reduces the critical value m̄ for households to make an install.
The share of households that are “additional” to a subsidy policy are the area under
the compound distribution between the vertical dashed black line (m̄1) and the vertical
solid black line (m̄0). However, only those in the cross-hatched area labeled “Target
Additionality” are economically efficient participants. The rest have a true mean below
the critical value (“Ex Post Mistake”) or would have eventually made an install without
the subsidy (“Pulled Forward”). The figure depicts the case when α is known.

As the figure shows, however, a potentially significant share of the technically addi-

tional households may not be economically efficient. For example, the remaining house-

holds that did not install without a subsidy - those in the white, lightly hatched area
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below the “Target Additionality” group - are induced to make an irreversible investment

mistake because of the subsidy, becoming type (4) households by the reduction in m̄, given

uncertainty over µ. In addition, some of the type (3) households are “pulled forward” into

making an installation earlier than they otherwise would have. These are the households

in the medium gray, lightly hatched area above the “Target Additionality” region. It is

optimal for these households to make an installation, but they will eventually do so in

the absence of a subsidy as their prior mt converges to µ > m̄ over time. Ultimately,

the economic efficiency gains stemming from this pull-forward effect depend on the dis-

count rate. Although all three new adopters are technically “additional” to the policy in

that the subsidy caused their participation, the “Target Additionality” group are the only

unambiguously economically efficient adopters.

Ultimately, the “Target Additionality” group may be a large or small share of the

households induced to install by the subsidy, depending on the shape of the compound

distribution of prior beliefs and true means. Importantly, among households that have

just moved into a home, we would expect the correlation between the prior beliefs and

the true means to be the lowest. Consequently, among these recent movers, the share of

participants in the “Target Additionality” region would be the smallest. As households

update their priors, uncertainty about their true mean usage declines and the compound

distribution converges to the 45 degree line. Once there is no remaining uncertainty, all

of the households that are induced to install by the subsidy are part of the “Target Addi-

tionality” group. This suggests that likelihood of inducing investment mistakes (i.e. Type

4 households) is the greatest when households participate in energy efficiency subsidy

programs immediately after moving into a new home.

Focusing next on the impact of subsidizing audits, we find a very similar pattern.

An audit that reduces uncertainty about the savings parameter α without reducing un-

certainty about true mean usage can exacerbate the occurrence of inefficient uptake by

inducing more installs without fully informing the investment decision. In appendix A.6,

we show that the ex post usage threshold m̄ – the threshold belief when α is known –

is below the threshold belief when α is uncertain (the ex ante usage threshold ̂̄m). This

situation is depicted in Figure 8. In Figure 8, ̂̄m is depicted with the dashed black line, and

the full information m̄ is depicted with the solid black lines. Audits induce more installa-
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tions because they reduce the installation threshold through the resolution of uncertainty

in α. Doing so may again “pull forward” a share of households that were delaying their

installation when it was optimal (the shaded region between the solid and dashed lines).

These households would have eventually become inframarginal to the policy through up-

dating their beliefs over time, so the economic efficiency gains of this pull-forward effect

may again be small. Because of uncertainty in true mean usage, however, the audit also

increases the number of households who make an irreversible investment mistake which

increases economic inefficiency.

Figure 8: Notes: The share of households that install when α is uncertain is the area under
the compound distribution to the right of the dashed black line (“Install, But Should Not”
and “Correctly Install”). If uncertainty in α is removed, this cutoff moves to the left, to the
solid black line. These additional participants are not necessarily economically efficient.
The share of households that should install is the area under the compound distribution
above the horizontal solid black line (“Don’t Install, But Should” and “Correctly Install”).

The insights provided by the theoretical model first suggest that the social benefits
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provided by subsidizing energy efficiency upgrades may be far smaller than previously

thought. Recall, existing studies demonstrate that only a fraction of subsidized energy

efficiency upgrades represent additional investments (e.g., less than 50% in the setting

explored by Boomhower and Davis (2014)). Our analysis highlights that many of these

additional investments are not truly additional, but rather simply pulled forward in time.

Even more troubling, given the existence of uncertainty in the decision making process, we

highlight that many of the additional participants may be making inefficient investments

– i.e. upgrades with costs larger than the stream of social benefits they will provide.

Quantifying the share of additional investments that are either pulled-forward or are truly

mistakes would clearly be a challenging task. To do so, one would need information on the

joint distribution between the actual returns to energy efficiency investments as well as

the households’ beliefs regarding the benefits – which would include not only the benefits

resulting from bill savings, but also the comfort benefits which we have abstracted from

in our simple model. While it is beyond the scope of the present study, our results suggest

that it would be particularly useful for future work to explore the relationship between

households’ beliefs and the true returns to energy efficiency.

More generally, our analysis highlights that efficiency gains could be achieved by elim-

inating the uncertainty households face when deciding to make energy efficiency upgrades.

Importantly, as Figure 7 highlights, it is not sufficient to simply remove the uncertainty

surrounding the share of energy use that could be avoided (α). It is also important to

ensure that households have a precise understanding of their baseline energy usage (µ).

While households will ultimately update their priors and learn what their true µ is after

living in their homes for a period of time, households that have just moved in will still be

confronted with uncertainty in µ. Given our theoretical prediction – and empirical obser-

vation – that households are most likely to participate in energy efficiency programs at

the time they move into a home, this suggest that a program targeting recent movers with

information about both α and µ could substantially reduce the occurrence of investment

mistakes – both delaying optimal investments as well as making inefficient investments.
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6 Conclusion

This paper examines how the decision to invest in residential energy efficiency improve-

ments is affected by subsidies for the upgrades as well as information (audits). While a

number of studies explore households’ decisions to participate in subsidized residential en-

ergy efficiency programs (e.g., Allcott and Greenstone (2017), Palmer and Walls (2015)),

our analysis incorporates an important and unexplored dimension. Rather than focusing

solely on whether or not a household participates in an energy efficiency program, we seek

to understand the timing of households’ participation decision – i.e. do households elect to

receive in-home energy audits and make subsequent energy efficiency improvements early

in their tenure in a home or after they have lived in the home for quite some time?

Ultimately, our analysis highlights that the timing margin – that is, when households

make upgrades – is an important margin on which to focus. This is due to the fact

that households that have just moved into a home and households that have lived in

their homes for many years have potentially very different information sets. Households

that have just moved into a home do not know how much energy they will consume in

their home or what the resulting comfort level will be. Consequently, they will have

little certainty surrounding the returns to making costly energy efficiency investments. In

contrast, households that have lived in their present home for some time will have much

more precise beliefs regarding the benefits of performing energy efficiency upgrades.

To shed light on how this inherent uncertainty surrounding the benefits affects house-

holds’ decisions to participate in energy efficiency programs, we introduce a theoretical

model of a household’s decision to receive an energy audit and invest in subsequent energy

efficiency upgrades. Importantly, the model captures that households may be uncertain

about their baseline energy usage (and level of comfort) absent making investments in

energy efficiency. In addition, we incorporate the fact that households face uncertainty in

the share of energy use that could be reduced by performing upgrades. While a typical

audit will remove much of the uncertainty surrounding the expected share of energy use

that could be avoided by investing in energy efficiency, households will ultimately require

time living in their homes – experiencing the level of comfort and observing their energy

bills – to precisely understand the true benefits of performing upgrades.

By incorporating time varying uncertainty in the decision process, we provide new in-
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sights surrounding the efficacy of subsidizing energy efficiency upgrades. Importantly, we

find that, while subsidies will induce more households to perform upgrades, much of this

spending will be quite wasteful. In particular, a subset of the marginal participants will

simply have their energy efficiency investments pulled-forward in time. That is, over time,

as uncertainty surrounding the benefits of energy efficiency was resolved, these households

would have elected to perform the upgrades without the additional subsidy. Even more

troubling, we find that a portion of the marginal participants are induced to make invest-

ment mistakes – i.e. the costs of the upgrades they perform exceed the stream of social

benefits they will provide.

While our results highlight that residential energy efficiency subsidies are a very costly

way to encourage energy efficiency investments, the insights from our model do point to

a potentially important margin policymakers can instead focus financial support towards.

In particular, the findings from our analysis suggest that welfare gains could be achieved

by reducing the uncertainty households face when deciding to make energy efficiency up-

grades. Moreover, our results suggest that it would be particularly valuable to provide

households with more precise information at the point when they move into a house.

Households face substantial uncertainty in expected energy costs when moving into a new

house because they don’t yet know how their energy usage behaviors interact with the

durable goods stock. Redesigning audit programs to predict a household’s average use in

a particular dwelling in addition to the percentage savings from specific upgrades would

greatly reduce investment mistakes. This would be equivalent to receiving a large number

of signals all at once rather than waiting to receive one noisy signal in each billing cycle.

Such a program is also feasible given advances in machine learning. This recent-mover

margin appears to be a particularly under-studied and under-exploited margin on which

policymakers can focus. Not only is this the point in time when uncertainty is the greatest,

our results also suggest it is when the likelihood of performing upgrades peaks.
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Table 1: Summary Statistics by Audit Uptake

No-Audit
(N = 86, 639)

Audit
(N = 2, 152)

Mean Std. Dev. Mean Std. Dev. Diff. p-value

Year Built 1971 31 1969 24 -2.07 0.002

Square Footage 1,736 882 1,912 956 176.8 0.000

Bedrooms 2.96 0.99 3.11 1.06 0.15 0.000

Floors 1.24 0.43 1.27 0.45 0.03 0.001

Mover (1 =yes) 0.08 0.27 0.14 0.35 0.06 0.000

Value ($’s) 148,101 134,145 170,272 143,937 22,173 0.000

Table 2: Immediate vs. Late Auditers

Audit Within 30 Days
(N = 48)

Audit After 30 Days
(N = 183)

Mean Std. Dev. Mean Std. Dev. Diff. p-value

Year Built 1964 26 1968 25 3.96 0.33

Square Footage 1,862 941 2,016 1,052 176.8 0.36

Bedrooms 3.69 4.38 3.15 0.98 -0.53 0.13

Floors 1.21 0.41 1.29 0.45 0.08 0.26

Value ($’s) 169,444 166,547 192,036 160,842 22,593 0.39
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Table 3: Linear Probability Model of Audit Timing

Moved in Sample No Move in Sample

(1) (2) (3) (4) (5) (6) (7) (8)

Concurrent Month:

Electricityt
(10 kWh/day)

0.023∗∗∗ 0.026∗∗∗ 0.011 0.006 -0.004 -0.004 0.003 -0.004

(0.008) (0.010) (0.011) (0.012) (0.006) (0.005) (0.007) (0.007)

Gast
(1 therm/day)

0.007 0.013 -0.025∗∗ -0.001 0.005 0.010 -0.011 0.007

(0.010) (0.016) (0.012) (0.013) (0.006) (0.008) (0.007) (0.010)

Previous Month:

Electricityt−1

(10 kWh/day)
0.032∗∗∗ 0.037∗∗ -0.011∗ 0.0003

(0.011) (0.019) (0.005) (0.005)

Gast−1

(1 therm/day)
0.053∗∗∗ 0.030∗∗ 0.018∗∗ 0.005

(0.014) (0.014) (0.008) (0.011)

Premise FE Y Y Y Y Y Y Y Y

Month FE N Y N Y N Y N Y

N 698 698 698 698 14,507 14,507 14,507 14,507

R2 0.01 0.06 0.05 0.08 0.001 0.02 0.01 0.08

Each model is estimated using monthly observations from households that elect to receive an audit more than one month
after moving into a house. The dependent variable in each model is an indicator variable identifying the billing cycle in
which a household elects to have an IHEA. The standard errors are robust to clustering at the household level and by
month-of-sample. ∗∗ = Significant at the 5% level; ∗∗∗ = Significant at the 1% level.

Table 4: Likelihood of Audit Uptake by Year Built

(1) (2) (3) (4)

Year Built -0.00002 -0.0002∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗

(0.00004) (0.00005) (0.00004) (0.00005)

Year Built×Mover -0.001∗∗∗ -0.002∗∗∗ -0.001∗∗∗ -0.0004∗∗

(0.0002) (0.0003) (0.0003) (0.0002)

Premise Characteristics N Y Y Y

Zip Code FE N N Y Y

N 55,485 55,485 55,485 55,361

R2 0.003 0.01 0.01 0.01

The linear probability models are estimated using each premise in our sample constructed
between 1950 and 2000. Movers are defined as premises that are sold at any point during
our three year sample. Premise characteristics include interactions between square footage
bins, bedrooms, a multi-story indicator, and the mover indicator variable. The postal fixed
effects include 35 zip code indicators. The standard errors are robust to heteroskedasticity.
∗∗ = Significant at the 5% level; ∗∗∗ = Significant at the 1% level.
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Table 5: Likelihood of Installations by Year Built

Movers Non-Movers All Homes

(1) (2) (3) (4) (5) (6)

Year Built -0.004∗ -0.005∗∗ -0.002∗∗ -0.001 -0.002∗∗ -0.001

(0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Year Built×Mover -0.002 -0.004

(0.002) (0.003)

Premise Characteristics N Y N Y N Y

Zip Code FE N Y N Y N Y

N 243 243 1,387 1,387 1,630 1,630

R2 0.02 0.13 0.004 0.03 0.01 0.04

The linear probability models are estimated using each audited premise in our sample constructed
between 1950 and 2000. Movers are defined as premises that are audited at any point after being sold
during our three year sample. Premise characteristics include bins separating homes by square-footage,
bedrooms, and a multi-story indicator variable. The postal fixed effects include 35 zip code indicators.
The standard errors are robust to heteroskedasticity. ∗ = Significant at the 10% level; ∗∗ = Significant
at the 5% level; ∗∗∗ = Significant at the 1% level.
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APPENDIX – For Online Publication

A Model Appendix

A.1 Derivation of equation (7)

The ex ante value function for t + 1, E[Vt+1], has two parts. First, over the range of

support of µ(θ) in which the household’s posterior for the mean falls below the ex ante

critical belief, mt+1(θ) < m̃, the household will not audit and expects to receive the present

value of wealth net of bills, conditional on the mean bill being below m̃. Put another way,

if expected energy bills aren’t high, a household has less incentive to get an audit because

install savings are expected to be lower.

The second part of the value function occurs over the range of the support of µ(θ)

in which the posterior exceeds the ex ante critical belief, mt+1(θ) ≥ m̃, the household

will audit and receive their expected value given an audit. This second part also has two

components: the support of α over which an install occurs, and the support of α over

which it does not, as defined in equation (6). As a result, the ex ante expected value

function is:

E[Vt+1] =

∫ ∞

m̃

[
−A+

(
1−G(ᾱ)

)w − pµ
1− δ

+

∫ ᾱ

0

(w − αpµ
1− δ − F

)
dG(α)

]
dHt+1(µ)

+

∫ m̃

−∞

w − pµ
1− δ dHt+1(µ). (A1)

By noting that the expected value of mt+1 at time t is mt and evaluating the integrals,

equation (A1) immediately simplifies to equation (7):

E[Vt+1] =
w

1− δ︸ ︷︷ ︸
present value of wealth

− A ·
(

1−H(m̃)
)

︸ ︷︷ ︸
ex ante expected audit cost

− F ·G(ᾱ)
(

1−H(m̃)
)

︸ ︷︷ ︸
ex ante expected install cost

− p

1− δ

(
1−G(ᾱ) · (1− α̂)

)
(1−H(m̃))µ̂H

︸ ︷︷ ︸
expected bills if audit, given uncertainty over install

− p

1− δH(m̃)µ̂L
︸ ︷︷ ︸

expected bills if don’t audit

. (A2)
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A.2 Proof of Proposition 1

At t = 0, all households with initial prior m(θ) ≥ m̃ request an audit. We can express

this share of households as

∫ ∞

m̃
dM(m(θ)) = 1−M(m̃),

with M(m̃) the share of remaining un-audited households in time t = 1.

At t = 1, the probability that a particular household with initial prior m(θ) < m̃

updates their belief to m1 ≥ m̃ is given by

Pr(m1(θ) ≥ m̃) = 1−H1(m̃; τ + 1 · r, θ)

where we note that the distribution of the posterior has an increasing precision and depends

on characteristics θ. In order to obtain the share of total households that audit in t = 1,

we integrate this expression over the distribution of home types with initial priors that

were not high enough to justify an audit at t = 0:

N1 =

∫ m̃

−∞
(1−H1(m̃; τ + 1 · r, θ)) dM(m(θ))

At t = 2, we can similarly calculate the share of households for a given home type

that choose to audit based on their updated belief (Pr(m2(θ) ≥ m̃)) and then aggregate

over home types. However, we also need to adjust for the fact that, with probability

H1(m̃; τ + 1r, θ) a home of type θ did not audit at t = 1, so that only (1 −N1 −M(m̃))

of the households remain unaudited. This expression is given by

N2 =

∫ m̃

−∞

(
1−H2(m̃; τ + 2r, θ)

)
·H1(m̃; τ + 1r, θ)dM(m(θ))

where we have adjusted the share of total homes auditing at time t by the probability that

they did not audit in the previous period. We can now write the general expression for

the share of total households that choose to audit at a given time t:

Nt =

∫ m̃

−∞

(
1−Ht(m̃; τ + tr, θ)

) t−1∏

s=1

Hs(m̃; τ + sr, θ)dM(m(θ)) (A3)

Equation (A3) is declining in t for two reasons. First, the term
∏t−1
s=1Hs(m̃; τ+sr, θ) is

clearly declining in time because Hs < 1 for any s. Second, the precision of the posterior

distribution increases over time such that Ht is a mean-preserving spread of Ht+1, which

implies that, for households that have not audited as of time t, (1−Ht) > (1−Ht+1).
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A.3 Proof of Lemma 2

By assumption, the true mean is increasing in θ: m′(θ) > 0. From the expression for

updated priors mt(θ) = τm(θ)+trē
τ+tr =

τm(θ)+r
∑t
s=0 es

τ+tr

∂mt(θ)

∂θ
=
τm′(θ)
τ + tr

> 0

∂mt(θ)

∂et
=

r

τ + tr
> 0

Both expressions are clearly declining in t.

A.4 Derivation of equation (9)

We first simplify (8) and then differentiate it with respect to θ (which produces an almost

identical result to differentiating with respect to et). We then simplify the expression to

derive equation (9).

Simplifying (8) slightly:

E[Vt(audit)]− E[Vt(delay)] = G(ᾱ)(1− α̂) · pmt

δ

1− δG(ᾱ)(1− α̂)H(m̃)pµ̂L −
(
A+ F ·G(ᾱ)

)
·
(

1− δ
(

1−H(m̃)
))

(A4)

Differentiating (A4) with respect to θ gives

∂E[Vt(audit)]− E[Vt(delay)]

∂θ
= G(ᾱ)(1− α̂)pm′t,θ + pmt

∂G(ᾱ)(1− α̂)

∂mt
m′t,θ

+
δp

1− δ

(
G(ᾱ)(1− α̂)

∂H(m̃)µ̂L
∂mt

+
∂G(ᾱ)(1− α̂)

∂mt
H(m̃)µ̂L

)
m′t,θ

+ δ
(
A+ F ·G(ᾱ)

)∂(1−H(m̃))

∂mt
m′t,θ − F

(
1− δ(1−H(m̃))

)∂G(ᾱ)

∂mt
m′t,θ (A5)

Note that an increase in the prior shifts the distributions of µ and α. We therefore

need to derive

∂(1−H(m̃))µ̂H
∂mt

,
∂H(m̃)µ̂L
∂mt

,
∂(1−H(m̃))

∂mt
,

∂G(ᾱ)

∂mt
, and

∂G(ᾱ) · (1− α̂)

∂mt

We first note that h(µ) is the Normal pdf with standard deviation σ = 1/(τ + tr), and

50



use integration by parts to derive

∂(1−H(m̃))µ̂H
∂mt

= ∂
∂mt

∫∞
m̃ µh(µ)dµ

=
∫∞
m̃ µ∂h(µ)

∂mt
dµ

=
∫∞
m̃

µ
σ
µ−mt
σ h(µ)dµ

= 1√
2πσ

∫∞
m̃

(
z + mt

σ

)
z exp(−z2/2)dz, where z = µ−mt

σ

= 1√
2πσ

∫∞
m̃ udv, where (z + mt

σ ), dv = z exp(−z2/2)dz

= 1√
2πσ

[
− (z + mt

σ ) exp(−z2/2)
]∞
m̃
− 1√

2πσ

∫∞
m̃ − exp(−z2/2)dz

= m̃h(m̃)
σ + (1−H(m̃))

= m̃h(m̃)(τ + tr) + (1−H(m̃))

A similar procedure shows that

∂H(m̃)µ̂L
∂mt

= −m̃h(m̃)(τ + tr) +H(m̃)

And
∂(1−H(m̃))

∂mt
= h(m̃)(τ + tr)

Recalling that ᾱ = ᾱ(mt) with ᾱ′(mt) > 0, it is clear that

∂G(ᾱ)

∂mt
= g(ᾱ)

∂ᾱ

∂mt

We can then use the Leibniz rule to derive

∂G(ᾱ)·(1−α̂)
∂mt

= ∂
∂mt

[
G(ᾱ)−

∫ ᾱ(mt)
0 αdG(α)

]

= g(ᾱ) ∂ᾱ
∂mt
− ᾱg(ᾱ) ∂ᾱ

∂mt

= (1− ᾱ)g(ᾱ) ∂ᾱ
∂mt

Plugging these expressions into equation (A5) yields

∂E[Vt(audit)]− E[Vt(delay)]

∂θ
= G(ᾱ)(1− α̂)pm′t,θ + pmt(1− ᾱ)g(ᾱ)

∂ᾱ

∂mt
m′t,θ

+
δp

1− δ

(
G(ᾱ)(1− α̂)

(
− m̃h(m̃)(τ + tr) +H(m̃)

)
+ (1− ᾱ)g(ᾱ)

∂ᾱ

∂mt
H(m̃)µ̂L

)
m′t,θ

+ δ
(
A+ F ·G(ᾱ)

)
h(m̃)(τ + tr)m′t,θ − F

(
1− δ(1−H(m̃))

)
g(ᾱ)

∂ᾱ

∂mt
m′t,θ (A6)

We can simplify this further by noting that F = (1−ᾱ)pmt
1−δ and mt = H(m̃)µ̂L + (1 −

H(m̃))µ̂H and combining like terms to find
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∂E[Vt(audit)]− E[Vt(delay)]

∂θ
=

[
p

1− δG(ᾱ)(1−α̂)
(

1−δ+δH(m̃)
)

+δh(m̃)(τ+tr)A

]
m′t,θ

+
δp

1− δ

[
h(m̃)(τ+tr)G(ᾱ)

(
(1−ᾱ)mt−(1−α̂)m̃

)
+g(ᾱ)

∂ᾱ

∂mt
(1−ᾱ)(1−H(m̃))(mt−µ̂H)

]
m′t,θ

(A7)

A.5 Proof of Proposition 4

We have established that the household makes an installation following an audit if the

present value of installation benefits, denoted bI , exceeds the installation cost:

bI =
1− α
1− δ pmt(θ) ≥ Ft

For larger θ or et we have

(i) ∂bI
∂θ = 1−α

1−δ pm
′
t,θ

(ii) ∂bI
∂et

= 1−α
1−δ pm

′
t,et

From Lemma 2, m′t,θ and m′t,et are positive and declining in t.

A.6 Impact of Audit Subsidy on Additionality and Mistakes

By applying Jensen’s Inequality to the ex post and ex ante usage threshold, we can see

that an audit itself lowers the usage threshold for a household to make an installation,

even in the absence of an installation subsidy. In other words, the very fact of an audit

makes a household more likely to make an install even if the audit teaches the household

nothing about their true mean use. To see this, recall that the ex post usage threshold at

the average level of savings E(α) is a convex function of E(α):

m̄(E(α)) =
F

p

1− δ
1− E(α)

,

In the absence of an audit program, the household has no way of learning about the

savings rate α from an install, and will make an energy efficient installation if their prior

exceeds the ex ante usage threshold:

E(m̄) =

∫ 1

0

F

p

1− δ
1− αdG(α)

.
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By Jensen’s Inequality, the ex post usage threshold at the average level of savings

α is lower than the ex ante usage threshold which a household would apply to their

installation decision without an audit (m̄(E(α)) < E(m̄)). In other words, an audit

induces installation for households whose prior estimate of mean use is between m̄(E(α))

and E(m̄).

B Energy Consumption Variability

A key policy relevant aspect of our analysis is how predictable a home’s electricity usage

is in any given month. If homes with similar physical characteristics have wildly different

observed electricity consumption, then some homeowners could move into homes that

appear to be “energy hogs” based upon observables and make an install based upon

expected savings only to discover the home was actually energy efficient and the install

was a mistake. Put more bluntly, as the variance in home energy usage conditional on

observable increases, the value of gaining information about the actual energy usage of

the home increases. Of course preferences also matter since some households are simply

willing to pay more for services provided by electricity use; we return to this point shortly.

To investigate how predictable a home’s electricity usage is we perform a simple sta-

tistical exercise. For the sample of 88,791 homes in the data we trim the sample to only

include the homes between the 10th and 90th percentile of square footage. We then run a

regression of monthly electricity usage on linear and squared values of year built, number

of bedrooms, a 3rd degree polynomial of square footage, number of floors and indicator

variables for month and year. The relatively simple regression is meant to mirror what a

sophisticated home buyer might use to form expectations of average electricity usage of a

home. From that regression we get predicted values. Next we take the median year built,

median number of bedrooms, median number of floors and homes 5% above and 5% below

the median level of square feet in the sample. This leaves 236 unique homes.

Figures A1 and A2 show observed and predicted electricity usage of the 238 households

closest to the median household in the data for two shoulder months, April and October,

in 2012. We pick these months because they are mild and thus should have the least

variation in usage in absolute terms. Observed electricity usage varies wildly, from less

than 200 kWh up to 2,000 kWh, with a mean of roughly 1,000 kWh. Conversely, predicted

values range from about 800 kWh to almost 900 kWh. The point of this exercise is to

show that household electricity usage varies a great deal. Even if 50% of the observed

difference in electricity consumptions is due to preferences, the remaining range of observed

electricity differences would still be large relative to the mean. We take this as evidence

that individual homes have high variation in their energy efficiency even conditional on

observables.
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Figure A1: Notes: Observed April and October 2012 electricity usage.

Figure A2: Notes: Predicted April and October 2012 electricity usage.
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C Appendix Tables and Figures

Table A1: Frequency of Upgrades Conditional on Audit

Movers
(N = 308)

Non-Movers
(N = 1, 844)

Mean Mean Diff. p-value

ANY Upgrades 0.63 0.62 0.01 0.64

Primary Windows 0.41 0.40 0.002 0.94

HVAC Replacement 0.06 0.05 0.01 0.57

HVAC Tune-up 0.02 0.02 0.000 0.96

Duct Repair/Replace 0.02 0.04 -0.02 0.17

Duct Sealing 0.12 0.11 0.01 0.66

Attic Insulation 0.12 0.14 -0.02 0.27

Air Sealing 0.10 0.11 -0.02 0.38

Wall Insulation 0.03 0.03 -0.01 0.62

Floor/Perimeter Insulation 0.04 0.04 -0.002 0.89

Vapor Barrier 0.02 0.02 -0.002 0.85

General Rehab. 0.01 0.01 -0.01 0.25

Water Heater Insulation 0.003 0.01 -0.003 0.49

Water Pipe Insulation 0.003 0.01 -0.01 0.29
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